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Abstract: The severe acute respiratory syndrome–related coronavirus 2 (SARS-CoV-2) pandemic has
advanced our understanding of the host–microbiome–virus interplay. Several studies in various
geographical regions report that SARS-CoV-2 infection disrupts the intestinal microbiota, allowing
pathogenic bacteria such as Enterobacteriaceae to thrive, and triggering more severe disease outcomes.
Here, we profile the microbiota of 30 individuals, 15 healthy controls and 15 type 2 diabetes (T2D)
patients, before and after coronavirus disease 2019 (COVID-19). Despite similar viral loads in both
patients and controls, SARS-CoV-2 infection led to exacerbated microbiome changes in T2D patients,
characterized by higher levels of Enterobacteriaceae, loss of butyrate producers and an enrichment in
fungi such as Candida spp. and Aspergillus spp. Several members of the microbiota were associated
with more severe clinical and inflammatory (IL-8 and IL-17) parameters. Future studies to delineate
the connection between cytokine release and microbiota disturbances will enhance our understanding
of whether these microbial shifts directly impact the cytokine storm in COVID-19 patients or whether
they are consecutive to the critical disease.
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1. Introduction

Deciphering the pathological mechanisms underlying SARS-CoV-2 infection is an ur-
gent global priority, especially in high-risk patients, including type 2 diabetes (T2D) patients.
SARS-CoV-2 infects the lungs after binding on the ACE2 receptors from the alveolar ep-
ithelial cells, causing pneumonia that will eventually progress to acute respiratory distress
syndrome (ARDS), particularly in elderly and other categories of immune-compromised
patients [1]. Severe coronavirus disease 2019 (COVID-19) was reported to be associated
with an exacerbated immune response, which may trigger systemic organ failure [2].

The microbiota has been reported to impact pulmonary health through the bidirec-
tional communication between the gut microbiota and the lungs, often referred to as the
“gut-lung axis” [3]. Interestingly, SARS-CoV-2 RNA was found in the feces of infected
patients, suggesting a subtle link between the lung and the intestine [4–6]. Indeed, changes
in gut microbiome signatures are reported for COVID-19 patients, particularly in patients
treated with antibiotics during hospitalization [6,7].

Even in mild infections, gastrointestinal symptoms are frequently reported. COVID-19
patients exhibit a loss of commensal microbes during hospitalization [8–10], and persis-
tent microbiota changes were described in patients with long-term complications from
COVID-19 [11,12].
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These studies suggest that microbiota diversity and the presence of beneficial microbes
in the gut may harbor an important role in determining the course of COVID-19.

Taking into account that patients with co-morbidities such as cardiovascular disorders
and T2D are less efficient in fighting SARS-CoV-2 infection [13,14], the aim of this study was
to investigate the microbiome alterations triggered by COVID-19 in a T2D cohort compared
to healthy controls.

2. Materials and Methods
2.1. Study Group

The study population was represented by 30 individuals (15 T2D patients from the Na-
tional Institute of Diabetes, Nutrition and Metabolic diseases N.C. Paulescu from Bucharest,
Romania and 15 healthy volunteers). The exclusion criteria for the controls were the use
of antibiotics, laxatives or antidiarrheal drugs in the past 6 months, and known complex
infections, sepsis, malignant disease, AIDS, pregnancy and bowel surgery in the past
6 months. All participants included in the study signed an informed consent. Fecal samples
were collected between 3 to 7 days from the COVID-19 diagnostic. No cases of COVID-19
reinfection were reported for the analyzed cohort. The study was conducted according to
the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of
University of Bucharest (protocol code CEC reg. no 235/9.10.2019). The characteristics of
the subjects included in the study are listed in Table 1.

Table 1. Patient characteristics: age, sex (female/male), body mass index (BMI), blood pressure
(millimeters of mercury—mmHg), glycated hemoglobin (HbA1c), high-density lipoprotein (HDL),
low-density lipoprotein (LDL), tryglycerides (TG), and medication used—statin, metformin, Dipep-
tidyl peptidase-4 (DPP4) inhibitors and insulin.

Characteristic HC T2D

Age 56 ± 10.30 63 ± 12.25
Sex (F/M) 10/5 9/6

BMI 24.8 ± 2.25 31 ± 4.29
Blood pressure (mmHg): systolic 110 ± 2.10 138.5 ± 2.8
Blood pressure (mmHg): diastolic 62 ± 1.99 88.1 ± 1.3

HbA1c (%) 5.4 ± 0.19 6.5 ± 0.6
HDL (mg/dL) 65 ± 3.99 47 ± 6.55
LDL (mg/dL) 97 ± 15.56 118 ± 27.67
TG (mg/dL) 88 ± 14.27 132 ± 48.47

Statin (number/total) 2/15 3/15
Metformin (number/total) n/a 15/15

DPP4 inhibitors n/a 2/15
Insulin n/a 0/15

2.2. Microbiota Analysis

Stool samples were collected in the morning using antiseptic handling and imme-
diately frozen at −20 ◦C. DNA was extracted using the DNA Stool Mini kit (Qiagen)
following the manufacturer’s instructions. For microbiome sequencing, partial 16S rRNA
gene sequences were amplified using primer pairs targeting the hypervariable regions of
the 16S rRNA gene (V2-4-8 and V3-6, 7-9). The obtained amplicons were further purified
using Agencourt AMPure beads (Beckman coulter, Brea, CA, USA) and a DynaMag magnet.
Libraries were generated using the Ion Plus Fragment Library kit (Applied Biosystems)
and quantified using the Taqman Ion Universal Library Quantitation kit (Cat no. A26217).
Sequencing template preparation was conducted using the Ion PGM Hi-Q View OT2 kit-
400. Sequencing of the amplicon libraries was performed on a 316-chip using the Ion
Torrent PGM system. Next, the obtained individual sequence reads were filtered by the
Ion Reporter PGM software to discard polyclonal and low-quality reads. The sequencing
data were processed using the Quantitative Insights Into Microbial Ecology (QIIME) [15]
pipeline. 16S rRNA Operational Taxonomic Units (OTUs) were defined at ≥97% sequence
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homology. All reads were classified using reference datasets (Curated Greengenes v13.5;
Curated MicroSEQ(R) 16S Reference Library v2013.1). The alpha and beta diversity graph-
ics created in QIIME were exported from the Ion Reporter Software. For alpha diversity,
the Shannon curves were generated to analyze species diversity within the samples.

2.3. Real Time PCR

COVID-19 diagnostic was performed using the Genesig® COVID-19 2G (PRIMER DE-
SIGN, Eastleigh, UK) kit from nasopharyngreal swabs. Human peripheral blood mononu-
clear cells (PBMCs) were isolated using Ficoll gradient centrifugation from blood samples
collected from SARS-CoV-2 infected patients. PBMCs were further used for RNA isolation
using a commercial kit (PureLink RNA Mini Kit, Invitrogen, Waltham, MA, USA). The
RNA obtained was further reverse transcribed using the High-Capacity Reverse Transcrip-
tion kit (Applied Biosystems, Waltham, MA, USA). Real time PCR for Nox1, Nox2, Nox4,
IL-17 was performed using commercially available Taqman probes (Applied Biosystems)—
Hs00166163_m1, Hs01071086_g1, Hs04980925_m1, Hs02786624_g1. GAPDH was used as
internal control. Detection of fungal population abundance was performed using SYBR
Green (Applied Biosystems) and the specific primers listed in Table 2. Fungal rRNA 18S
primers were used as an internal control.

Table 2. Sequences of primers used.

Target Sequence

Penicillium spp.
ATTGGAGGGCAAGTCTGGTG

AATCCCGTCCGATCCCTAGT

RNAr 18S
ATTGGAGGGCAAGTCTGGTG

CCGATCCCTAGTCGGCATAG

Debaryomyces spp.
TAACGGGAACAATGGAGGGC

CAACACCCGATCCCTAGTCG

Candida spp.
TTTATCAACTTGTCACACCAGA

ATCCCGCCTTACCACTACCG

Aspergillus spp.
GTGGAGTGATTTGTCTGCTTAATTG

TCTAAGGGCATCACAGACCTGTT

2.4. ELISA

Cytokine detection was performed on serum samples using commercially available
kits: Human Interleukin-1beta (Hu IL-1beta) ELISA kit (Thermo Scientific, Cat. No.
KHC0011), Human IL-8 ELISA kit (Cat. No. KHC0081), C Reactive Protein (CRP) kit
(Cat. No. KHA0031). Detection of butyrate was performed using a commercially available
kit (Sigma Aldrich, St. Louis, MO, USA)

2.5. Reactive Oxygen Species (ROS) and Nitric Oxide Synthase (NOS) Detection

Detection of reactive oxygen species (hydrogen peroxide) was performed on iso-
lated PBMCs using Amplex Red (Thermo Scientific, Waltham, MA, USA). PMA (Phorbol
12-myristate 13-acetate) was used as a stimulus for ROS production. Detection of NOS was
performed on serum samples using a kit based on the Griess reaction (Nitric oxide kit, Cat
no. EMSNO, Invitrogen).

2.6. Statistical Analysis

Data are shown as mean ± SEM and were graphed using GraphPad Prism 9.4.1.
Differences in viral RNA, ROS and cytokine levels were tested using Unpaired t-test with
Welch’s correction. Statistical differences in gene expression and microbe abundance and
diversity in uninfected and infected individuals were quantified using 1-way ANOVA
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post hoc Bonferroni test. A heat map based on Spearman correlations was constructed
to compare the microbiota patterns and clinical parameters. The p values < 0.05 were
considered as statistically significant. The statistical significance levels were *, p < 0.05;
**, p < 0.01; ***, p < 0.001, **** p < 0.0001

3. Results

In 2019, before the SARS-CoV-2 pandemic, we initiated a national study to analyze
the microbiome patterns in T2D. In this purpose, we collected stool samples from a cohort
of 105 T2D patients and 45 controls individuals. During the COVID-19 pandemic, we
re-evaluated the microbiota composition for a subset of patients who tested positive for
COVID-19 and gave their consent to participate in our study.

Analysis of the SARS-CoV-2 viral RNA levels was performed using Real time PCR in
nasopharyngeal swabs. No significant differences were detected between T2D patients and
healthy controls (Figure 1a).
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coccaceae, Coriobacteriaceae, Pasteurellaceae and Veillonellaceae. We found significant altera-
tions of the gut microbiome after SARS-CoV-2 infection in both healthy controls and T2D 
patients. Indeed, the SARS-CoV-2 infection promoted the blooming of Enterobacteriaceae 
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Enterobacteriaceae (Figure 3a) and Sutterellaceae (Figure 3b), which were further enriched 
after COVID-19. 

Figure 1. Inflammatory markers in T2D after SARS-CoV-2 infection. (a) SARS-CoV-2 RNA levels
in healthy controls and T2D patients—determined using RT PCR; (b) CRP quantification in serum
samples from SARS-CoV-2-infected healthy controls and T2D patients; (c) IL-8 quantification in
serum samples from SARS-CoV-2-infected healthy controls and T2D patients; (d) IL-1β in serum
samples from SARS-CoV-2-infected healthy controls and T2D patients; (e) IL-17 expression in total
blood samples from SARS-CoV-2-infected healthy controls and T2D patients; (f) NOS quantification
in serum samples from SARS-CoV-2-infected healthy controls and T2D patients. Statistical analyses
performed using Unpaired t-test with Welch’s correction. **, p < 0.01.
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The levels of many proinflammatory cytokines (IL-1β, IL-6, IL-8, IL-17, TNF, G-CSF,
GM-CSF) and chemokines (IP10, MCP1, MIP1α), were elevated in COVID-19 patients,
with higher levels in critically ill subjects [16]. To this end, we examined the levels of
proinflammatory markers in the case of SARS-CoV-2-infected T2D subjects compared to
infected healthy controls. Even though no significant differences were found in case of CRP
levels (Figure 1b), T2D patients exhibited elevated levels of the proinflammatory cytokine
IL-8 (Figure 1c). In regards to IL-1β levels, T2D patients had a tendency to harbor higher
levels but these were not statistically significant (Figure 1d). Moreover, the expression of
the proinflammatory IL-17 gene was significantly higher for the T2D group (Figure 1e).
Next, quantification of nitric oxide levels revealed no statistically significant differences
between the two tested groups (Figure 1f).

Microbiota analysis was performed using Ion torrent next generation sequencing
combined with quantitative Real time PCR. Sequencing of the fecal samples collected from
the T2D patients and healthy controls revealed a decreased alpha diversity in the case
of T2D samples. As shown by the Shannon index, uninfected T2D patients harbored a
decreased diversity of the microbiome (Figure 2a). Quantification of the short chain fatty
acid (SCFA) butyrate, an important factor in regulating gut homeostasis, showed that
T2D patients had constitutively lower fecal butyrate. Importantly, butyrate levels were
significantly altered by SARS-CoV-2 infection in the healthy control group (Figure 2b).

Biomedicines 2023, 11, x  6 of 14 
 

 
Figure 2. Microbiome dysbiosis and oxidative stress in T2D patients after SARS-CoV-2 infection. (a) 
Microbiome alpha diversity measured by Shannon index. (b) Fecal butyrate levels before and after 
SARS-CoV-2 infection. (c) ROS quantification in PBMCs harvested from SARS-CoV-2-infected 
healthy controls and T2D patients. (d) NOX1, NOX2 and NOX4 expression in PBMCs from SARS-
CoV-2-infected healthy controls and T2D patient; CT-catalase control. For (a,b)—statistical analysis 
was performed by 1-way ANOVA post hoc Bonferroni test and for (c,d)—statistical analysis was 
performed using Unpaired t-test with Welch’s correction. The statistical significance levels: *, p < 
0.05; **, p < 0.01; ***, p < 0.001. 

Conversely, levels of the beneficial microbe Faecalibacterium prausnitzii was depleted 
after SARS-CoV-2 infection, both in healthy controls and in T2D patients (Figure 3c). In 
case of Bacteroides spp., an important and predominant member of the human microbi-
ome, no significant alterations were identified after SARS-CoV-2 infection (Figure 3d). 
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after SARS-CoV-2 infection. (c) ROS quantification in PBMCs harvested from SARS-CoV-2-infected
healthy controls and T2D patients. (d) NOX1, NOX2 and NOX4 expression in PBMCs from SARS-
CoV-2-infected healthy controls and T2D patient; CT-catalase control. For (a,b)—statistical analysis
was performed by 1-way ANOVA post hoc Bonferroni test and for (c,d)—statistical analysis was
performed using Unpaired t-test with Welch’s correction. The statistical significance levels: *, p < 0.05;
**, p < 0.01; ***, p < 0.001.

PBMCs isolated from infected healthy controls and T2D patients produced higher
levels of hydrogen peroxide, as quantified by Amplex Red (Figure 2c). The elevated ROS
production was correlated with significantly higher expression of ROS-producing NADPH
oxidases NOX1, NOX2 and NOX 4 in the case of infected T2D patients (Figure 2d).

We next examined into more detail the microbiome changes in healthy controls and
T2D patients before and after COVID-19. The main OTUs identified in the analyzed patients
included Bacteroidaceae, Enterobacteriaceae, Ruminococcaceae, Faecalibacterium, Lachnospiraceae,
Rikenellaceae, Bifidobacteriaceae, Sutterellaceae, Clostridiaceae, Porphyromonadaceae, Desulfovib-
rionaceae, Parasutterella, Eubacteriaceae, Bilophila, Prevotellaceae, Alistipes, Streptococcaceae,
Coriobacteriaceae, Pasteurellaceae and Veillonellaceae. We found significant alterations of the
gut microbiome after SARS-CoV-2 infection in both healthy controls and T2D patients. In-
deed, the SARS-CoV-2 infection promoted the blooming of Enterobacteriaceae in both tested
groups (Figure 3a). In case of T2D patients, we noted constitutively higher Enterobacteriaceae
(Figure 3a) and Sutterellaceae (Figure 3b), which were further enriched after COVID-19.
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of Sutterellaceae expressed as percentage reads using next generation sequencing in uninfected and
infected T2D patients and healthy controls; (c) Relative abundance of F. prausnitzii expressed as
percentage reads using next generation sequencing in uninfected and infected T2D patients and
healthy controls; (d) Relative abundance of Bacteroides spp. expressed as percentage reads using
next generation sequencing in uninfected and infected T2D patients and healthy controls. Statistical
analysis was performed by 1-way ANOVA post hoc Bonferroni test. The statistical significance levels:
*, p < 0.05; **, p < 0.01; ***, p < 0.001.

Conversely, levels of the beneficial microbe Faecalibacterium prausnitzii was depleted
after SARS-CoV-2 infection, both in healthy controls and in T2D patients (Figure 3c). In
case of Bacteroides spp., an important and predominant member of the human microbiome,
no significant alterations were identified after SARS-CoV-2 infection (Figure 3d).

We also explored the mycobiome changes before and after SARS-CoV-2 infection. We
show that T2D patients, both before and after SARS-CoV-2 infection have a mycobiome
enriched in fungi such as Candida spp., Aspergillus spp., Debaryomyces spp. and Penicillium
spp. (Figure 4a–d). Importantly, SARS-CoV-2 infection induced an enrichment of the
Candida spp., Aspergillus spp., Debaryomyces spp. and Penicillium spp. fungal populations in
the gut of healthy controls (Figure 4a–d).
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Figure 4. SARS-CoV-2 infection triggers mycobiome changes. (a) Relative abundance of Aspergillus
spp. quantified using Real time PCR in uninfected and infected T2D patients and healthy controls;
(b) Relative abundance of Candida spp. quantified using Real time PCR in uninfected and infected
T2D patients and healthy controls; (c) Relative abundance of Debaryomyces spp. quantified using Real
time PCR in uninfected and infected T2D patients and healthy controls; (d) Relative abundance of
Penicillium spp. quantified using Real time PCR in uninfected and infected T2D patients and healthy
controls. Statistical analysis was performed by 1-way ANOVA post hoc Bonferroni test. The statistical
significance levels: *, p < 0.05; **, p < 0.01.
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We next correlated the main taxa identified with the patient clinical parameters includ-
ing viral load, ROS and NOS levels, NADPH oxidase expression, IL-8, IL-1β, IL-17, CRP,
and butyrate (Figure 5).
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The Spearman correlation analysis revealed significant correlations between the viral
load and Enterobacteriaceae, Bacteroidaceae, Rickenellaceae (**** p < 0.0001), Porphyromonadaceae
(**** p < 0.0001), Parasutterella (**** p < 0.0001) and Alistipes abundance. Negative correla-
tions between viral RNA levels and the microbiome were identified for Ruminococcaceae
(**** p < 0.0001), Faecalibacterium (**** p < 0.0001), Lachnospiraceae (**** p < 0.0001), Bifidobac-
teriaceae and Eubacteriaceae (**** p < 0.0001).

ROS levels were positively correlated with Enterobacteriaceae (** p = 0.0019) and Bac-
teroidaceae (*** p = 0.0001) and Faecalibacterium (** p = 0.0017). In exchange, we found no
statistically significant correlations between NOS levels and the main microbiota OTUs.

NOX1 expression correlated positively with Enterobacteriaceae and negatively with
Lachnospiraceae and Faecalibacterium, Nox2 correlated positively with Enterobacteriaceae
(**** p < 0.0001), Rickenellaceae (*** p = 0.0002), and Sutterella (** p = 0.0037) and NOX4
correlated positively with Bacteroidaceae and negatively with Lachnospiraceae.

IL-1β was negatively correlated with Lachnospiraceae (**** p < 0.0001). Conversely,
Enterobacteriaceae (** p = 0.0022), Parasutterella (** p = 0.0018) and Sutterelaceae (* p = 0.0476)
were positively associated with IL-1β.
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IL-8 levels were positively associated with Enterobacteriaceae (* p = 0.0331), Sutterella
(* p = 0.0289) Bacteroidaceae (*** p = 0.0002), Clostridiaceae (** p = 0.0019), and Parasutterela
(** p = 0.0024).

IL-17 expression was positively correlated with Sutterellaceae (** p = 0.0007), Alistipes
(*** p = 0.0002) and Enterobacteriaceae (**** p ≤ 0.0001).

We found positive correlations between CRP and several members of the microbiota
including Enterobacteriaceae, Alistipes, Sutterella and Bacteroidaceae.

Butyrate levels were negatively correlated with Bacteroidaceae and Enterobacteriaceae
and positively associated with Faecalibacterium abundance.

Further correlations between the mycobiome and the clinical parameters of the T2D
patients revealed positive correlations between the viral load and Debaryomyces spp. abun-
dance (p = 0.0451). Moreover, cytokine levels (IL-1β, IL-8, IL-17) and CRP were positively
linked to higher abundance of fungi (Candida spp., Aspergillus spp. and Debaryomyces spp.).
Expression of the NADPH oxidase NOX2 was positively correlated with Debaryomyces spp.

4. Discussion

Dysbiosis has been linked to many immune-related diseases, but still, it remains to
be elucidated whether dysbiosis is a cause or consequence of the disease [17]. Similar
to other previously published studies, we report the presence of dysbiosis characterized
by a dominance of Enterobacteriaceae in T2D patients, worsened after COVID-19. These
results are consistent with a direct role for gut dysbiosis in enabling dangerous secondary
infections and enhancing systemic inflammation during COVID-19.

It is well known that demographic differences can greatly influence the gut micro-
biome [18]. This is the first study to report changes in the intestinal microbiota triggered by
COVID-19 in the Romanian population. The changes identified are similar to those reported
in other countries. Studies which originated from different populations in China, USA,
Bangladesh, Japan, Portugal, United Arab Emirates, Hungary and Germany reported that
the fecal microbiome of patients with COVID-19 has decreased bacterial diversity [19–22],
lower abundance of SCFA-producing bacteria from the Lachnospiraceae, Eubacteriaceae and
Ruminococcaceae families as well as an enrichment in opportunistic pathogens from Enter-
obacteriaceae families [20–29], compared with the fecal microbiome of healthy individuals.
The abundance of Faecalibacterium, Lachnospira, Eubacterium, Roseburia, Ruminococcus, Copro-
coccus was decreased, whereas Rothia, Enterococcus, Lactobacillus levels increased [20–30].
A study from China reported gut dysbiosis in COVID-19 patients with lower levels of
probiotic Lactobacillus and Bifidobacterium genera [29].

Escherichia coli and Klebsiella pneumoniae are opportunistic pathogens belonging to
Enterobacteriaceae and were consistently reported to be over-represented in the gut of
critically ill COVID-19 patients [19,26]. Expansion of pathobionts is often associated with a
disrupted gut barrier leading to a higher risk of bloodstream infections in COVID-19 [31].
In addition, co-infections with Klebsiella spp., Enterococcus spp. and E. coli (species known
to include antimicrobial-resistant strains) have been reported in 3–25% of patients in
various studies [32,33]. Importantly, up to 50% of deaths in critical patients were caused
by these co-infections [34]. Similar to other published reports, we demonstrate here that
the abundance of butyrate-producing microbes such as Faecalibacterium and Roseburia was
negatively correlated with disease severity [25,30,35]. A study on the German population
(n = 117) reported that Roseburia and Faecalibacterium were negatively associated with
disease severity [25]. Another study on 100 patients with COVID-19 and 78 uninfected
controls from Hong Kong reported that changes in the composition of the gut microbiota
were associated with COVID-19 severity and, similar to our results, with altered levels of
inflammatory markers [29]. Loss of bacterial species with potential immunomodulatory
activity such as Eubacterium rectale and F. prausnitzii was correlated with elevated serum
levels of proinflammatory mediators, TNF C-X-C motif ligand 10 (CXCL10) and C-X-C
motif ligand 2 (CXCL2), but also with increased plasma levels of the anti-inflammatory
cytokine IL-10 [29].
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We report reduced levels of the SCFA butyrate in the feces of both control and
T2D patients. Indeed, several studies have reported low SCFA synthesis in fecal sam-
ples of SARS-CoV-2-infected individuals [11]. In a metagenomic study, which analyzed
66 antibiotics-naive COVID-19 patients and 70 uninfected individuals, the infected patients
exhibited a reduced capacity of gut microbial SCFA biosynthesis, which was negatively cor-
related with disease severity [11]. In another study, 19 patients with severe and/or critical
SARS-CoV-2 infection were characterized by low fecal concentrations of SCFAs, including
butyrate, propionate, acetate, caproic acid and valeric acid [11]. SCFAs can set out the anti-
inflammatory responses of immune cells, inhibit inflammatory signaling cascades [36] and
maintain the integrity of the intestinal barrier to avoid the translocation of microbes and
their endotoxins into the bloodstream [37]. Since SCFAs are important actors in regulating
host immune responses, the deficiency in SCFA biosynthesis in SARS-CoV-2 infections
could be correlated with disease pathogenesis and severity. Nevertheless, whether SCFA
depletion is a cause or consequence of COVID-19 infection remains to be elucidated.

The microbiome is not just home to bacteria but also to a large number of archaea,
viruses and fungi, which altogether impact the host physiology and response to infection.
So far, only two observational studies demonstrated that COVID-19 was linked to altered
composition of fungal microbiota [38,39]. Patients with COVID-19 (n = 67) as well as
patients with H1N1 Influenza infection (n = 35) harbored an increased fungal load with
Aspergillus and Penicillium [39]. Moreover, COVID-19 patients also exhibited a heteroge-
neous mycobiome with higher loads of opportunistic fungal pathogens, including Candida
albicans, Aspergillus flavus and Candida auris [38]. This could explain the prevalence of
Candida spp. infections, ranging from 0.7% to 23.5% in COVID-19 patients, considered
a major complication in severe cases [40]. Thus, future studies are needed to examine
changes in non-bacterial microbiome in COVID-19 patients.

Substantial evidence points towards a greater risk of more severe COVID-19 outcomes
in individuals with T2D and obesity, two frequently co-existing conditions [41–43]. As
a routinely used medication in T2D, metformin has not only a hypoglycemic activity,
but also impacts the gut microbiome by enhancing the SCFAs levels, which harbor anti-
inflammatory activity [44]. In our study, all participants were on metformin treatment
both before and after COVID-19. The fact that none of the patients analyzed within this
study had severe SARS-CoV-2 infection sustains the hypothesis that metformin holds an
important antiviral role and may protect against severe COVID-19. In line with this, it
was reported that metformin activates the protein kinase by AMP (AMPK), leading to the
phosphorylation of ACE2. This in turn leads to conformational and functional changes in
the surface protein that may cause a decrease in the SARS-CoV-2 binding capacity [45].

Most studies reported so far on the COVID-19-host microbiome interplay have focused
on comparing infected and uninfected controls [26–30,46] and, importantly, the majority of
the patients analyzed in these studies did not have any co-morbidities [8] or in some cases
only a small percentage of the subjects had T2D [9,46]. For instance, Sun et al. recently
reported that hypertension and diabetes did not significantly impact the microbiome in
a cohort of 63 COVID-19 patients but from the total of patients analyzed only 7 had
diabetes [46]. The novelty of our study is the comparison between healthy and T2D
patients, before and after COVID-19. In comparison with most studies reported on this
subject that are cross-sectional, our study is longitudinal, since the same set of patients has
been analyzed before and after COVID-19 infection. Despite the small sample size, we have
been able to find some significant changes regarding microbiome patterns after SARS-CoV-
2 infection. Clinical information and symptoms at the time of sample collection were not
always well presented, so this has hindered the ability to perform more extensive statistical
correlations. However, the changes in microbiota could be correlated with inflammatory
and oxidative stress markers.

Consistent gut microbial changes have been demonstrated for COVID-19 patients.
Nevertheless, all studies reported so far have some limitations. The effect of viral variants
of concern, such as Omicron, on the gut microbiota is still unexplored, as most published
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studies so far have focused on earlier virus variants. Moreover, most studies have focused
on adult populations and the effect of SARS-CoV-2 on the children gut microbiome in
children is less understood.

Last but not least, SARS-CoV-2 infection not only causes damage to the respiratory
tract but can affect other organs. Emerging studies have connected COVID-19 with the
onset of preeclampsia during pregnancy [47], problems of the reproductive system in
men (i.e., deterioration in semen parameters) [48] and neurological complications [49].
Hence, future studies are needed in order to better understand the virus–host–microbiome
interplay so that improved therapeutic approaches can be developed.

5. Conclusions

Emerging preclinical and clinical studies suggest that the gut microbiome might impact
COVID-19 pathogenesis and outcome. It is paramount to enrich our knowledge on the
impact of microbiota diversity and associated immunological mechanisms on SARS-CoV-2
severity and take it into account when modelling COVID-19 infection–fatality ratios.

Next, we need mechanistic studies to investigate the impact of specific microbial
communities (bacteria as well as fungi) and viruses on COVID-19 pathogenesis and clini-
cal outcomes.
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