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Abstract: The continuous death of hepatocytes induced by various etiologies leads to an aberrant
tissue healing process and promotes the progression of liver fibrosis and ultimately chronic liver
diseases. To date, effective treatments to delay this harmful process remain an unmet clinical need.
Cycloastragenol is an active phytochemical substance isolated from Astragalus membranaceus, a plant
used in traditional Chinese medicine to protect the liver. Therefore, our study aimed to elucidate
the efficacy of cycloastragenol on carbon-tetrachloride (CCl4)-induced liver fibrosis in mice. We
found that cycloastragenol at 200 mg/kg dosage exhibited anti-fibrotic efficacy as demonstrated by
a decrease in collagen deposition, downregulation of mRNA expression of collagen type 1, and a
reduction in the content of total collagens. In addition, cycloastragenol further augmented the levels
of anti-fibrotic matrix metalloproteinases (Mmps), that is, Mmp8, proMmp9, and Mmp12, which play
a pivotal role in fibrosis resolution. According to histological analysis and serum markers of hepa-
totoxicity, cycloastragenol protected the livers from damage and mitigated the increment of serum
alanine aminotransferase and bilirubin implicating hepatoprotective efficacy against CCl4. Moreover,
cycloastragenol upregulated the mRNA expression of interleukin 6, a pleiotropic cytokine plays a
vital role in the promotion of hepatocyte regeneration. In conclusion, cycloastragenol alleviated the
progression of liver fibrosis in CCl4-treated mice and its anti-fibrotic efficacy was mainly due to the
hepatoprotective efficacy.

Keywords: cycloastragenol; CCl4; liver fibrosis; hepatoprotection; fibrosis resolution

1. Introduction

Repeated hepatic cell deaths resulting from chronic inflammation and oxidative stress
lead to an aberrant tissue healing process which could promote liver fibrosis and ulti-
mately chronic liver diseases. Persistent liver injury can be induced by various etiologies
such as viruses [1], alcohol [2], drugs [3], cholestasis [4], and steatosis [5]. Following the
necrosis and apoptosis of hepatocytes, these harmful contributors commence a series of
events including the activation of quiescent hepatic stellate cells (HSCs) into fibrogenic
myofibroblasts which induce excessive extracellular matrix (ECM) accumulation, especially
fibrillar collagen type 1 [6,7]. In fact, ECM can be properly degraded leading to fibrosis
resolution by enzyme matrix metalloproteinases (Mmps); however, an imbalance between
the process of deposition and degradation may alter the composition of ECM proteins
which eventually lead to scar formation and dysfunction of the affected liver tissue [8].
Besides necrosis and apoptosis, chronic inflammation and oxidative stress may trigger
compensatory proliferation of mature hepatocytes and telomere shortening. As a result,
hepatocytes are senescent, and liver regeneration is defective [9]. In the pathogenesis of
liver fibrosis, these processes are regulated by several profibrogenic cytokines; however,
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the transforming growth factor-beta 1 (TGF-β1) signaling plays a pivotal role since it is
responsible for the activation of myofibroblasts and the regulation of ECM homeostasis [10].

Cycloastragenol is an active phytochemical substance in Astragalus membranaceus
(Fisch.) Bunge, huang qi, a plant used in traditional Chinese medicine to improve im-
mune functions and protect the liver [11]. Several attractive pharmacological properties
of cycloastragenol which might contribute to the beneficial effects on the liver including
hepatoprotective efficacy, antioxidative and anti-inflammatory properties, and telomerase
activation to elongate telomere, have been demonstrated [11]. Recently, a previous study in
rats revealed that astragaloside, which is the parent compound of cycloastragenol prior
to the hydrolysis process, could prevent bile duct ligation-induced liver fibrosis via the
modulation of notch signaling [12]. In addition, a similar study in rats demonstrated that
a combination of total astragalus saponins and glycyrrhizic acid alleviated both bile duct
ligation and dimethylnitrosamine-induced liver fibrosis via the modulation of TGF-β1
pathways [13]. Nevertheless, the potency of cycloastragenol which is believed to be the
biological active component of astragaloside on the amelioration of liver fibrosis induced by
hepatotoxins are currently unknown. Therefore, our study aimed to elucidate the efficacy
of cycloastragenol on carbon-tetrachloride (CCl4)-induced liver fibrosis in mice. Beyond
anti-fibrotic potency, the effects of cycloastragenol on hepatoprotection, inflammation,
oxidative stress, telomere length, and TGF-β1-related signaling were elucidated to explore
the associated mechanism of action.

2. Materials and Methods
2.1. Animals

Male ICR outbred mice at 6 weeks old were purchased from the National Laboratory
Animal Center, Nakhon Pathom, Thailand. The mice were housed in a temperature and
humidity-controlled room with a 12 h light/dark cycle. The standard rodent diet and
filtered water were supplied ad libitum. The study commenced after an acclimatization
period of the mice in the housing room for at least 7 days. This study, which complied with
the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines [14], was
approved by the Animal Ethical Committee of the Faculty of Pharmacy, Mahidol University
(PYR002/2021 and PYR008/2022).

2.2. Experimental Protocol

The mice were randomly divided into 4 groups (n = 10 per group, 40 mice in total):
(1) normal, (2) control, (3) cycloastragenol 50 mg/kg, and (4) cycloastragenol 200 mg/kg. To
induce liver fibrosis, mice in groups 2–4 were administered CCl4 (Shanghai Seasonsgreen
Chemical, Shanghai, China) by intraperitoneal injection twice a week for a consecutive
8 weeks. The amount of CCl4 was gradually escalated from 0.03 mL/kg, 0.075 mL/kg, and
0.1 mL/kg in the 1st, 2nd, and 3rd weeks, respectively. During the 4th to 8th weeks, CCl4
was administered at 0.12 mL/kg. Prior to the administration, CCl4 was diluted in olive oil
to inject with an equivalent volume according to the individual body weight of each mouse.
Starting from the 5th week until the 8th week, cycloastragenol (King-tiger Pharm-Chem,
Chendu, China), prepared by dispersing in 0.5% sodium carboxymethylcellulose, was
given to the mice in groups 3 and 4 by oral gavage once a day for 5 days per week. The
mice in group 2 were administered olive oil and 0.5% sodium carboxymethylcellulose in
an equivalent amount was administered to groups 3 and 4. At 72 h after receiving the last
dosage of CCl4, the mice were anesthetized using carbon dioxide before terminal cardiac
puncture for blood collection until complete euthanization. Before the isolation, the livers
were thoroughly perfused using 0.9% sodium chloride solution via the portal vein until
there was no residual blood. The isolated liver was separated into several pieces for fixing
in 10% neutral-buffered formalin and snap-freezing in liquid nitrogen for further assays.
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2.3. Histological Evaluations

The median lobes of livers, preliminarily fixed in 10% neutral-buffered formalin for
at least 48 h, were processed in a series of ethanol and xylene and embedded in paraffin.
The 4 µm liver sections were stained with picro-sirius red to determine collagen fiber
deposition [15]. In addition, another section of the same piece of livers was stained with
hematoxylin/eosin for routine histopathological examination to evaluate the histological
damage score, assessed from the degree of hepatocyte degenerations, necrobiotic changes,
and infiltrated lymphocytes by a described method [16]. The sections were examined using
an electric light microscope (Olympus IX-81, Tokyo, Japan). To analyze microscopical
pictures, 5 random non-overlapping frames per liver were selected for the analysis using
ImageJ (National Institutes of Health, Bethesda, MD, USA).

2.4. Serum Biomarker Measurements

The clotted blood was centrifuged at 10,000× g for 10 min to collect serum. The levels
of liver-related injury markers, that is, alanine aminotransferase, aspartate aminotrans-
ferase, alkaline phosphatase, total and direct bilirubin, total protein, and albumin, were
immediately quantified using an automated serum biochemical analyzer (Olympus AU400
Chemistry Analyzer, Tokyo, Japan) with the supplied diagnosis reagent kits.

2.5. Hepatic Hydroxyproline Assay

To quantify total hepatic collagens, a colorimetric assay to detect hydroxyproline,
which is a unique modified-amino acid that is mostly found in collagens, was performed
by a minor modification of the described procedure [17]. In brief, an exact weight of
the snap-frozen liver (approximately 100 mg) taken from 2 different lobes was homoge-
nized in 6 N hydrochloric acid and hydrolyzed at 95 ◦C for 16 h. The hydrolyzed sam-
ples were centrifuged and the supernatants were mixed with chloramine-T solution in
citrate-acetate buffer pH 6.0 and isopropanol before being incubated in Ehrlich’s reagent
(p-dimethylamino-benzaldehyde, perchloric acid, and isopropanol) at 60 ◦C for 1 h. The
colorimetric product of the reaction was measured with a Synergy HT spectrophotometer
(Agilent, Santa Clara, CA, USA) at 550 nm. The content of hydroxyproline in each sample
was reported as µg hydroxyproline per 100 mg of liver or per the whole liver.

2.6. Total RNA and Genomic DNA Isolation

Total RNA and genomic DNA were isolated from a piece of snap-frozen livers (ap-
proximately 30 mg) acquired from the same lobe using the AllPrep DNA/RNA/Protein
MiniKit (Qiagen, Venlo, The Netherlands). The quantification and qualification of RNA
and DNA were measured using a Nanodrop One spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). The isolated total RNA was consequently reverse-transcripted
prior to a quantitative real-time polymerase chain reaction (PCR) and an RNA profiler for
the evaluation of gene expression. The isolated genomic DNA was used to quantify the
telomere length.

2.7. Evaluation of Gene Expression

Reverse transcription was performed using an RT2 First Strand Kit (Qiagen). In brief,
the isolated RNA was initially incubated with a genomic DNA-eliminating buffer at 42 ◦C
for 5 min. The DNA-eliminated RNA was reverse-transcripted at 42 ◦C for 15 min before
stopping the reaction at 95 ◦C for 5 min.

Gene expression was determined using specific primers (Table 1) and a Brilliant
III Ultra-Fast SYBR Green QRT-PCR Master Mix (Agilent) on a CFX96 Real-Time PCR
Detection System (Biorad, Irvine, CA, USA) with a cycle at 50 ◦C for 10 min and at 95 ◦C
for 3 min followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. Expression levels were
corrected using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reference gene
(dCt) and compared with the control group (ddCt). The results are displayed as a fold
induction (2−ddCt).
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Table 1. Primer sequences used for quantitative real-time PCR.

Genes Forward Primers (5′–3′) Reverse Primers (5′–3′)

Bad CTCCGAAGGATGAGCGATGAG CTCCGAAGGATGAGCGATGAG
Cat GGAGGCGGGAACCCAATAG GGAGGCGGGAACCCAATAG

Col1a1 TGACTGGAAGAGCGGAGAGT ATCCATCGGTCATGCTCTCT
Gapdh ACAGTCCATGCCATCACTGC GATCCACGACGGACACATTG
Gpx1 CCACCGTGTATGCCTTCTCC AGAGAGACGCGACATTCTCAAT
Gsr CACGGCTATGCAACATTCGC GTGTGGAGCGGTAAACTTTTTC
Igf TCGTGGGATGGGTGCTTT TGAAGACAGTAGGGAAGAGACAAG
Il6 TCCATCCAGTTGCCTTCT TAAGCCTCCGACTTGTGAA

Nqo1 AGGATGGGAGGTACTCGAATC TGCTAGAGATGACTCGGAAGG
Nrf2 CTGAACTCCTGGACGGGACTA CGGTGGGTCTCCGTAAATGG

Pparα CACTTGCTCACTACTGTCCTT GATGCTGGTATCGGCTCAA
Pparγ GGTGCTCCAGAAGATGACAGA TCAGCGGGTGGGACTTTC
Sod1 AACCAGTTGTGTTGTCAGGAC CCACCATGTTTCTTAGAGTGAGG
Sod2 TGGACAAACCTGAGCCCTAAG CCCAAAGTCACGCTTGATAGC

Tgf-β1 GGTTCATGTCATGGATGGTGC TGACGTCACTGGAGTTGTACGG

RT2 Profiler™ PCR Array Mouse Fibrosis (Qiagen, GeneGlobe ID: PAMM-120Z) with
preloaded primers in 100-well strips were used to elucidate 84 genes related to fibrosis.
cDNA was mixed with a 2X RT2 SYBR Green ROX FAST Mastermix (Qiagen). Thermal
cycling and fluorescence detection were performed on a Rotor-Gene Q (Qiagen) with a cycle
of 95 ◦C for 10 min followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. Expression
levels were corrected using GAPDH as a reference gene. The results are displayed as the
magnitude of gene expression when compared with normal using the company’s program
for generating a heat-map clustogram.

2.8. Quantification of Telomere Length

Telomere length was measured using a Relative Mouse Telomere Length Quantification
qPCR Assay Kit (Sciencell Research Laboratory, Carlsbad, CA, USA). In brief, the genomic
DNA was mixed with a 2X GoldNStart TaqGreen qPCR master mix containing a primer set
designed to recognize and amplify a specific part of telomere sequences. The single copy
reference, designed to recognize and amplify a region on chromosome 10, was used for
data normalization. The data are shown as relative telomere length when compared with
the normal length using 2−ddCt method.

2.9. Evaluation of Protein Expression

The expression of multiple Mmps and proteins associated with TGF-β1-related signal-
ing was quantified using Milliplex immunoassay (Merck, Rahway, NJ, USA), a bead-based
multiplex enzyme-linked immunosorbent assay (ELISA) which could analyze multiple
target proteins simultaneously. In brief, a piece of snap-frozen livers (approximately 30 mg)
acquired from the same lobe was homogenized in kit-supplied lysis buffer containing a
phosphatase inhibitor with supplement of Protease Inhibitor Cocktail Set III (Calbiochem,
San Diego, CA, USA). After the centrifugation of liver homogenate, the amount of target
proteins in the supernatant was quantified using a specific conjugated antibody with a
designed magnetic bead technology. The value of proteins was normalized using total
protein content measured by a Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific).

2.10. Statistic

Data are expressed as means + standard error of the mean (SEM) of numerical results
among the same treatment. The statistical tests on the means of different groups were
performed using one-way analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons. Prism 6.01 (GraphPad Software, San Diego, CA, USA) was the software used
for the statistical calculation. A p-value less than 0.05 was considered significant. For gene
expression and relative telomere length, the statistical differences were determined on ddCt.
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Since some mice died during the induction of fibrosis, the number of animals per group at
the end of experiment was 8–10.

3. Results
3.1. Anti-Fibrotic Efficacy

To evaluate the anti-fibrotic potency of cycloastragenol, fibrillar collagens by picro-
sirius red staining, expression of collagen type 1 mRNA (Col1a1) by quantitative real-time
PCR, and content of total collagens by hydroxyproline assay were performed (Figure 1).
We found that fibrillar collagens were increasingly deposited in the livers of mice treated
with CCl4. Similarly, at the gene level and the total content of collagens in the livers, CCl4
upregulated the expression of Col1a1 and increased the hydroxyproline content, respectively.
Based on all collagen-associated analyses, cycloastragenol at 200 mg/kg dosage exhibited
anti-fibrotic efficacy in the liver of CCl4-treated mice as demonstrated by a decrease in
collagen deposition, downregulation of Col1a1 expression, and a reduction in the content
of total collagens. In contrast, the anti-fibrotic efficacy of cycloastragenol at 50 mg/kg was
not apparently observed, especially on the picro-sirius red staining and Col1a1 expression.
Therefore, the 200 mg/kg of cycloastragenol appeared to be the effective dosage, and the
efficacy of this dosage was shown in the other analyses of our study.

Next, we screened the effects of cycloastragenol against CCl4 on the expression of
84 genes associated with fibrosis by using the PCR array and found that cycloastragenol
may probably affect various pathways in the alleviation of liver fibrogenesis (Figure 2).
Highlighted examples were the decreased expressions of collagen type 1-alfa 2 chain
(Col1a2), collagen type 3 (Col3a1), and collagen maturation enzyme lysyl oxidase (Lox).
Multiple subtypes of integrins (Itga3, Itgb5, Itga1, Itgav, Itgb6, Itgb8, and Itgb1) and integrin-
linked kinase (Ilk) which are responsible for cell–cell and cell–ECM interactions were
downregulated. In addition, cycloastragenol reduced the expression of the gene-encoding
tissue inhibitor of metalloproteinases (Timp1, Timp2, and Timp4) while it increased the
expression of Mmps (Mmp3 and Mmp9). Beyond ECM-related genes, cycloastragenol also
downregulated the expression of pro-inflammatory markers, such as chemokine ligands
(Ccl3, Ccl12, and Ccl11), chemokine receptor 2 (Ccr2), interleukins (Il1a and Il1b), and
signaling proteins (Stat1 and Nfkb1). Vice versa, anti-inflammatory cytokines (Il4, Il10,
and Il13) were upregulated. Furthermore, the expressions of markers related with TGF-β1
signaling-related markers (Tgfbr2, Smad2, Tgfb1, Tgfb2, Ltbp1, and Tgif1) and cell death (Bcl2,
Myc, Jun, and Akt1) were decreased. Nonetheless, some markers (such as Tnf, Il5, Pdgfa,
Pdgfb, and Smad4) were unexpectedly increased. Thus, other techniques were subsequently
performed to elucidate the associated mechanism of cycloastragenol on fibrogenesis.

Since the screening of genes relating to ECM remodeling was affected by cycloas-
tragenol, the multiplex ELISA was used to assess the level of Mmps in the liver (Figure 3).
We found that CCl4 obviously increased the expression of Mmp2, Mmp8, proMmp9, and
Mmp12. Superior to the levels in the control group, cycloastragenol further augmented the
levels of Mmp8, proMmp9, and Mmp12, indicating the elevation of fibrosis resolution.

3.2. Hepatoprotective Efficacy

The hepatocyte degenerations, necrobiotic changes, and infiltrated lymphocytes of
the livers were assessed using hematoxylin/eosin staining (Figure 4). The histological
analysis revealed that CCl4 induced a high degree of liver damage as seen by the spread of
ballooning hepatocytes with condensed chromatin in the enlarged nucleus and infiltrated
lymphocytes in the central area of the hepatic lobules. Significantly, cycloastragenol allevi-
ated the harmful effects of CCl4; however, liver damage remained visible at a lower degree
when compared with the control.

In line with the histological analysis, CCl4 evidently induced liver damages result-
ing in an increment in liver enzymes, especially alanine aminotransferase, in the serum.
Moreover, the mice treated with CCl4 appeared to incite an impairment of liver function
as seen by the increment of bilirubin, a waste biological product to be excreted by the
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liver (Figure 5). Cycloastragenol tended to mitigate the increment of serum liver enzymes,
alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and biliru-
bin, both measured as total (conjugated and unconjugated) and direct (conjugated). Thus,
cycloastragenol elicited hepatoprotective efficacy and preserved liver function against CCl4.
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Figure 1. Anti-fibrotic efficacy of cycloastragenol (50 mg/kg and 200 mg/kg) in the liver of mice
treated with carbon-tetrachloride. Representative picro-sirius red-stained pictures of the liver among
each group (A) are shown. The stained areas of picro-sirius red (B) and relative mRNA expression of
collagen type 1 (Col1a1, (C)) when compared with the normal are shown. Hydroxyproline contents of
the liver when calculated per 100 mg liver tissue (D) and per the whole liver (E) are shown. Scaled
bar = 100 µm. Bar graphs and corresponding error bars indicate means and SEM among the same
treatment, respectively (n = 8–10). a and aa indicate p < 0.05 and 0.01 when compared with the
normal, respectively.
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Mmp3 (B), Mmp8 (C), proMmp9 (D), and Mmp12 (E), per total protein content of the liver (g). Bar
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(n = 8–10). a, aa, and aaa indicate p < 0.05, 0.01, and 0.001 when compared with the normal, respectively.
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lymphocytes were semi-quantified as histological damage scores. Data are shown when compared
with the normal (B). Scaled bar = 100 µm. Bar graphs and corresponding error bars indicate means
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compared with the normal and control, respectively.
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Figure 5. Hepatoprotective efficacy of cycloastragenol (200 mg/kg) on the levels of markers asso-
ciated with liver toxicity in the serum of mice treated with carbon-tetrachloride. Levels of alanine
aminotransferase (A), aspartate aminotransferase (B), alkaline phosphatase (C), total bilirubin (D),
direct bilirubin (E), total protein (F), and albumin (G) are shown. Bar graphs and corresponding
error bars indicate means and SEM among the same treatment, respectively (n = 8–10). a, aa, and aaa

indicate p < 0.05, 0.01, and 0.001 when compared with the normal, respectively. bbb indicates p < 0.001
when compared with the control.

3.3. Anti-Inflammatory, Antioxidative, and Anti-Senescent Efficacy

To investigate the mechanisms underlying hepatoprotective efficacy of cycloastragenol,
several markers associated with inflammation, oxidative stress, and senescence were quan-
tified. Among inflammatory-related markers, the mRNA expression of anti-inflammatory
cytokine interleukin 6 (Il6) in the liver of mice who received CCl4 alone was significantly
downregulated (Figure 6). In the mice who received cycloastragenol, the expression of Il6
was recovered to be at the same level as expressed in normal mice. We could not detect
an obvious alteration on other inflammatory-related markers, that is, insulin-like growth
factor (Igf ), peroxisome proliferator-activated receptor alpha (Pparα), and peroxisome
proliferator-activated receptor gamma (Pparγ).
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Figure 6. Effects of cycloastragenol (200 mg/kg) on the expression of gene-encoding markers associ-
ated with inflammation in the liver of mice treated with carbon-tetrachloride. Relative mRNA expres-
sion of interleukin 6 (Il6, (A)), insulin-like growth factor (Igf, (B)), peroxisome proliferator-activated
receptor alpha (Pparα, (C)), and peroxisome proliferator-activated receptor gamma (Pparγ, (D)) when
compared with the normal is shown. Bar graphs and corresponding error bars indicate means and
SEM among the same treatment, respectively (n = 8–10). a and b indicate p < 0.05 when compared
with the normal and control, respectively.



Biomedicines 2023, 11, 231 10 of 15

Focusing on antioxidative efficacy, we found that the gene expression of NAD(P)H
quinone dehydrogenase 1 (Nqo1) was the most apparently upregulated in response to
CCl4 (Figure 7). However, this cytoprotective enzyme was not remarkably affected by
cycloastragenol. Besides the statistically insignificant alteration of the mRNA expression of
nuclear factor erythroid 2-related factor 2 (Nrf2), the expression of genes encoding other
enzymes responsible for scavenging reactive species was not significantly regulated by
either CCl4 or cycloastragenol.
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Figure 7. Effects of cycloastragenol (200 mg/kg) on the expression of gene-encoding markers associated
with oxidative stress in the liver of mice treated with carbon-tetrachloride. Relative mRNA expression
of NAD(P)H quinone dehydrogenase 1 (Nqo1, (A)), nuclear factor erythroid 2-related factor 2 (Nrf2, (B)),
glutathione peroxidase 1 (Gpx1, (C)), glutathione-disulfide reductase (Gsr, (D)), superoxide dismutase 1
(Sod1, (E)), superoxide dismutase 2 (Sod2, (F)), and catalase (Cat, (G)) when compared with the normal
is shown. Bar graphs and corresponding error bars indicate means and SEM among the same treatment,
respectively (n = 8–10). a indicates p < 0.05 when compared with the normal.

The gene expression of a senescent marker Bcl2-associated agonist of cell death (Bad)
was not obviously increased in response to CCl4 (Figure 8). Thus, although the level
was comparable to the normal, we could not conclude that cycloastragenol exhibited
anti-senescent efficacy. This finding was in line with the length of telomere in the genomic
DNA of mice treated with CCl4 and cycloastragenol.

3.4. Effects on TGF-β1 Signaling Pathway

Since the screening of gene expression revealed that several TGF-β1 signaling-related
markers were affected by cycloastragenol, quantitative real-time PCR of TGF-β1 ligand
(Tgf-β1) was conducted and the multiplex ELISA was used to assess the level of TGF-β1
signaling-related proteins in the liver (Figure 9). We found that CCl4 tended to increase the
expression of Tgf-β1 and phosphorylated protein kinase B (pAkt); however, the increments
were not significantly higher than the normal or mice who received cycloastragenol. The
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expression of other TGF-β1 signaling-related markers was not remarkably changed by
either CCl4 or cycloastragenol.
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Figure 9. Effects of cycloastragenol (200 mg/kg) on the expression of markers associated with trans-
forming growth factor-beta 1 (TGF-β1) signaling in the liver of mice treated with carbon-tetrachloride.
Relative mRNA expression of TGF-β1 (Tgf-β1, (A)) and relative median fluorescence intensity (MFI)
of transforming growth factor-beta receptor II (Tgf-β receptor II, (B)), phosphorylated protein kinase
B (pAkt, (C)), phosphorylated extracellular signal-regulated kinase 1/2 (Erk1/2, (D)), phosphorylated-
Smad2 (pSmad2, (E)), phosphorylated-Smad3 (pSmad3, (F)), and Smad4 (G) when compared with
the normal are shown. Bar graphs and corresponding error bars indicate means and SEM among the
same treatment, respectively (n = 8–10).
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4. Discussion

To date, the sole therapeutic option for patients with advanced chronic liver diseases
is liver transplantation. Nonetheless, this invasive and high-risk surgical procedure is
sufficient for a limited number of patients [18]. Therefore, effective treatments remain
an unmet clinical need. Among available options, the eradication of underlying causes
which prevail the death of hepatocytes by using antiviral therapy for chronic hepatitis B
and C infection could be considered the most effective treatment because the drugs can
prevent or even reverse the progression of disease [19]. In traditional Chinese medicine,
Astragalus membranaceus (Fisch.) Bunge has been used in various preparations to protect
the liver from harmful causes for several centuries [20]. Therefore, cycloastragenol, which
is the major active compound in this plant, is of high interest to target liver diseases [21].
The evidence from our study revealed for the first time that cycloastragenol alleviated
the progression of liver fibrosis resulting from chronic exposure to a hepatotoxin CCl4.
Moreover, we revealed that the hepatoprotective efficacy of cycloastragenol played a major
role in the alleviation of fibrosis progression. Trichloromethyl free radical (CCl3·), which is
the toxic metabolite of CCl4, induces liver damage by altered cellular integrity leading to
swelling, cytolysis, and death of hepatocytes, and prolonged exposure of CCl4 establish
liver fibrosis [22,23]. Following the death of hepatocytes, several pro-inflammatory and
pro-fibrotic mediators such as chemokine ligands/receptors and TGF-β1, respectively, are
released to aggravate the initial damage in contiguous hepatocytes, Kupffer cells, and
HSCs [24]. Despite unclear in-depth mechanisms, we found that cycloastragenol mitigated
the toxicity of CCl4, resulting in the reduction of leaked cytoplasmic liver enzymes in
the serum. Furthermore, the hepatoprotective efficacy may contribute to the preserved
metabolic function of the livers, since we found that the level of bilirubin which requires
a phase II microsomal enzyme glucuronosyltransferase to be excreted [25] was reduced
by cycloastragenol.

The resolution of excessive deposition of ECM is a pivotal function of Mmps, the
master class of enzymes possessing protease activity that play a role in liver fibrogene-
sis [8]. Despite conventional dividends based on enzyme–substrate specificity and cellular
locations, these proteases may be alternatively differentiated by their pathophysiological
role into pro- and anti-fibrotic Mmps [26]. In our study, the level of a pro-fibrotic Mmp2
(gelatinase-A) [27] in the liver of mice who received cycloastragenol was slightly lower than
mice treated with CCl4 alone. In contrast, the levels of anti-fibrotic Mmp8 (collagenase-2),
Mmp9 (gelatinase-B), and Mmp12 (metalloelastase) were markedly increased by cycloas-
tragenol. Our findings were in line with several animal studies targeting fibrosis [28–30].

Among the quantification of multiple markers associated with inflammation, oxidative
stress, and senescence, we found that CCl4 significantly altered the mRNA expression of Il6.
Even though Il6 is usually recognized as a deleterious mediator, recent evidence demon-
strated that this pleiotropic anti-inflammatory cytokine plays a vital role in the promotion
of liver regeneration in liver pathologies [31]. Moreover, a previous study in mice treated
with CCl4 showed that a combination of Il6 and mesenchymal stem cell transplantation
attenuated liver fibrosis in mice [32]. Thus, cycloastragenol, which upregulated Il6 in our
study, could possibly promote hepatocyte regeneration after the damage of CCl4. According
to the effects on other markers using real-time quantitative PCR, anti-inflammatory activity
would not be the main contributor to the hepatoprotective efficacy of cycloastragenol. Re-
garding markers of oxidative stress, the mRNA expression of Nqo1 was increased by CCl4.
A previous study showed that this cytoprotective enzyme played a role in the detoxifica-
tion of reactive species in livers obtained from patients with paracetamol overdosage and
primary biliary cholangitis [33]. Due to the fact that cycloastragenol did not significantly
alter the expression of gene-encoding Nqo1, the antioxidant activity might be trivial for
the beneficial efficacy of cycloastragenol in our study. Similarly, the anti-senescent activity
of cycloastragenol may be negligible also. Nevertheless, cycloastragenol may possibly
exhibit anti-fibrotic potency via anti-senescent activity in a case in which the experiment
was performed in aged species [34].
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Since we could not detect a significant alteration in the expression of transforming
growth factor-beta receptor II, phosphorylated-Smad2 (pSmad2,), pSmad3, and Smad4
resulting from CCl4 exposure, the involvement of cycloastragenol on canonical TGF-β1
signaling could not be concluded. Although the canonical TGF-β1 signaling is usually
recognized as the major activated pathway in liver fibrogenesis, a variety of responses in
certain mouse strains against CCl4 were reported [17,35]. In our ICR mice, it is possible
that cycloastragenol regulated non-canonical pathways of TGF-β1 signaling, due to the
levels of phosphorylated-Akt being slightly affected by CCl4 and cycloastragenol. In
addition, a previous study showed that an herbal extract ameliorated CCl4-induced liver
fibrosis in mice by inhibiting Akt-mediated hepatocyte apoptosis and regulating farnesoid
X receptor (FXR) activity [36]. The effects of cycloastragenol on FXR could be gleaned from
another study targeting hepatic steatosis in diet-induced obesity mice. This animal study
administered cycloastragenol as a diet supplement at a dosage of 100 mg/100 g diet. Since
the C57BL/6 mice at 30 g body weight consumed a 2.5–3 g diet per day, these mice could
receive cycloastragenol at approximately 80–100 mg/kg dosage [37]. The results from
these obesity mice showed that cycloastragenol improved fatty liver via FXR activation.
Unfortunately, this study did not assess outcomes relating to fibrosis. Nevertheless, the
effective anti-fibrotic dosage of cycloastragenol at 200 mg/kg in our study could sufficiently
activate FXR. Since several previous studies demonstrated that FXR agonists impeded liver
fibrosis and inhibited hepatocyte apoptosis [38–40], FXR activation might partly contribute
to the anti-fibrotic efficacy of cycloastragenol. This dosage correlation might imply how
the low dosage at 50 mg/kg of cycloastragenol, which was selected from a study targeting
skin inflammation in psoriatic mice [41], could not be sufficient for modulating FXR and
provided a clear anti-fibrotic efficacy in our study. Furthermore, the notch signaling that
was modulated by astragaloside in the prevention of liver fibrosis in bile duct-ligated
rats [12] might also connect with the anti-fibrotic efficacy of cycloastragenol.

Finally, it is worthwhile to mention that our study was performed on outbred mice.
This fact could be considered as a limitation since a variation on the effects of CCl4 and
cycloastragenol might be relatively large as we demonstrated in an acute toxicity model of
CCl4 using these outbred mice [42]. On the other hand, although inbred mice are usually
preferred in almost all biomedical research currently because of their reduced genetic
variability, experiments in outbred mice may be considered a better choice since they
consist of inter-individual genetic variation [43].

5. Conclusions

Cycloastragenol at the dosage of 200 mg/kg alleviated the progression of liver fibrosis
in CCl4-treated mice. The anti-fibrotic efficacy of cycloastragenol was mainly due to its
hepatoprotection and was partly derived by the increased ECM resolution resulting from
the upregulation of anti-fibrotic Mmps. Although the major mechanism of action required
further elucidation, the inhibition of the non-canonical TGF-β1/Akt signaling pathway
and possibly the modulation of FXR were supposed to play a role contributing to the
anti-fibrotic and hepatoprotective potency of cycloastragenol.
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