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Abstract: The dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) technique has
great potential in the diagnosis, therapy, and follow-up of patients with chronic kidney disease
(CKD). Towards that end, precise kidney segmentation from DCE-MRI data becomes a prerequisite
processing step. Exploiting the useful information about the kidney’s shape in this step mandates
a registration operation beforehand to relate the shape model coordinates to those of the image to
be segmented. Imprecise alignment of the shape model induces errors in the segmentation results.
In this paper, we propose a new variational formulation to jointly segment and register DCE-MRI
kidney images based on fuzzy c-means clustering embedded within a level-set (LSet) method. The
image pixels’ fuzzy memberships and the spatial registration parameters are simultaneously updated
in each evolution step to direct the LSet contour toward the target kidney. Results on real medical
datasets of 45 subjects demonstrate the superior performance of the proposed approach, reporting
a Dice similarity coefficient of 0.94 ± 0.03, Intersection-over-Union of 0.89 ± 0.05, and 2.2 ± 2.3 in
95-percentile of Hausdorff distance. Extensive experiments show that our approach outperforms
several state-of-the-art LSet-based methods as well as two UNet-based deep neural models trained
for the same task in terms of accuracy and consistency.

Keywords: chronic kidney disease; kidney segmentation; kidney registration; DCE-MRI; level set;
fuzzy c-means; U-Net

1. Introduction

Chronic kidney disease (CKD) is one of the crucial worldwide public health problems.
It is typically defined as heterogeneous disorders causing changes in kidney structure and
deterioration in its function [1,2]. Worldwide, the number of people afflicted by this disease
is increasing annually, reaching more than 12% of humanity [2]. The patients whose kid-
neys are totally damaged are diagnosed with end-stage kidney disease. When the patient
reaches this stage, she/he has to do either hemodialysis or kidney transplantation [2,3].
Transplantation is indeed more preferable than dialysis as it improves the quality of a
patient’s life and returns it close to normal. Early detection and treatment of CKD is impor-
tant to rescue the patients and avoid achieving end-stage renal failure. The diagnosis of
kidney dysfunction is usually done either by estimating the glomerular filtration rate (GFR),
which is deemed a key indicator of renal function, or by using a biopsy [2]. Unfortunately,
traditional medical tests used for GFR measurement are not effective because failure can
only be detected after losing 60% of renal function. Biopsy is known as a gold-standard
method. However, it may cause pain, bleeding, and other side consequences to the patient.
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Recently, the medical community has resorted to CAD systems to study human kidney
function [4]. DCE-MRI is one of the major non-invasive and safe-modality imaging tech-
niques that are used for accurate renal function assessment as it provides both anatomical
and functional kidney information. In DCE-MRI, each patient has a dataset of about 80
kidney scans that are acquired after the patient is injected with a gadoteric acid contrast
agent and during the perfusion process into the kidney tissue [5]. Figure 1 shows a set of
in-vivo kidney DCE-MRIs of one subject.
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Figure 1. An example of DCE-MRIs of one subject depicts the contrast changes from the pre-contrast
phase (a), moving on to the post-contrast phase (b), and ending with the late-contrast phase (c) during
the perfusion of the contrast agent into the blood stream.

CAD systems can efficiently help doctors in making the right diagnosis decision
in little time. A typical pipeline for a CAD system is shown in Figure 2. For a specific
subject, the kidney is first segmented from each time-point image. As the estimation of
perfusion-related parameters mandates that the same pixels are evaluated between the
time-point images, a nonrigid alignment operation is carried out. This operation provides a
pixel-to-pixel match of the time series images and corrects for patient’s motion or breathing
during image acquisition. After that, the renal cortex is extracted from all segmented
kidneys, from which, perfusion physiological indexes are estimated. Finally, the diagnosis
of kidney status is made.
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Figure 2. Block diagram of a typical DCE-MRI-based CAD system for the diagnosis of chronic
kidney disease.

Obviously, kidney segmentation thus becomes a crucial and prerequisite step for the
determination of the kidney status. However, achieving accurate kidney segmentation is
very challenging due to the patient’s motion, contrast variation, and low spatial resolution
of acquired images.

This paper is organized as follows: First, Section 2 briefly reviews several DCE-
MRI kidney segmentation methods developed in the literature. In addition, it discusses
the research gap and presents the paper contributions. Then, in Section 3, we describe
in detail the ingredients of the proposed approach: the LSet-based energy functional,
fuzzy memberships’ computation, statistical SP-model construction, and the affine-based
registration process. Next, in Section 4, we present our conducted experiments and the
obtained results. Finally, we conclude in Section 5.
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2. Related Work

Extensive efforts have been done to segment the kidney and its compartments from
DCE-MRI data (please refer to a recent survey in [6]). In that regard, the variational level-set
(LSet) methods [7–18] have been the most successful. These methods employ prior shape
information with intensity information [7–13] and/or a spatial interaction model [14–17] to
guide the contour towards the target kidney in the image. In a different manner, the authors
in [18] present an LSet cost functional that simultaneously performs kidney segmentation
and motion correction in DCE-MRI data. The main deficiency of this method is that
it requires user interaction to manually initialize training masks in the DCE-MRI data
before the evolution of the LSet function. Other techniques have also been used for kidney
segmentation, such as the discrete wavelet transform [19], k-means clustering with principal
component analysis [20], and GrabCut algorithm with a random forest classifier [21]. From
a different perspective, Al-Shamasneh et al. [22,23] addressed the low contrast and intensity
inhomogeneity problems of DCE-MRI images using fractional calculus.

Recently, there has been an increasing interest in using convolutional neural networks
(CNet) for kidney segmentation tasks [24–31]. The authors in [24] employed transfer
learning from a network trained for brain segmentation to a network designated for 3D
DCE-MRI kidney segmentation. Haghighi et al. [25] used two cascaded U-Net (UNet)
models [26], where the first one performs kidney localization and the second accomplishes
the segmentation task. While Bevilacqua et al. [27] present two different CNet-based
approaches for accurate MRI kidney segmentation, Brunetti et al. [28] incorporated genetic
algorithm with deep learning for the same sake. Later on, Milecki et al. [29] presented a
two-step kidney segmentation approach in which they first used thresholding techniques
and morphological operators and then developed a 3D unsupervised CNet architecture for
extracting kidneys. Isensee et al. [30] achieved the first rank in CHAOS challenge [31] for
abdominal organ segmentation, including the left and right kidneys, from MRI data via
employing an nnU-Net model.

Deep learning networks generally need an extensive amount of data for proper train-
ing, which is unfortunately elusive in the medical field. This presents a major obstacle to
CNet-based methods [24–31] towards achieving high segmentation accuracy. LSet-based
kidney segmentation methods [7–18], on the other hand, have proved their potential in
achieving high performance with more accurate segmentation. The majority of these
methods depend on using prior information about the kidney’s shape, which calls for a
registration operation to align the DCE-MRI images to be segmented to a pre-constructed
shape reference model. This registration is typically performed first as a separate pre-
processing task before the kidney segmentation task. The main drawback of this is that any
errors in this registration step significantly affect segmentation performance.

In an attempt to alleviate this limitation, inspired by earlier work [32] in the context
of brain MRI segmentation, this paper aims to propose—for the first time—a variational
approach for joint kidney segmentation and registration based on FCM clustering [33]
embedded within an LSet method [34]. The approach constrains LSet evolution by shape
prior information and the intensity information represented in the fuzzy memberships. The
main contributions of this paper can be summarized as follows: First, we formulate a new
energy functional to drive the LSet contour towards the target kidney and to simultaneously
align this contour with a pre-constructed kidney’s shape prior model (SP-model). Second,
in each evolution step, the fuzzy memberships of the image pixels in both the kidney and
background clusters are updated concurrently with updating the spatial transformation
parameters aligning the image with the SP-model. That is, in each evolution step, the
SP-model is gradually transformed according to the spatial transformation parameters
so as to be well-aligned with the target kidney. Third, to ensure the robustness of the
proposed approach against contour initialization, we employ smeared-out Heaviside and
Dirac delta functions in the LSet method. As such, our approach is able to accurately
segment the kidney from the image regardless of where the contour has been initialized.
Fourth, the SP-model is built off-line from a number of kidney images from various patients
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by adopting an efficient Bayesian parameter estimation method [35]. This method allows
the SP-model to accommodate the possibility of the existence of kidney pixels in the test
image where they were not observed in the images used to build the model.

This new approach was applied to 45 patients’ datasets, and its performance was
evaluated using three popular segmentation metrics [36,37]: the Dice similarity coefficient
(DC), Intersection-over-Union (IoU), and 95-percentile of Hausdorff distance (95HD). To
verify the competency of the proposed approach, we conducted comparative experiments
with several recent LSet-based methods. We furthermore compared our approach’s per-
formance to that of two deep neural network models designed for this very same task: a
UNet model [26] and one of its later amendments named the BCD-UNet model [38]. Both
networks were trained from scratch on our DCE-MRI data enlarged by the KiTS19 challenge
dataset [39]. Our extensive experiments and comparisons confirmed the high accuracy,
consistency, and robustness of the proposed approach against all the other methods.

3. Methods

In this section, we introduce the mathematical formulation of the proposed joint
kidney segmentation and registration approach using the LSet method and FCM clustering.

3.1. Problem Statement and Notations

For analyzing kidney function, the kidney is to be segmented from each image in
the sequence. Let N be the total number of time-point images in the dataset and It =
{It(x, y), (x, y) ∈ Ω , t = 1, ..,N} be a DCE-MRI grayscale kidney image captured at time
t that requires accurate segmentation, where It(x, y) is the intensity value of the pixel at
location (x, y) in the image domain Ω. Each pixel (x, y) in the image is to be labelled as
kidney (K) or background (B).

3.2. Proposed Variational Approach

The LSet method [34] is an efficient and high-performance technique that has been
extensively used in biomedical image applications, such as image segmentation and reg-
istration. It depends on evolving a contour within the image domain according to a
predefined energy functional. For evaluating the kidney function of a specific subject, the
kidney needs to be segmented from each time-point image in the subject’s sequence. Using
an LSet-based method, this can be achieved via performing the following main processing
steps. First, an SP-model of the kidney is trained offline from a set of DCE-MRI images.
Then, the input image is co-aligned to the constructed shape model adopting a 2D affine
transformation [40]. Finally, the LSet contour is iteratively evolved in the image domain
and stopped when it captures the kidney’s boundary. Indeed, incorrect alignment between
the input image and the SP-model leads to segmentation errors and consequently causes a
drop in the method’s performance. Furthermore, performing accurate manual registration
between the SP-model and each time-point image is time-consuming and error-prone.

We here propose a new variational approach for the simultaneous tasks of kidney
segmentation and registration. The flowchart of the proposed approach is illustrated in
Figure 3. As can be seen from the figure, there are two phases in this approach. In the first
offline phase, a Bayesian parameter estimation method is adopted to construct an SP-model
from a set of co-aligned DCE-MRIs. This phase is performed once for all subjects. It is
described in detail in Section 3.5.
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In the second phase shown in Figure 3, the kidney is segmented from each time-point
image in a given subject’s sequence. Several initialization steps (Steps 3–6) are first carried
out. The LSet contour is initialized near the image borders or even randomly. Initial
values for the spatial transformation parameters are also specified. Then, starting out
with initial centroid values of the kidney and background clusters, the pixel-wise kidney
and background fuzzy memberships are initially computed. Afterwards, a number of
steps (Steps 7–10) are iterated until convergence of the energy functional described in
Section 3.3. The LSet contour is evolved one step in the direction minimizing this energy
functional taking into account the already-constructed SP-model and the current values
of the fuzzy memberships of the image pixels inside and outside the contour. Then, the
clusters’ centroid values and the image pixels’ fuzzy memberships are updated as detailed
in Section 3.4. Moreover, the spatial transformation parameters are updated as explained
in Section 3.6. Once the iterative part of the approach is terminated, the final LSet contour
designates the output segmented kidney. This entire procedure is repeated for all DCE-MRI
images in the input sequence.

The following subsections detail all the steps of the approach in Figure 3.

3.3. Proposed Energy Functional

In this work, we propose a new energy functional consisting of three energy terms:
a regularizing length term, a term based on FCM-clustering (FCMC), and a registration
term. Let ΩC be an LSet contour dividing the image domain Ω into two separate regions,
kidney ΩK and background ΩB . The contour is represented by an LSet function φ which is
positive for each pixel (x, y) in the kidney region, φ(x, y) > 0, negative in the background
region, φ(x, y) < 0, and zero on the contour φ(x, y) = 0, as illustrated in Figure 4.
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The proposed joint energy functional is defined as:

E(φ, A, T ) = λ1 L(φ) + λ2 EFCM(φ, A, T ) + +λ3 EREG(φ, A, T ) (1)

where all λi are positive weighting coefficients. A and T are affine transformation parame-
ters that are elaborated in Section 3.6. The length term L(φ) constrains the Lset contour
smoothness and is defined as:

L(φ) =
∫
Ω

δφε |∇φ(x, y)| dx dy (2)

where δφε = δε(φ(x, y)) is the smoothed Dirac function which equals the derivative of the
smeared-out Heaviside function Vφε = Vε(φ(x, y)), both given by

Vφε =


1 φ > ε
1
2 + φ

2ε +
1

2π sin
(
πφ
ε

)
−ε ≤ φ ≤ ε

0 φ < −ε

δφε =

{
0 |φ| > ε
1
2ε +

1
2ε cos

(
πφ
ε

)
|φ| ≤ ε

(3)

where ε stands for the width of numerical smearing. The energy functional EFCM(φ, A, T )
in (1) is basically computed from the input image and has the principal role in the evolution
process, and is defined as

EFCM(φ, A, T ) =
∫
Ω

Vφε mB(x, y) PB(x̂, ŷ) dx dy +
∫
Ω

(1− Vφε) mK(x, y) PK(x̂, ŷ) dx dy (4)

where mL(x, y) represents the membership value of the pixel (x, y) in the L-th cluster, L ∈
{K,B}. PL(x̂, ŷ) represents the probability of the pixel (x̂, ŷ) in the SP-model corresponding
to the image point (x, y) being kidney (L = K) or background (L = B). How the two
pixels (x, y) and (x̂, ŷ) are related is explained in Section 3.6. Lastly, EREG(φ, A, T ) in (1) is
defined as the squared difference between the Heaviside of the LSet function of the current
evolving contour and the Heaviside of the SP-model

EREG(φ, A, T ) =
∫
Ω

[
Vφε − Vε

(
φPK (x̂, ŷ)

)]2 dx dy (5)

Thus, the basic role of EREG(φ, A, T ) is to stop the LSet contour when it reaches a
shape similar to the kidney shape in the SP-model. By minimizing the energy functional
(1) with respect to the LSet function φ, we can obtain the following from the calculus
of variations:

∂φ

∂t
= λ1δφε div

(
∇φ

|∇φ|

)
+ λ2 δφε[ mK(x, y) PK(x̂, ŷ)− mB(x, y) PB(x̂, ŷ) ]− 2λ3 δφε

[
Vφε − Vε

(
φPK (x̂, ŷ)

) ]
(6)
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Finally, the LSet contour iteratively evolves towards the kidney boundary in the image
according to

φn+1(x, y) = φn(x, y) + γ1
∂φn(x, y)

∂t
(7)

where n is a time step and γ1 is a positive step size. It should be noted that exploiting the
smooth Heaviside and Dirac-delta functions enables us to achieve a global minimizer for
the functional in (1) even if the initial LSet contour is totally out of the kidney position [34].

3.4. FCMC Membership Function

The FCMC algorithm [33] is an important and widely used clustering method in
different image segmentation applications. It is used to segment an input image into a
number of clusters such that pixels in the same cluster have more similarity than those
in other clusters. More specifically, the objective of the FCMC algorithm is to segment a
DCE-MRI image It into kidney and background clusters (see Figure 5) via minimizing the
subsequent objective function [41]

J = ∑
(x,y) ∈ Ω

∑
L
m2

L(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣ It(x, y)− CL

∣∣∣∣∣∣
∣∣∣∣∣∣2, (8)

where ||.|| denotes the Euclidean distance between the pixel’s intensity and the centroid of
kidney cluster CK or background cluster CB . mL(x, y) ∈ [0, 1] is the membership function
that represents the degree of pixel belongingness to kidney (L = K) or background (L = B)
clusters such that ∑L mL(x, y) = 1. The membership values of pixels to a specific cluster
represent the pixel-wise probabilities belonging to this cluster and depend on the distances
between the intensity of pixels and the centroid value. The closer the pixels’ intensities are
to the centroid value of a certain cluster, the higher their membership values to this cluster,
and vice versa.
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In our approach, the computation of centroid values and fuzzy memberships is held
in conjunction with the LSet contour evolution. We first initialize kidney and background
clusters’ centroids as the average of intensity values for pixels in and out the LSet contour,
respectively. Then, the LSet contour starts its evolution, and during this time, the clus-
ters’ centroids and fuzzy memberships of each pixel (x, y) are iteratively computed and
updated via

mL(x, y) =

∣∣∣∣ It(x, y)− CL
∣∣∣∣−2

|| It(x, y)− CK||−2+||It(x, y)− CB ||−2 (9)

CL =
∑(x,y)∈ΩRL(φ(x, y)) It(x, y) m2

L(x, y)

∑(x,y)∈Ω RL(φ(x, y)) m2
L(x, y)

(10)

where RL(φ(x, y)) denotes the smeared-out Heaviside function Vφε for (L = K) and
(1− Vφε) for (L = B).
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It is important to note here that, as depicted in Figure 5, depending only on fuzzy
memberships in the kidney segmentation problem is often impractical. This is because it
cannot separate the two classes successfully based only on the intensity information. Thus,
we incorporate shape prior information with fuzzy memberships in our proposed approach.

3.5. Statistical Shape Prior Model

One of the main advantages of the LSet method is its ability of incorporating prior
knowledge about the organ shape. Human kidneys tend to have common shapes. Therefore,
using prior information about the kidney shape can significantly enhance the segmentation
accuracy. The SP-model is generally constructed adopting the following strategy: First, a
number N of DCE-MRIs are selected from several subjects. Then, one of these images is
chosen as a reference image to which all images are mutually co-aligned using maximization
of mutual information [40]. Eventually, these registered images are segmented by a medical
expert, and the SP-model is trained from the obtained ground-truth segmentations. Some
earlier studies (e.g., [10–12]) adopted a simple, first-order method for computing the pixel-
wise probability of the SP-model. However, this method tends not to be accurate, especially
if a pixel is labelled as kidney or background in the whole training cohort. In such cases,
the pixel is assigned an exact value of 1 for the observed label and 0 for the unobserved
label, which is often unreasonable.

In this study, we overcome this problem via employing the Bayesian parameter es-
timation method [35] in the construction of the SP-model in the following manner: The
kidney/background probability of pixel (x̂, ŷ), whenever the kidney and background labels
are both noticed, is computed according to [35,42]

PL(x̂, ŷ) =
[
NL(x̂, ŷ) + β

N + β O(x̂, ŷ)

][
N

N + `−O(x̂, ŷ)

]
(11)

where ` = 2 represents the number of all potential labels (i.e., kidney and background),
PL(x̂, ŷ) ∈ [0, 1], and ∑

L
PL(x̂, ŷ) = 1. In this case, the count of observed labels O(x̂, ŷ)

equals 2 since the pixel is labeled as kidney in a set of DCE-MRIs, but meanwhile, it is
observed as background in another set. NL(x̂, ŷ) denotes how often the label L is noticed
and β is a positive additive weight. In other cases, O(x̂, ŷ) equals 1 specifically when the
pixel (x̂, ŷ) is labeled as either kidney or background throughout the training set. Here, the
observed label’s probability is calculated from (11), and the likelihood of an unobserved
label is obtained from:

PL(x̂, ŷ) =
[

1
`−O(x̂, ŷ)

][
1− N
N + `−O(x̂, ŷ)

]
(12)

According to the above steps, a more discriminative shape model is constructed, as
shown in Figure 6. It is worth noting that the Bayesian parameter estimation method
accounts for the likelihoods of unobserved labels and generates smooth probabilities.
Therefore, it can handle the variation between the shape of the input kidney and the
kidneys used in the SP-model construction better than the first-order method used in some
other approaches (e.g., [10–12]).

3.6. Affine-Based Registration for the Shape Prior Model

Renal function assessment from DCE-MRI mainly requires accurate segmentation of
kidneys from surrounding structures. This in turn relies on good registration between
the prior shape and the input image. We thus seek to find the optimal pixel-wise affine
transformation matrix that relates the two. Affine transformation allows for translation,
scaling, and shearing without changing the basic geometry of the kidney shape. By
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assuming 2D affine transformation, each pixel (x, y) in the image space is transformed into
another pixel (x̂, ŷ) in the reference space of the SP-model such that:

X̂ = A X + T (13)

where

X =

[
x
y

]
, X̂ =

[
x̂
ŷ

]
, A = R H S (14)

with R, H, S, and T being rotation, shearing, scaling, and translation matrices, defined as:

R =

[
cos θ − sin θ
sin θ cos θ

]
, H =

[
1 hx
hy 1

]
, S =

[
sx 0
0 sy

]
, T =

[
tx
ty

]
(15)

where sx/y and hx/y specify scaling and shearing in x/y directions, whereas tx/y identifies
translations along the two orthogonal axes. Minimizing the energy functional (1) with
respect to S, H, T , and θ for fixed φ yields

∂E
∂S = λ2

∫
Ω
Vφε(X) mB(X)

[
∇PB

(
X̂
)

∂X̂
∂S

]
dX + λ2

∫
Ω
[1− Vφε(X)] mK(X)

[
∇PK

(
X̂
)

∂X̂
∂S

]
dX

−2 λ3
∫
Ω

δε

(
φPK

(
X̂
))[
Vφε(X)− Vε

(
φPK

(
X̂
)) ] [

∇φPK
(
X̂
)

∂X̂
∂S

]
dX

∂E
∂H = λ2

∫
Ω
Vφε(X) mB(X)

[
∇PB

(
X̂
)

∂X̂
∂H

]
dX + λ2

∫
Ω
[1− Vφε(X)] mK(X)

[
∇PK

(
X̂
)

∂X̂
∂H

]
dX

−2 λ3
∫
Ω

δε

(
φPK

(
X̂
))[
Vφε(X)− Vε

(
φPK

(
X̂
)) ] [

∇φPK
(
X̂
)

∂X̂
∂H

]
dX

∂E
∂T = λ2

∫
Ω
Vφε(X) mB(X)

[
∇PB

(
X̂
)

∂X̂
∂T

]
dX + λ2

∫
Ω
[1− Vφε(X)] mK(X)

[
∇PK

(
X̂
)

∂X̂
∂T

]
dX

−2 λ3
∫
Ω

δε

(
φPK

(
X̂
))[
Vφε(X)− Vε

(
φPK

(
X̂
)) ] [

∇φPK
(
X̂
)

∂X̂
∂T

]
dX

∂E
∂θ = λ2

∫
Ω
Vφε(X) mB(X)

[
∇PB

(
X̂
)

∂X̂
∂θ

]
dX + λ2

∫
Ω
[1− Vφε(X)] mK(X)

[
∇PK

(
X̂
)

∂X̂
∂θ

]
dX

−2 λ3
∫
Ω

δε

(
φPK

(
X̂
))[
Vφε(X)− Vε

(
φPK

(
X̂
)) ] [

∇φPK
(
X̂
)

∂X̂
∂θ

]
dX

(16)

where ∇(·) is the gradient through all directions. ∂X̂
∂S , ∂X̂

∂H , ∂X̂
∂T , and ∂X̂

∂θ are the differentia-
tion of the transformed coordinates X̂ with respect to registration parameters S, H, T , and
θ such that:

∂X̂
∂S

=
[

∂X̂
∂sx

∂X̂
∂sy

]T
,

∂X̂
∂H

=
[

∂X̂
∂hx

∂X̂
∂hy

]T
,

∂X̂
∂T =

[
∂X̂
∂tx

∂X̂
∂ty

]T
(17)

It should be noted that, in our implementation, (16) is transformed to its discretized
form as follows:

∂E
∂S = λ2

N
∑

i=1
Vφε(Xi) mB(Xi) ∇PB

(
X̂i
)

∂X̂
∂S + λ2

N
∑

i=1
[1− Vφε(Xi)] mK(Xi) ∇PK

(
X̂i
)

∂X̂
∂S

−2 λ3
N
∑

i=1
δε

(
φPK

(
X̂i
)) [

Vφε(Xi)− Vε

(
φPK

(
X̂i
)) ]
∇φPK

(
X̂i
)

∂X̂
∂S
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∂E
∂H = λ2

N
∑

i=1
Vφε(Xi) mB(Xi) ∇PB

(
X̂i
)

∂X̂
∂H + λ2

N
∑

i=1
[1− Vφε(Xi)] mK(Xi) ∇PK

(
X̂i
)

∂X̂
∂H

−2 λ3
N
∑

i=1
δε

(
φPK

(
X̂i
)) [

Vφε(Xi)− Vε

(
φPK

(
X̂i
)) ]
∇φPK

(
X̂i
)

∂X̂
∂H

∂E
∂T = λ2

N
∑

i=1
Vφε(Xi) mB(Xi) ∇PB

(
X̂i
)

∂X̂
∂T + λ2

N
∑

i=1
[1− Vφε(Xi)] mK(Xi) ∇PK

(
X̂i
)

∂X̂
∂T

−2 λ3
N
∑

i=1
δε

(
φPK

(
X̂i
)) [

Vφε(Xi)− Vε

(
φPK

(
X̂i
)) ]
∇φPK

(
X̂i
)

∂X̂
∂T

∂E
∂θ = λ2

N
∑

i=1
Vφε(Xi) mB(Xi) ∇PB

(
X̂i
)

∂X̂
∂θ + λ2

N
∑

i=1
[1− Vφε(Xi)] mK(Xi) ∇PK

(
X̂i
)

∂X̂
∂θ

−2 λ3
N
∑

i=1
δε

(
φPK

(
X̂i
)) [

Vφε(Xi)− Vε

(
φPK

(
X̂i
)) ]
∇φPK

(
X̂i
)

∂X̂
∂θ

(18)

where N is the total number of pixels in the image. Eventually, the optimal affine trans-
formation between the SP-model and the input image is sought by iteratively updating
S, H, T , and θ in each evolution iteration via

Sn+1 = Sn − γ2
∂E
∂S

Hn+1 = Hn − γ3
∂E
∂H

Tn+1 = Tn − γ4
∂E
∂T

θn+1 = θn − γ5
∂E
∂θ

(19)

where γi, i = 2, . . . , 5, are positive constants. In our experiments, θ is initially set to 0, H
and S are initialized as identity matrices, and T is initially a zero vector.
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Figure 6. Illustration of the adopted strategy for SP-model construction: (a) sample training DCE-
MRIs, (b) affine-registered DCE-MRIs, (c) manually segmented kidneys, and (d) the SP-model built
from non-registered (top) and from affine-registered (bottom) DCE-MRIs.

4. Results

This section provides a set of experiments to validate the proposed approach on 45
subjects’ DCE-MRI datasets. To evaluate the proposed approach’s accuracy, we measure
the similarity between the obtained segmentation results and the ground-truth (manu-
ally segmented) kidneys by computing the mean and standard deviation of the DC, IoU,
and 95HD metrics [36,37]. The higher the first two metrics, the better the segmentation,
while a lower 95HD value indicates better segmentation. We used the Bayesian parame-
ter estimation method to construct the SP-model from ground-truth kidneys from 30 sub-
jects, one image per each of them. The parameters used for the proposed approach were



Biomedicines 2023, 11, 6 11 of 17

experimentally determined and were fixed to (λ1 , λ2, λ3, ε, β, γ1, γ2 , γ3 , γ4 , γ5) =(
6 , 6 , 0.1, 1.5, 1, 0.8, 1× 10−14, 1× 10−10 , 1× 10−10, 1× 10−9) throughout all the con-

ducted experiments without any further tuning.

4.1. Data

For this study, we used real datasets of 45 patients who had kidney transplant surgery
at Mansoura University Hospital, Egypt. Each dataset contained approximately 80 256×
256 DICOM scans acquired via patient injection with a Gd-DTPA contrast agent at a speed
of 3–4 mL/s and dose of 0.2 mL/kgBW. During this time, repeated kidney scans were
captured at 3 sec intervals employing a 1.5T MRI scanner with torso phased-array coils.
The acquired scans were manually segmented by an experienced radiologist with more
than 10 years of hands-on-experience at the hospital. Figure 1 shows the intensity variation
of acquired scans of one patient caused by the agent’s transition into the blood stream.

4.2. Comparison with Other LSet-Based Methods

The performance of the proposed approach was first evaluated on the collected DCE-
MRIs. For emphasizing the proposed approach’s efficacy, we augmented the test data
through applying affine transformations with random rotation angles between −2 and
+2 degrees and random shearing in range [0, 12] to all images in each subject’s sequence.
Thus, the size of each subject’s dataset was doubled to include the original DCE-MRI
images as well as those affine-transformed images. These additional transformed images
were intended to make the registration of the images with the reference shape model more
challenging for the proposed approach. Figure 7 demonstrates the benefits of using the
proposed approach for kidney segmentation.
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gery at Mansoura University Hospital, Egypt. Each dataset contained approximately 80 
256 × 256 DICOM scans acquired via patient injection with a Gd-DTPA contrast agent at a 
speed of 3–4 mL/s and dose of 0.2 mL/kgBW. During this time, repeated kidney scans 
were captured at 3 sec intervals employing a 1.5T MRI scanner with torso phased-array 
coils. The acquired scans were manually segmented by an experienced radiologist with 
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benefits of using the proposed approach for kidney segmentation.  

    
DC = 0.96 DC = 0.97 

Biomedicines 2023, 11, x FOR PEER REVIEW 12 of 18 
 

    
(a) (b) (c) (d) 

Figure 7. Example demonstrating the benefits of the joint segmentation and registration approach. 
(a) Two DCE-MRI input images, (b) constructed shape model, (c) segmented kidneys obtained by 
registration followed by segmentation, where the registration for the bottom image was not done 
accurately, and (d) segmented kidneys obtained by simultaneous segmentation and registration. 
The obtained kidney contours are marked in yellow, while the ground-truth segmentations are in 
cyan. The corresponding DC value is attached to each result. 

Accurate registration between the image in the top row of Figure 7 with the shape 
reference model led to good segmentation of the final result in (c) with a high Dice simi-
larity coefficient (DC) of 0.96. On the other hand, inaccurate registration in the bottom 
row propagated errors to the segmentation process resulting in a lower DC of 0.70 for the 
corresponding final result in (c). Performing registration and segmentation simultane-
ously produced more accurate results in column (d) for the two images with a DC value 
of 0.97 in both cases. 

The performance of the proposed approach was then verified by comparing it with 
that of very recent LSet-based methods, namely FCMLS [11], PBPSFL [12], PSFL [13], and 
FML [17]. It is noteworthy that each of these LSet-based methods [11–13,17] employs a 
prior shape model; thus, for fair comparison, this model was constructed from the same 
training cohort that we used to build the SP-model in our proposed approach. The initial 
LSet contour was deliberately located away from the kidney in all conducted experi-
ments. Table 1 reports the obtained results. It reports the three metrics on all the 
DCE-MRI images as well as on the particular subset of the additional, affine-transformed 
images. Figure 8 visually confirms the results reported in Table 1. 

Table 1. Performance comparison of the proposed approach and recent LSet-based methods. 

Method 
All DCE-MRIs Affine-Transformed DCE-MRIs 

DC IoU 95HD DC IoU 95HD 
FCMLS [11] 0.88 ± 0.10 0.79 ± 0.17 5.07 ± 7.65 0.83 ± 0.10 0.72 ± 0.14 8.35 ± 7.55 
PBPSFL [12] 0.92 ± 0.06 0.87 ± 0.08 3.29 ± 5.65 0.90 ± 0.07 0.83 ± 0.09 5.4 ± 7.18 
PSFL [13] 0.91 ± 0.06 0.84 ± 0.10 3.84 ± 4.56 0.87 ± 0.07 0.77 ± 0.11 6.57 ± 5.03 
FML [17] 0.90 ± 0.08 0.83 ± 0.16 4.41 ± 6.4 0.87 ± 0.08 0.76 ± 0.12 7.3 ± 5.45 
Proposed 0.94 ± 0.03 0.89 ± 0.05 2.2 ± 2.32 0.93 ± 0.05 0.88 ± 0.06 2.5 ± 2.7 

 

      
 DC = 0.97 DC = 0.98 DC = 0.98  DC = 0.98 DC = 0.98 

DC = 0.70 DC = 0.97 

Figure 7. Example demonstrating the benefits of the joint segmentation and registration approach.
(a) Two DCE-MRI input images, (b) constructed shape model, (c) segmented kidneys obtained by
registration followed by segmentation, where the registration for the bottom image was not done
accurately, and (d) segmented kidneys obtained by simultaneous segmentation and registration. The
obtained kidney contours are marked in yellow, while the ground-truth segmentations are in cyan.
The corresponding DC value is attached to each result.

Accurate registration between the image in the top row of Figure 7 with the shape
reference model led to good segmentation of the final result in (c) with a high Dice similarity
coefficient (DC) of 0.96. On the other hand, inaccurate registration in the bottom row
propagated errors to the segmentation process resulting in a lower DC of 0.70 for the
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corresponding final result in (c). Performing registration and segmentation simultaneously
produced more accurate results in column (d) for the two images with a DC value of 0.97
in both cases.

The performance of the proposed approach was then verified by comparing it with
that of very recent LSet-based methods, namely FCMLS [11], PBPSFL [12], PSFL [13], and
FML [17]. It is noteworthy that each of these LSet-based methods [11–13,17] employs a
prior shape model; thus, for fair comparison, this model was constructed from the same
training cohort that we used to build the SP-model in our proposed approach. The initial
LSet contour was deliberately located away from the kidney in all conducted experiments.
Table 1 reports the obtained results. It reports the three metrics on all the DCE-MRI images
as well as on the particular subset of the additional, affine-transformed images. Figure 8
visually confirms the results reported in Table 1.

Table 1. Performance comparison of the proposed approach and recent LSet-based methods.

Method
All DCE-MRIs Affine-Transformed DCE-MRIs

DC IoU 95HD DC IoU 95HD

FCMLS [11] 0.88± 0.10 0.79± 0.17 5.07± 7.65 0.83± 0.10 0.72± 0.14 8.35± 7.55
PBPSFL [12] 0.92± 0.06 0.87± 0.08 3.29± 5.65 0.90± 0.07 0.83± 0.09 5.4± 7.18
PSFL [13] 0.91± 0.06 0.84± 0.10 3.84± 4.56 0.87± 0.07 0.77± 0.11 6.57± 5.03
FML [17] 0.90± 0.08 0.83± 0.16 4.41± 6.4 0.87± 0.08 0.76± 0.12 7.3± 5.45
Proposed 0.94± 0.03 0.89± 0.05 2.2± 2.32 0.93± 0.05 0.88± 0.06 2.5± 2.7

As observed from Table 1, the proposed approach performed substantially better than
the other methods, reporting the highest mean DC and IoU values as well as the lowest
mean 95HD. It also exhibited a more consistent performance with lower standard deviation
values than the other existing methods. In those methods, the alignment with the shape
model was done before the segmentation process was run. As such, their performance
manifestly dropped when the input image was not properly aligned to the model. This
was more evident from their lower performance on the additional transformed subset. In
contrast, our new approach demonstrated its capability to handle such cases and converged
to more accurate results. This can be attributed to the simultaneous employment of kidney
segmentation and SP-model registration.

As depicted in the first two rows of Figure 8, the proposed approach has shown
segmentation performance to comparable that of existing methods when the image was
perfectly aligned with the SP-model. However, in the case of inaccurate alignment, the
other methods could not segment the kidneys out from the background and generated
unsatisfactory segmentation results. Conversely, our approach correctly guided the LSet
contour to the target kidney and output precise segmentation results. The comparative
results proved that the proposed approach had better ability to rectify the misalignment
between the SP-model and the target kidney, producing better segmentations.

We then carried out a series of experiments to inspect the sensitivity of the proposed
approach to the LSet contour initialization. Figure 9 illustrates examples for the output
segmentations by our approach when initiated with three different contour locations.
Based on the reported DC values, the initial contour location had almost no influence on
the proposed approach’s performance. This indeed emphasizes the high-reliability and
full-automation of this new approach.



Biomedicines 2023, 11, 6 13 of 17

Biomedicines 2023, 11, x FOR PEER REVIEW 12 of 18 
 

    
(a) (b) (c) (d) 

Figure 7. Example demonstrating the benefits of the joint segmentation and registration approach. 
(a) Two DCE-MRI input images, (b) constructed shape model, (c) segmented kidneys obtained by 
registration followed by segmentation, where the registration for the bottom image was not done 
accurately, and (d) segmented kidneys obtained by simultaneous segmentation and registration. 
The obtained kidney contours are marked in yellow, while the ground-truth segmentations are in 
cyan. The corresponding DC value is attached to each result. 

Accurate registration between the image in the top row of Figure 7 with the shape 
reference model led to good segmentation of the final result in (c) with a high Dice simi-
larity coefficient (DC) of 0.96. On the other hand, inaccurate registration in the bottom 
row propagated errors to the segmentation process resulting in a lower DC of 0.70 for the 
corresponding final result in (c). Performing registration and segmentation simultane-
ously produced more accurate results in column (d) for the two images with a DC value 
of 0.97 in both cases. 

The performance of the proposed approach was then verified by comparing it with 
that of very recent LSet-based methods, namely FCMLS [11], PBPSFL [12], PSFL [13], and 
FML [17]. It is noteworthy that each of these LSet-based methods [11–13,17] employs a 
prior shape model; thus, for fair comparison, this model was constructed from the same 
training cohort that we used to build the SP-model in our proposed approach. The initial 
LSet contour was deliberately located away from the kidney in all conducted experi-
ments. Table 1 reports the obtained results. It reports the three metrics on all the 
DCE-MRI images as well as on the particular subset of the additional, affine-transformed 
images. Figure 8 visually confirms the results reported in Table 1. 

Table 1. Performance comparison of the proposed approach and recent LSet-based methods. 

Method 
All DCE-MRIs Affine-Transformed DCE-MRIs 

DC IoU 95HD DC IoU 95HD 
FCMLS [11] 0.88 ± 0.10 0.79 ± 0.17 5.07 ± 7.65 0.83 ± 0.10 0.72 ± 0.14 8.35 ± 7.55 
PBPSFL [12] 0.92 ± 0.06 0.87 ± 0.08 3.29 ± 5.65 0.90 ± 0.07 0.83 ± 0.09 5.4 ± 7.18 
PSFL [13] 0.91 ± 0.06 0.84 ± 0.10 3.84 ± 4.56 0.87 ± 0.07 0.77 ± 0.11 6.57 ± 5.03 
FML [17] 0.90 ± 0.08 0.83 ± 0.16 4.41 ± 6.4 0.87 ± 0.08 0.76 ± 0.12 7.3 ± 5.45 
Proposed 0.94 ± 0.03 0.89 ± 0.05 2.2 ± 2.32 0.93 ± 0.05 0.88 ± 0.06 2.5 ± 2.7 

 

      
 DC = 0.97 DC = 0.98 DC = 0.98  DC = 0.98 DC = 0.98 

DC = 0.70 DC = 0.97 

Biomedicines 2023, 11, x FOR PEER REVIEW 13 of 18 
 

      
 DC = 0.95 DC = 0.96 DC = 0.96 DC = 0.96 DC = 0.96 

      
 DC = 0.66 DC = 0.84 DC = 0.82  DC = 0.74 DC = 0.95 

      
 DC = 0.83 DC = 0.85 DC = 0.90 DC = 0.88 DC = 0.96 

(a) (b) (c) (d) (e) (f) 

Figure 8. Output segmentations by the proposed approach and other existing LSet-based methods. 
(a) Input image with initial LSet contour. Results shown in yellow of the (b) FCMLS method [11], 
(c) PBPSFL method [12], (d) PSFL method [13], (e) FML method [17], and the (f) proposed ap-
proach. Ground-truth segmentation was imposed on each image in cyan along with the corre-
sponding DC values. 

As observed from Table 1, the proposed approach performed substantially better 
than the other methods, reporting the highest mean DC and IoU values as well as the 
lowest mean 95HD. It also exhibited a more consistent performance with lower standard 
deviation values than the other existing methods. In those methods, the alignment with 
the shape model was done before the segmentation process was run. As such, their per-
formance manifestly dropped when the input image was not properly aligned to the 
model. This was more evident from their lower performance on the additional trans-
formed subset. In contrast, our new approach demonstrated its capability to handle such 
cases and converged to more accurate results. This can be attributed to the simultaneous 
employment of kidney segmentation and SP-model registration. 

As depicted in the first two rows of Figure 8, the proposed approach has shown 
segmentation performance to comparable that of existing methods when the image was 
perfectly aligned with the SP-model. However, in the case of inaccurate alignment, the 
other methods could not segment the kidneys out from the background and generated 
unsatisfactory segmentation results. Conversely, our approach correctly guided the LSet 
contour to the target kidney and output precise segmentation results. The comparative 
results proved that the proposed approach had better ability to rectify the misalignment 
between the SP-model and the target kidney, producing better segmentations.  

We then carried out a series of experiments to inspect the sensitivity of the proposed 
approach to the LSet contour initialization. Figure 9 illustrates examples for the output 
segmentations by our approach when initiated with three different contour locations. 
Based on the reported DC values, the initial contour location had almost no influence on 

Figure 8. Output segmentations by the proposed approach and other existing LSet-based methods.
(a) Input image with initial LSet contour. Results shown in yellow of the (b) FCMLS method [11],
(c) PBPSFL method [12], (d) PSFL method [13], (e) FML method [17], and the (f) proposed approach.
Ground-truth segmentation was imposed on each image in cyan along with the corresponding
DC values.

4.3. Comparison with UNet-Based Convolutional Neural Networks

Deep neural networks based on the UNet model and its later modifications have
become increasingly popular for medical image segmentation tasks. Therefore, we here
compared the performance of the proposed approach with that of the basic UNet model [26]
and one of its recent variants called the BCD-UNet model [38]. Both networks were trained
from scratch using datasets of 18 and 12 subjects for training and validation, respectively,
while the remaining subjects’ datasets were used as held-out test data. In order to make the
trained networks more robust and to improve their performances, we augment the training
and validation data by applying the following to each image: (1) vertical and horizontal
flipping, (2) random x-and-y translations, (3) rotation by (±45◦,±90◦, 180◦) angles, and
(4) zero mean Gaussian noise with variance 0.01, 0.02, and 0.05 (after normalizing image
intensities to range [0, 1]).
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each image.

Furthermore, following [31], we augmented the data with the KiTS19 dataset [39]
that contains high-quality CT kidney images of 210 subjects with their ground-truths. We
manually separated the left and right kidneys in all KiTS19 dataset images, each of size
256 × 256 pixels. As such, the total numbers of training and validation images became
40,050 and 10,980, respectively. Both deep models were trained for 200 epochs using Adam
optimizer starting out with a learning rate of 0.0001. This value was gradually reduced
by a factor of 0.1 when the validation loss was not improved for 10 epochs. Furthermore,
we used a dropout of 0.05 to avoid overfitting. Training was run on a workstation having
two Nvidia GPUs along with two Intel Xeon Silver 4114 2.20 GHz CPUs and 128 GB of
RAM. We then investigated the performance of the trained networks on the test subjects’
datasets. Table 2 gives a comparison between the results of our approach and the UNet
and BCD-UNet models, each using three dense blocks.

Table 2. Performance of the proposed approach versus that of the UNet and BCD-UNet models.

Method
All DCE-MRIs Affine-Transformed DCE-MRIs

DC IoU 95HD DC IoU 95HD

UNet [26] 0.943± 0.04 0.90± 0.06 5.6± 15.7 0.946± 0.05 0.90± 0.05 3.5± 11.5
BCD-UNet [38] 0.942± 0.037 0.89± 0.06 4.4± 11.5 0.942± 0.035 0.89± 0.05 3.9± 10.3
Proposed 0.95± 0.02 0.92± 0.03 1.0± 1.2 0.95± 0.025 0.91± 0.02 1.9± 2.1

As evident from Table 2, the proposed approach performed better than both UNet-
based models did. It yielded higher mean DC and IoU values along with lower mean 95HD
values. In particular, in light of the 95HD metric, the proposed approach was more than
four times more accurate than the UNet and BCD-UNet models were. Moreover, the lower
standard deviations of our approach reflect its more stable performance compared to that
of both models.
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5. Conclusions

Precise renal segmentation from DCE-MRI data is a prerequisite processing step in
renal diagnosis pipelines for patients who have chronic kidney disease. However, exploiting
information concerning the kidney’s shape in this step mandates a registration operation
beforehand for relating the shape model coordinates to those of the image to be segmented.
Imprecise alignment of the shape model induces errors in the segmentation results. In this
respect, we have proposed a new dual-task variational approach jointly performing kidney
segmentation and registration in an automatic manner. This approach is believed to present
the following contributions:

• It can be considered as the first approach in the literature to achieve accurate kidney
segmentation and registration at the same time.

• It embeds FCM clustering within an LSet method in one variational approach; the
membership degrees of the image pixels are updated during the LSet evolution
process considering pixels’ intensities directly as well as prior shape probabilities.
This promotes our approach’s performance.

• It can automatically manipulate the misalignment between the kidney in the input
image and the SP-model.

• Thanks to employing smeared-out Heaviside and Dirac delta functions in the LSet
method, the approach is able to accurately segment the kidney from the image regard-
less of where the contour has been initialized.

• It embraces an efficient statistical Bayesian parameter estimation method for SP-model
construction, which can better address the cases of unobserved kidney pixels in the
images while building the model.

Experiments conducted on numerous DCE-MRI images obtained from 45 patients
verified the high performance of the proposed approach. The approach was demonstrated
to be robust against contour initialization without tuning its parameters. In comparison
against various recent LSet-based methods as well as two UNet-based models, our new
approach has shown better and more consistent performance.

Our current research is directed towards improving the proposed approach. LSet
contour evolution is guided by a partial differential equation involving several weighting
parameters. These weighting parameters need proper settings. In our experiments, their
values were experimentally chosen and then fixed throughout all conducted experiments
without further tuning. We plan to investigate other weighting strategies to systematically
find out proper values for these weights, like the scheme proposed in [43].
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