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Abstract: Many patients with non-metastatic breast cancer benefit from adjuvant radiation therapy
after lumpectomy or mastectomy on the basis of many randomized trials. However, there are many
patients that have such low risks of recurrence after surgery that de-intensification of therapy by
either reducing the treatment volume or omitting radiation altogether may be appropriate options.
On the other hand, dose intensification may be necessary for more aggressive breast cancers. Until
recently, these treatment decisions were based solely on clinicopathologic factors. Here, we review
the current literature on the role of genomic assays as prognostic and/or predictive biomarkers to
help guide adjuvant radiation therapy decision-making.
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1. Breast Cancer and Breast Conservation Therapy

Breast conservation therapy (BCT) consisting of a lumpectomy followed by radiation
therapy was first shown in the 1980’s to have equivalent outcomes to mastectomy for
early stage invasive breast cancers [1–6]. Breast radiation after breast conservation surgery
improves local recurrence rates and overall survival at 15 years [1,2]. BCT has therefore
become a standard treatment paradigm for treating invasive breast cancers [1,7,8]. Cur-
rent treatment guidelines recommend radiation therapy for most patients having breast
conservation surgery.

While adjuvant radiation has therapeutic advantages, daily radiation treatments can
be inconvenient, costly and may involve toxicity to the heart, lungs, skin and adverse
cosmesis [7–9]. For these reasons, there has been a trend toward decreasing the burden and
inconvenience of daily radiation treatments among low-risk breast cancer patients (defined
as post-menopausal women with lymph node negative, estrogen receptor (ER) positive
cancers of small size < 2 cm and negative margins). Multiple large randomized studies
have shown that reducing radiation treatment volumes with accelerated partial breast irra-
diation (APBI) [10–14] or reducing overall treatment times with an ultrahypofractionated
approach [15,16] does not compromise cancer control compared to conventional whole
breast radiation in select low risk breast cancer subpopulations.

The identification of low risk breast cancers in which radiation may be safely omitted
and the side effects of radiation can be spared is an area of investigation. Historical
clinical trials omitting radiation therapy for low risk breast cancers based on clinical and
pathologic factors alone have shown conflicting results. More recently, prognostic genomic
assays have shown promise in improving our ability to identify patients with a low risk of
local recurrence in which adjuvant radiation may be safely omitted to prevent radiation-
associated toxicities. Prospective clinical trials to investigate the ability of prognostic
genomic assays to identify low risk breast cancers in which radiation can be safely omitted
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are currently ongoing. While prognostic genomic assays may help stratify breast cancers
according to their risk of recurrence, the development and validation of predictive genomic
assays may help us to better understand the likelihood of breast cancers to respond to
radiation therapy, thus allowing for a more tailored locoregional approach to improve
radiation outcomes. In this review, we summarize the current evidence for prognostic
genomic assays and discuss the potential for predictive genomic assays to facilitate adjuvant
radiation therapy decisions in the clinic.

2. De-Escalation of Radiation Therapy Based on Clinical Factors in Breast Cancer

The historical NSABP-06 trial randomized a non-selective cohort of n = 1851 early
stage breast cancer patients to lumpectomy, lumpectomy and radiation, or mastectomy.
The 20-year outcomes showed the incidence of recurrent tumor in the ipsilateral breast was
14.3% in women undergoing lumpectomy followed by breast irradiation compared to 39.2%
in the women undergoing lumpectomy alone (p < 0.001) [4]. This study, which included all
subtypes of early stage invasive breast cancers, indicated that radiation after lumpectomy
substantially improved the rates of local recurrence, thus confirming lumpectomy followed
by radiation as standard therapy for early stage breast cancers. Further retrospective studies
have also suggested that omission of whole breast radiation post-lumpectomy in higher
risk early stage breast cancers may decrease survival [17,18].

Several clinical studies have made attempts to identify “low risk” ER+ early stage
breast cancers in which radiation can be omitted with similar rates of local control. NSABP-
21 evaluated whether radiation could safely be omitted in select early stage breast cancer
patients with small ER+ or ER− tumors < 1 cm and negative surgical margins [19]. In this
study, n = 1009 patients with T1a or T1b breast cancers were randomized to tamoxifen alone,
radiation + placebo, or radiation + tamoxifen. At 8 years, the cumulative incidence of in
breast tumor recurrence was 16.5% with tamoxifen alone, 9.3% with radiation and placebo,
and 2.8% with radiation and tamoxifen. Thus, radiation reduced local recurrence below
the level achieved with tamoxifen alone [19]. Similar results were shown in the Austrian
Breast and Colorectal Cancer Study Group (ABCSG) trial 8A, a prospective, multicenter
clinical trial that randomized favorable early stage breast cancer patients (<3 cm, Grade 1
or 2, ER/PR+) receiving lumpectomy with radiation versus lumpectomy without radia-
tion [20]. The 5-year recurrence rates were 2.1% in the radiation group versus 6.1% in the
no-radiation group (p = 0.002) [20]. The results of the Swedish Breast Cancer Group 91 RT
(SweBCG 91 RT) also confirmed that small early stage invasive breast cancers identified on
screening mammogram had an improved in-breast tumor recurrence benefit from radiation
therapy (23.9% vs. 11.5%, p < 00.1) [21,22].

While these randomized trials demonstrated a local control benefit of radiation in
ER+ early stage breast cancers, elderly women with small, low grade ER+ breast cancers
appeared to derive the least benefit [23]. In the Cancer and Leukemia Group B (CALGB)
9343 trial, 636 women aged ≥ 70 years old with T1 early stage ER+ breast cancers were
randomized to receive tamoxifen alone versus tamoxifen plus radiation therapy post-
lumpectomy [24,25]. At a long term follow up of 12.6 years, the local recurrence rates
were only mildly improved with radiation (10% in the tamoxifen alone group vs. 2%
in the tamoxifen and radiation group). However, the secondary endpoints of overall
survival, distant metastases and mastectomy-free survival were the same between the two
groups [24]. The PRIME-II trial, which included ER+ early stage breast cancer patients
≥ 65 years old with T1/T2 tumors demonstrated similar results with only mildly improved
rates of local recurrence with radiation post-lumpectomy (4.1% vs. 1.3%) [26]. Given only a
modest local control benefit of radiation, NCCN guidelines were revised to allow for the
omission of radiation in patients ≥ 70 yo in 2005 [27].

In 2004, Fyles et al. [28] randomized n = 769 women ≥ 50 yo with T1/T2 early
stage ER+, node-negative breast cancers to tamoxifen alone compared to tamoxifen plus
radiation. Despite this favorable early stage ER+ breast cancer patient population, radiation
significantly reduced the rate of local relapse. After a median follow up of 5.6 years, the
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risk of local relapse was 7.7% in the tamoxifen alone group compared to only 0.6% in the
radiation plus tamoxifen group [28]. However, a further retrospective analysis by Liu
et al. [29], showed a minimal rate of recurrence regardless of radiation in a subtype of breast
cancer defined as ER+/PR+/Her-2 negative with a low Ki-67 value. These results prompted
the question of whether better characterizing the biology of breast cancer may help identify
breast cancers in which radiation has minimal benefit and can be safely omitted.

Most recently, the LUMINA single arm prospective clinical trial [30] showed that
women ≥ 55 yo with Grade 1–2 invasive breast cancer of the Luminal A subtype (defined
as: ER ≥ 1%, PR > 20%, HER2 negative and Ki67 ≤ 13.25%) had very low rates of local
recurrence of 2.3% at 5 years when patients were treated with lumpectomy followed by
endocrine therapy alone [31]. While these preliminary results show promise that Luminal A
breast cancers may be candidates for radiation omission, the results of multiple prospective
clinical trials to further characterize the role of adjuvant radiation among breast cancer
molecular subtypes using genomic assays are ongoing.

3. Genomic Profiling of Breast Cancers

It is well-known that breast cancers represent a heterogenous group of diseases com-
posed of several subtypes. Seminal genomic profiling studies have shown that breast
cancer is composed of intrinsic molecular subtypes [32–35]. The Luminal A, Luminal B,
Her-2 enriched and Basal-like molecular subtypes demonstrate different disease-specific
outcomes and treatment responses. Multiple studies have shown that these molecular
subtypes of breast cancer strongly predict locoregional recurrence in addition to distant
recurrence [36–40]. While molecular subtypes facilitate adjuvant systemic and radiation
treatment decisions, the use of genome-wide gene expression profiling microarrays can be
costly, time consuming and challenging to implement in the clinic.

Consequently, molecular subtypes are often approximated in the clinic by immuno-
histochemical staining for ER, PR and Her-2 status, grade and Ki-67 proliferation rate.
Multiple studies have shown that Luminal A breast cancers had the lowest rate of regional
local recurrence and best prognosis. In contrast, Her-2 enriched and Basal-like subtypes
demonstrated an increased risk of local recurrence [37–40]. Arvold et al. [37] approximated
these subtypes based on immunohistochemistry and grade and determined the 5-year
cumulative incidence of local recurrence was 0.8% for Luminal A, 2.3% for Luminal B, 1.1%
for Luminal HER-2, 10.8% for HER2-enriched and 6.7% for Basal-like early stage breast
cancers. Moreover, Voduc et al. [39] defined these molecular subtypes based on a six gene
panel, including ER, PR, Her-2, Ki-67, epidermal growth factor receptor (EGFR), and cytok-
eratin (CK) 5/6. Bane et al. [38] classified tumors by molecular subtype, including Luminal
A, Luminal B, Her-2 enriched, Basal-like or unclassified based on immunohistochemical
staining for ER, PR, Her-2, Ki-67, CK 5/6, EGFR status in addition to HIF-1alpha, CAIX
and GLUT1. In this study, the 10 yr cumulative local recurrence incidence was 4.5% for
Luminal A and Basal-like, 7.9% for Luminal B and 16.9% for Her-2 enriched tumors [38].

Commercially available genomic assays have now been developed and are commonly
implemented in the clinic as prognostic and predictive tools for adjuvant systemic ther-
apy. In the next section, we discuss OncotypeDx, Mammoprint, and other commercially
available gene assays for guiding adjuvant systemic therapy decisions in the clinic.

4. Genome Expression Assays as Prognostic and Predictive Biomarkers for Adjuvant
Systemic Therapy

Genomic assays are now routinely used for making adjuvant systemic treatment
decisions in the clinic [41–46]. OncotypeDx (Exact Sciences, Madison, WI, USA) is a
multigene assay using RNA expression profiling on a panel of 21 genes, including 16 cancer-
related genes associated with proliferation, invasion, and estrogen signaling in addition to
5 reference genes [47]. Gene expression levels are included in a mathematical algorithm to
generate a Recurrence Score (RS) from 0–100 that stratifies patients into three different risk
categories of low (0–18), intermediate (18–31), and high (31–100) risk of distant recurrence.
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Multiple retrospective studies showed that Recurrence Scores using this 21 gene
assay could not only estimate the risk of distant recurrence in ER+, node-negative breast
cancers on NSABP B-14 and NSABP B-20 [48–52], however it could also predict breast
cancers most likely to benefit from adjuvant chemotherapy [49]. Indeed, Paik et al. [49]
showed that patients with high Recurrence Scores (≥31) experienced a large benefit from
cyclophosphamide, methotrexate, and fluorouracil chemotherapy (27.6% absolute mean
decrease in distant recurrence rate at 10 years), while patients that had low Recurrence
Scores (<18) experienced minimal benefit from chemotherapy (1.1% absolute mean decrease
in distant recurrence at 10 years). While the role for chemotherapy was clear in high and
low risk cases, it was less certain in patients with intermediate Recurrence Scores [49].

The Trial Assigning Individualized Options for Treatment (TAILORx) was a prospec-
tive randomized clinical trial designed to address this uncertainty in chemotherapy benefit
among intermediate Recurrence Scores [53]. ER+, node-negative breast cancer patients with
intermediate (11–25) Recurrence Scores were randomized to receive either chemotherapy
and endocrine therapy or endocrine therapy alone [53]. Patients with Recurrence Scores
between 11 and 25 had similar outcomes whether treated with chemoendocrine therapy or
endocrine therapy alone. Both groups had a disease-free survival rate of ~84%, disease-free
metastasis of ~95% and overall survival of ~93% at a follow up of 9 years. However, some
survival benefit was observed in women < 50 yo with Recurrence Scores of 16 to 25, with
benefit increasing as the Recurrence Score increased [53,54].

In regard to node positive patients, Albain et al. [55] performed a retrospective anal-
ysis that showed the 21-gene Recurrence Score to also be prognostic and predictive of
chemotherapy benefit in a subset of post-menopausal, ER+, node positive women on the
Southwest Oncology Group (SWOG)-8814 INT-0100 trial [55,56]. In this study, patients
with Recurrence Scores < 18 showed no benefit to chemotherapy, however patients with
Recurrence Scores ≥ 31 showed increased disease-free survival, overall survival and breast
cancer specific survival in patients treated with chemotherapy [55]. The prognostic and
predictive role of Recurrence Scores in node-positive breast cancers was evaluated by
RxPonder (A Clinical Trial RX for Positive Node, Endocrine Responsive Breast Cancer) [57],
a prospective clinical trial randomizing women with ER+, node positive (1–3 positive
lymph nodes) and Recurrence Scores of 0–25 to chemotherapy plus endocrine therapy vs.
endocrine therapy alone. The RxPonder trials showed that ER+ post-menopausal women
with 1–3 positive lymph nodes and a recurrence score of 0–25 showed no clinically rele-
vant benefit to adjuvant chemotherapy. However, for the 33% of pre-menopausal women
enrolled on the trial, an increase in disease-free survival of 40% and relapse-free survival
of 42% was seen with the addition of chemotherapy regardless of recurrence score [57].
As a result, genomic assays are used in making adjuvant systemic therapy decisions for
post-menopausal women, but not pre-menopausal women, with 1–3 positive nodes.

MammaPrint (Agendia Precision Oncology, Irvine, CA, USA) is a prognostic
70-gene signature developed by the Netherlands Cancer Institute that out-performed
all clinical variables in predicting distant metastases over five years. The 70 gene signature
involving genes associated with cell cycle, invasion, metastases and signal transduction
was able to classify breast cancer patients with tumor size < 5 cm, lymph node negative
and age < 55 yo into “poor prognosis” and “good prognosis” subtypes [58,59]. The initial
validation study showed that node-negative breast cancer patients stratified as low risk by
the 70-gene signature demonstrated a 10-year overall survival of 92%, whereas patients
classified as high risk had a 59.5% 10-year overall survival [60]. The prospective Phase III
MINDACT (Microarray In Node-Negative and 1 to 3 Positive Lymph Node Disease May
Avoid Chemotherapy Trial) later showed that the 70 gene signature identified patients with
high clinical risk and low genomic risk of distant metastases that did not benefit from the
addition of chemotherapy to endocrine therapy at a median follow up of 8.7 years [61,62].
More recent studies suggest that this 70-gene Mammaprint signature may identify ultra-
low risk breast cancers that could be candidates for further de-escalation of endocrine
therapy [63,64].
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Based on these previously discussed multiple prospective clinical trials, ASCO guide-
lines provide evidence-based recommendations for the use of genomic assays for guiding
adjuvant systemic therapies among early-stage breast cancers [43,45,46].

5. Prognostic Genomic Assays and Adjuvant Radiation Therapy

While the past decade has seen a significant increase in the utilization of genomic
assays in making adjuvant systemic therapy recommendations, the relevance of genomic
assays in guiding radiation therapy recommendations remains uncertain. Clinicopathologic
factors such as grade, tumor size, lymph node status and age independently correlate with
local recurrence. However, prospective clinical trials aimed to identify low-risk breast
cancers based on clinicopathologic factors alone in which radiation therapy can be omitted
with minimal effect on disease control have been unsuccessful. Radiation provided at least
a modest benefit in local control in all the studies [19,20,24–26,65].

The previously described Oncotype and Mammaprint assays are not only prognostic for
distant recurrence, but have also been shown to be prognostic for local recurrence [50,66–70].
In 895 tamoxifen-treated ER+, node negative patients from NSABP B-14 and B-20, locoregional
recurrence (LRR) was significantly associated with Recurrence Score. The 10-year LRR was
4.3% for patients with a low RS (<18), 7.2% for those with intermediate RS (18–30), and 15.8%
for those with a high RS (≥30) [50]. Recurrence Score remained an independent predictor of
LRR in ER+, node-positive patients treated with adjuvant chemotherapy plus tamoxifen in
NSABP B-28 [71].

The risk-of-recurrence (ROR) score derived from the Predictor Analysis of Microarray
(PAM) 50 (Prosigna) is a 50 gene assay that describes individual breast cancers based on
intrinsic subtype and has also been shown to be an independent prognostic factor for risk of
local recurrence in post-menopausal ER+ early stage breast cancer patients [72–74]. Women
with breast cancer who had a low-risk PAM-50 ROR score (defined as <57) after breast
conservation therapy on the Austrian Breast and Colorectal Cancer Study Group (ABCSG)
8 randomized trial had only a 0.9% risk of local recurrence [72]. These prognostic genomic
assays have been summarized in Table 1.

Current prospective clinical trials are evaluating whether OncotypeDx and PAM-50
prognostic gene assays can be used to identify low risk ER+ early breast cancer patients
in which radiation therapy can be safely omitted (Table 2). The IDEA (Individualized
Decisions for Endocrine Therapy Alone) is a single arm Phase II prospective trial evaluating
locoregional recurrence rates in low risk women (defined as post-menopausal, ER+ with
a RS ≤ 18 who plan to receive endocrine therapy) in which radiation therapy will be
omitted after breast conservation surgery [75]. The PRECISION (Profiling Early Breast
Cancer for Radiation Omission) is a prospective Phase II single arm trial evaluating 5 year
locoregional recurrence after the omission of radiation ER+ early stage breast cancers
< 2 cm with a low risk PAM-50-based ROR in post-menopausal woman > 50 yo [76].
Both the IDEA and PRECISION trials have completed accrual. NRG-BR007 DEBRA (De-
Escalation of Breast Radiation) is a currently accruing Phase III prospective, randomized
trial evaluating omission of breast radiation in ER+/Her-2 negative early stage breast
cancers with Oncotype Recurrence Scores ≤ 18 in women age 50–69 yo [77]. The TAILOR-
RT Phase III is randomizing patients to regional nodal radiation that have ER+/Her2-
negative biomarker low risk (defined as Oncotype ≤ 25) breast cancers with low lymph
node burden (1–3+ lymph nodes) [78]. The EXPERT (Examining Personalized Radiation
Therapy for Low Risk Early Breast Cancer) trial is a Phase III randomized trial evaluating
the omission of breast radiation in ER+/Her-2 negative early stage breast cancers with
PAM-50 ROR < 60 in women ≥ 50 yo [79]. Until the results of these prospective clinical
trials become available, adjuvant breast radiation remains the standard of care after breast
conservation surgery for most patients.
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Table 1. Prognostic genomic assays in breast cancer.

Microarray Number of Genes Genes Classification Reference

OncotypeDx 21 genes
16 cancer-related genes associated with

proliferation, invasion, and estrogen
signaling as well as 5 reference genes

Generates “Recurrence Score”
(RS), from 0–100 which stratifies

patients into low (0–18),
intermediate (18–31), and high

(31–100) risk of distant
reccurence.

[43]

Mammoprint 70 genes
Genes associated with cell cycle,
invasion, metastases and signal

transduction

Classifies breast cancer patients
into “poor prognosis” or “good

prognosis”. Calculates
MammaPrint Index (MPI) to
stratify Low or High risk of

reccurence.

[54,55]

PAM 50 50 genes

50 discriminator genes + 8 controls.
These genes identify the intrinsic breast

cancer subtypes by indentifying the
underlying biology associated with ER
and HER2 pathways, and proliferation

genes and markers of the basal
phenotype.

Calculates a “risk-of-recurrence”
(ROR) score, 0–100 which

classifies low (0–40),
intermediate (41–60), or high

(61–100) risk for node-negative
cancers.

[68–70]

Table 2. Current prospective clinical trials evaluating whether prognostic gene assays can identify
low risk ER+ early breast cancer patients in which radiation therapy can be safely omitted.

Prospective Clinical Trials Enrollment Criteria Aims Reference

LUMINA

Grade 1–2 invasive breast cancers of
luminal A subtype (defined as: ER ≥ 1%,

PR > 20%, HER2 negative and
Ki67 ≤ 13.25%) in women > 55 yo

To evaluate patients who have low risk of local
reccurence following breast conservation

surgery and endocrine therapy alone who may
be candidates for radiation omission.

[26,27]

IDEA
ER+ invasive breast cancers with RS ≤ 18
who plan to receive endocrine therapy in

post-menopausal women

To evaluate locoregional recurrence rates in
low risk women via considering tumor biology

including OncotypeDx, in which radiation
therapy can be omitted after breast

conservation surgery.

[71]

PRECISION
ER+ early stage breast cancers < 2 cm with
a low risk PAM-50-based ROR in women

> 50 yo

To evaluate locoregional recurrence rates in
patients omitting radiation treatment after

lumpectomy.
[72]

DEBRA
ER+/Her-2 negative early stage breast

cancers with RS ≤ 18 in women age
50–69 yo

To evaluate omission of breast radiation after
breast conservation surgery and endocrine

therapy.
[73]

EXPERT
ER+/Her-2 negative early stage breast

cancers with PAM-50 ROR < 60 in women
≥ 50 yo

To evaluate the omission of breast radiation
therapy compared to obseravation after breast

conserving surgery and endocrine therapy.
[75]

TAILOR-RT

ER+/Her2-negative biomarker low risk
breast cancers (defined as RS ≤ 25) with

low lymph node burden (1–3+ lymph
nodes)

To evaluate the effects on low risk breast
cancer patients after ommission or treatment

of regional nodal radiation.
[74]

6. The Potential for Predictive Genomic Assays to Guide Adjuvant Radiation Therapy

While multiple studies have successfully shown that prognostic genomic assays are
able to predict local recurrence in breast cancer [37–39], predictive genomic assays could
potentially identify subpopulations of breast cancer that are most or least likely to benefit
from radiation therapy (Figure 1). Genomic classifiers capable of predicting response to
radiation are still under development. However, data has shown that the radiosensitivity of
breast cancers appears to be independent of intrinsic molecular subtype and the signaling
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mechanisms associated with radiosensitivity or resistance may differ among breast cancer
subtypes [29,38,80,81].
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to radiation therapy and chemotherapy.

Speers et al. studied the intrinsic radiosensitivity of 16 human breast cancer cell lines
using clonogenic survival assays to develop a 51 gene molecular signature that would iden-
tify women at an increased risk of local recurrence most likely to benefit from radiation [82].
This gene classifier was enriched with genes associated with cell cycle arrest and DNA
damage response. Moreover, Nimeus-Malmstrom et al. found a reliable gene expression
profile capable of predicting local recurrence despite radiation after breast conservation
surgery in ER+ breast cancers [83]. Another study identified a 7 gene profile for node
positive patients from the Danish Breast Cancer Cooperative Group (DBCG82bc) treated
with systemic treatment and randomized to receive or not to receive post-mastectomy
radiation therapy (PMRT). This 6 gene expression panel identified patients with “high LRR
risk” in which PMRT significantly reduced the risk of LR and “low LRR risk” group in
which PMRT showed no additional reduction in LR rate and the response to radiation was
independent of intrinsic molecular subtype [81,84].

The Adjuvant Radiotherapy Intensification Classifier (ARTIC), comprised of 27 genes
related to cell proliferation, cell cycle and kinase activity as well as patient age, is a gene
classifier for radiation sensitivity in patients with high-risk node negative early stage breast
cancers was developed using three publicly available cohorts. The ARTIC classifier was
the first predictive assay to be later validated with a Phase III clinical trial in which patients
were randomized to radiation [85].

The RSI radiosensitivity index is a linear model based on 10 genes (related to DNA
damage response, histone deacetylation, cell cycle, apoptosis and proliferation) associated
with the fraction of cells surviving after 2 Gy (SF2) of radiation. The RSI has been validated
to predict clinical outcomes and benefit from radiation therapy among several cancer
types, including breast cancer [86–90]. Torres-Roca et al. [88] later found that RSI may not
predict radiation sensitivity among all breast cancer subtypes and may be influenced by
ER status. Scott et al. later combined RSI with the linear quadratic model to create the
Genome Adjusted Radiation Dose (GARD), a tool believed to predict a tumor’s response to
a particular dose of radiation based on its inherent radiosensitivity [86,91].

Other groups have found genomic classifiers for radiation sensitivity that depend on
the immune microenvironment. Shen et al. developed an 11 gene signature that stratify
tumors based on response to radiation therapy and the tumor immune microenvironment.
In this study, CD4+ T cells and B cells infiltrated the radiosensitive tumors and macrophages
infiltrated the radioresistant tumors [92]. Cui et al. [93] also developed gene expression
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signatures based on intrinsic radiosensitivity and antitumor immunity. Validation of
these predictive genomic classifiers in prospective clinical trials are warranted before
implementation in the clinic.

In summary, while confirmatory studies are needed, many of these pre-clinical studies
have identified genes involved in cell proliferation, DNA damage response, immune
microenvironment and wound response signaling to be associated with radiation resistance
in breast cancer. The results of these studies have been summarized in Table 3.

Table 3. Summary of gene expression profiles found to be associated with radiation resistance in
breast cancer.

Microarray Number of Genes Genes Classification Reference

Speers et al. 51 genes
Enriched with genes associated
with cell cycle arrest and DNA

damage response

Identify women at an increased
risk of local recurrence most likely

to benefit from radiation
[78]

Danish Breast Cancer
Cooperative Group

(DBCG82bc)
7 genes

HLA-DQA, RGS1, DNALI1,
hCG2023290, IGKC, OR8G2, and

ADH1B. Genes involving immune
system, protein signalling, and

metabolism enzymes

Identified patients with “high LRR
risk” in which PMRT significantly
reduced the risk of LR and “low
LRR risk” group in which PMRT

showed no additional reduction in
LR rate and the response to

radiation was independent of
intrinsic molecular subtype

[77,80]

Adjuvant Radiotherapy
Intensification Classifier

(ARTIC)
27 genes

Genes related to cell proliferation,
cell cycle and kinase activity as

well as patient age

A gene classifier for radiation
sensitivity in patients with

high-risk node negative early stage
breast cancers was developed
using three publicly available

cohorts

[81]

RSI radiosensitivity
index 10 genes

Related to DNA damage response,
histone deacetylation, cell cycle,

apoptosis and proliferation

Predict clinical outcomes and
benefit from radiation therapy

among several cancer types,
including breast cancer

[82–86]

Shen et al. 11 genes Genes that look at the tumor
immune micro-environment

Stratify tumors based on response
to radiation therapy and the tumor

immune microenvironment
[88]

Cui et al 33 radiation-related
genes

Tumor microenvironment genes
such as tumor-associated antigens

on the major histocompatibility
complex (MHC) molecules.

Stratification of patients by
predicting benefits from

radiotherapy.
[89]

7. Summary and Conclusions

Clinical trials have shown that even the most low-risk breast cancers defined by clinical
and pathologic factors alone demonstrate even a modest local control benefit from radiation.
Therefore, current treatment guidelines recommend radiation therapy for nearly all breast
cancer patients after breast conservation surgery. However, genomic assays are believed to
better risk stratify breast cancers based on their inherent biology. While genomic assays for
guiding adjuvant systemic therapy decisions in the clinic have been implemented over the
past decade, the use of genomic assays in guiding radiation therapy decisions has yet to
be adopted.

Retrospective studies have shown the ability of prognostic genomic assays, such as
Oncotype and PAM-50, to predict risk of local recurrence among breast cancer subtypes.
These data show promise for identifying low risk breast cancers in which radiation may be
safely omitted. Several prospective clinical trials that use Oncotype and PAM-50 genomic
assays to guide adjuvant radiation therapy decisions are currently underway and their
results are eagerly awaited. Until these clinical trial results are available, post-lumpectomy
radiation is recommended for all breast cancer patients < 70 years old regardless of genomic
assay results.
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While prognostic genomic assays may help stratify breast cancers according to their
risk of local recurrence, the development of predictive genomic assays may help stratify
breast cancers according to their likelihood to respond to radiation therapy. The use of
predictive genomic assays may one day allow for a more tailored locoregional approach to
improve radiation outcomes, however these assays are still under development and there
is no consensus on the genes predominantly involved in radiation resistance. For example,
lower doses of radiation could be considered in more radiosensitive breast cancer subtypes.
In contrast, aggressive radioresistant breast cancers may still experience local recurrence
despite radiation therapy. These patients may require more intensive locoregional therapies,
such as mastectomy or an increase in radiation dose with tumor bed boost. Currently,
the decision to boost the tumor bed is based on clinical factors such as patient age and
tumor grade [94], however if a genomic assay were to suggest a more radioresistant breast
cancer, radiation dose intensification with tumor bed boost may be considered. In cases
of more radioresistant breast cancers, the use of chemotherapies and radiosensitizers may
also be considered.
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