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Abstract: Colorectal cancer (CRC) is a complex disease characterized by dynamically deregulated
gene expression and crosstalk between signaling pathways. In this study, a new approach based
on gene-function-based clusters was introduced to explore the CRC-associated networks of gene
expression. Each cluster contained genes involved in coordinated regulatory activity, such as RAS
signaling, the cell cycle process, transcription, or translation. A retrospective case–control study
was conducted with the inclusion of 119 patients with histologically confirmed colorectal cancer
and 308 controls. The quantitative expression data of 15 genes were obtained from the peripheral
blood samples of all participants to investigate cluster–gene and gene–gene interactions. DUSP6,
MDM2, and EIF2S3 were consistently selected as CRC-associated factors with high significance in
all logistic models. CPEB4 became an insignificant factor only when combined with the clusters for
cell cycle processes and for transcription. The CPEB4/DUSP6 complex was a prerequisite for the
significance of MMD, whereas EXT2, RNF4, ZNF264, WEE1, and MCM4 were affected by more than
two clusters. Intricate networks among MMD, RAS signaling factors (DUSP6, GRB2, and NF1), and
translation factors (EIF2S3, CPEB4, and EXT2) were also revealed. Our results suggest that limited
G1/S transition, uncontrolled DNA replication, and the cap-independent initiation of translation may
be dominant and concurrent scenarios in circulating tumor cells derived from colorectal cancer. This
gene-function-based cluster approach is simple and useful for revealing intricate CRC-associated gene
expression networks. These findings may provide clues to the metastatic mechanisms of circulating
tumor cells in patients with colorectal cancer.

Keywords: colorectal cancer; circulating tumor cells; intricate network; gene cluster; gene expression

1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second
leading cause of cancer-related deaths worldwide, with an estimated 1,880,725 new cases
and 915,880 deaths in 2020 [1]. Patients with early-stage CRC are generally easier to treat
and have a better prognosis. Advanced imaging techniques have recently been applied
for diagnosis, prognosis, and the assessment of treatment response. However, imaging
modalities fail to detect dynamic alterations in genetic, histological, and metastatic features
induced by environmental influences on tumors within a short time interval [2].

Cancer cells can disseminate from the primary tumor in both the early and late stages
of the disease. These rare circulating tumor cells (CTCs) are thought to be highly correlated
with distal metastasis, recurrence, and poor clinical outcomes [3,4]. While the optimized
isolation method of CTCs that preserves their original status is under development for
clinical practice, gene expression in CTCs for diagnosis and prognosis has been intensively
studied in recent years [5,6]. Cancer-associated gene signatures obtained from studies of
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CTC-containing samples could potentially differentiate cancer cases from normal controls
and assess the outcomes of patients with CRC [7–10] and other cancer types, such as lung
cancer [11–13]. Recent studies have shown that some genes were selected as significant
factors in the bivariate analysis but were excluded from the multivariate analysis [7–13].
Gene–gene interactions presumably existed between the investigated genes, and only
stronger effectors or a combination of effectors were selected during the variable selection
process. Competitive crosstalk between signaling pathways can be theoretically modeled
based on experimental datasets from Escherichia coli, yeast, and mammalian cells [14].
In addition, the remarkable regulation of cell cycle processes, such as reversible mitotic
arrest, has been reported in dormant cancer cells disseminated in the bloodstream [4,15].
Although different cancer-associated signaling pathways have been intensively studied in
cell lines [16,17], little or no information is available regarding crosstalk in gene expression
based on clinical data.

In this study, we introduced the concept of a gene-function-based cluster, which is
defined as a group of genes with coordinated biological functions or subcellular locations.
The expression data of 15 genes obtained from CTC-containing blood samples were used, as
viable CTCs seem to be appropriate for studying the cellular mechanisms of metastasis [3,6].
Based on the principle of clinical case–control studies, CRC cases and non-cancer controls
were included to construct models to explore the interactions between CRC-associated
genes and clusters. Clinically relevant findings could be the basis for capturing the scenario
of metastasis-associated regulatory networks and identifying potential therapeutic targets.

2. Materials and Methods
2.1. Patients, Controls, and Blood Samples

We used a retrospective case–control study to identify the interactions between col-
orectal cancer-associated genes with the inclusion of 119 cases and 308 non-cancer controls.
One hundred and nineteen patients with histologically confirmed colorectal cancer (CRC)
were enrolled (2006–2009) in a prospective investigational protocol, which was approved
by the Institutional Review Board at Cheng Hsin General Hospital (Taipei, Taiwan).

The non-cancer control group included 308 volunteers who visited our institution
for routine health examinations between November 2005 and November 2010. There was
no evidence of any clinically detectable cancer diseases at the time of the blood sample
collection. The follow-up period of the controls ranged from 4.8 to 9.9 years. Twenty-six
controls (8.4%) were censored, and the health statuses of 282 controls were followed up as
of September 2015. Of 282 control subjects, 9 (3.2%) were diagnosed with cancer during the
follow-up period. The cancer types of these controls included bladder cancer (1), breast
cancer (2), ovarian cancer (1), hepatoma (1), urothelial cell carcinoma of the renal pelvis (1),
B-cell lymphoma over the bilateral adrenal gland (1), B-cell lymphoma of the stomach (1),
and prostate cancer (1).

In addition, among the participants, 111 patients and 227 controls were the same as
those used in a previous study by Huang et al. [7], and 308 controls were used in the study
by Chian et al. [11]. Peripheral blood samples (6–8 mL) were drawn from participants after
obtaining their signed informed consent and then stored at 4 ◦C until further preparation
according to procedures described in a previously published report [7].

2.2. Sample Preparation and Relative Quantitative Real-Time PCR

Blood samples (6–8 mL) were collected for the isolation of the mononuclear cell
fraction containing tumor cells, followed by total RNA extraction and cDNA synthesis. The
relative expression levels (mRNA) of 15 investigated genes in isolated cells of the study
sample were measured using quantitative real-time PCR according to a previous report [7].
Pre-designed gene-specific amplification primer sets for the 15 genes and for the reference
gene, HPRT1, from Advpharma, Inc. (New Taipei City, Taiwan), nucleotide probes from
Universal ProbeLibraryTM (Roche Diagnostics GmbH, Mannheim, Germany), and TaqMan
Master Mix (Roche Diagnostics GmbH, Mannheim, Germany) were used for analysis [7,11].
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2.3. Statistical Analysis

All statistical analyses were performed using SAS (version 9.4; SAS Institute, Cary, NC, USA)
with the Logistic procedure (SAS® 9.4 Language Reference: Concepts, 6th Ed., SAS Institute,
Cary, NC, USA).

2.3.1. Bivariate Analysis

A chi-square test was used to evaluate the bivariate association between demographics
and cancer status, where the age variable was treated as a binary variable, and a cutoff age
of 65 years was used. Additionally, the association of each clinico-pathological characteristic
between males and females was evaluated using a chi-square test. A logistic regression
model was used to evaluate the association between the gene (or cluster) and status (case
or control) while controlling for sex and age.

2.3.2. Subsampling and Logistic Regression Analysis of Association with CRC

Because the number of cases (N = 119) was smaller than that of the controls (N = 308),
we randomly selected 500 subsamples from the controls with a sample size of 119 to
represent heterogeneous populations. A logistic regression model was built for each
subsample along with the cases. The derived estimates of the coefficients were summarized
as the average of the estimates of the coefficients for 500 samples. Let β̂ j denote the estimate
computed from the jth sample. Then, the derived estimate is defined as 1

500 ∑500
j=1 β̂ j. In

addition, based on a significance level of 0.05, the percentage of significance of the estimates
among 500 models (percent of significance; PS) was computed to evaluate the importance
of the gene cluster. In this study, only moderately significant estimates (PS > 50) were
analyzed, and an influential gene in the cluster was defined when the PS of the gene in the
corresponding cluster was greater than 50. Using such a scheme to find the estimate would
yield rather solid and robust associations.

The odds ratios (ORs) and corresponding confidence intervals (CIs) were estimated by
exponentiating the derived estimates and the corresponding confidence intervals of the
coefficients. The derived standard error (SE) of the derived estimates for the CI includes
two parts. The first part is the average of the standard error (wse) of the estimates of the
coefficients for the 500 subsamples. The second part is the variation between the samples
and is given by the standard deviation (bse) of the estimates of the coefficients between
500 subsamples. The final SE is equal to the square root of the sum of wse2 and bse2.

2.4. Analysis Procedure

A hierarchical analysis procedure was designed to investigate the possible interactions
between genes and gene clusters (Figure 1). There were four major steps in this process.

In STEP-1, single-gene modeling was conducted for each investigated gene, and the
PS and OR at ground status were obtained.

In STEP-2, (1) 15 investigated genes were grouped into 6 clusters, named LY, TLA,
CY, TRf, TRm, and SN, respectively, according to the biological function or subcellular
location of each gene as follows: The LY cluster contained MMD because its coding protein
is involved in the dynamics of lysosomal membranes. The TLA cluster had three translation
factors, EIF2S3, EXT2, and CPEB4. Four factors associated with the regulation of the cell
cycle process, MCM4, MDM2, WEE1, and POLDIP2, were grouped into the CY cluster. The
TRf cluster contained two general transcription factors, ZNF264 and RNF4, while the TRm
cluster had two factors for the regulation of immune-associated transcription, IRF4 and
STAT2. Finally, the SN cluster included three genes involved in RAS signaling, GRB2, NF1,
and DUSP6.
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Figure 1. Analysis procedure for cluster–gene and gene–gene interactions. Four major steps were
performed, as described in detail in the Section 2. The total number of constructed models for
corresponding steps or substeps is indicated in parentheses. Abbreviations: PS, percent of significance;
OR, odds ratio; Ground-PS, PS for single-gene model; Ground-OR, OR for single-gene model; B-PS,
basal cluster-PS or PS for single-cluster model; B-OR, basal cluster-OR or OR for single-cluster model.

(2) Six single-cluster models were constructed to obtain basal cluster-PS (B-PS) and
cluster-OR (B-OR) for each cluster-grouped gene, which is written as “gene name/cluster
name”.

In STEP-3, a series of multiple-cluster analyses was performed by constructing two-,
three-, and four-cluster models. For each model, a primary cluster (or a combination of
clusters, called a cluster set) and one cluster listed in square brackets ([ ]) were included in
the analysis. Each multiple-cluster model was constructed with the sequential inclusion of
clusters in the following order: LY, TLA, CY, TRf, TRm, and SN. For example, the LY/TLA
model (model ID: M15) consists of the primary cluster, LY, and the first cluster (TLA) listed
in square brackets. Five primary cluster sets were used for the three-cluster models: LY/SN,
TLA/SN, LY/TLA, LY/CY, and TLA/CY. Three primary cluster sets were used to construct
the four-cluster models: LY/TLA/SN, LY/CY/SN, and TLA/CY/SN.

In STEP-4, gene–gene analysis was performed by constructing two- and three-gene
models through the inclusion of two and three genes, respectively, which were grouped in
the LY, TLA, and SN clusters.
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2.5. Analysis of Interactions between Gene Products Using STRING Database

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) Database version
11.5 was used to analyze protein–protein interaction networks. Two options for the “Search”
domain, “Single Protein by Name/Identifier” and “Multiple Proteins by Names/Identifiers”,
were input with the names of the 15 investigated genes, using the links https://string-db.org/
cgi/input?sessionId=bVqn1xBuFseC&input_page_active_form=single_identifier (accessed
on 13 December 2022) and https://string-db.org/cgi/input?sessionId=bVqn1xBuFseC&
input_page_active_form=multiple_sequences, respectively (accessed on 17 December 2022).

3. Results
3.1. Study Sample

This retrospective case–control study was conducted using blood samples from 119 pa-
tients with colorectal cancer (CRC) and 308 non-cancer controls. The characteristics of the
study sample are presented in Table 1, including the smoking status of participants for both
sexes and for two age subgroups (36–65 and 66–89). The proportions of female participants
were 54.62% and 43.50% in the case and control groups, respectively. There were statistically
significant differences in sex (p = 0.039) between CRC cases and non-cancer controls using
the chi-square test, but not in age (p = 0.644) or smoking status (p = 0.157). In addition,
there were more female smokers (17.64%) than male smokers (2.52%) in the case group, of
whom 12 did not have corresponding information.

Table 1. Basic demographics of the study sample (N = 427).

CRC Case (N = 119) Control (N = 308)
Male Female Male Female

Smoking Status n % n % n % n %

36–65 years old
Smoker 1 0.84 13 10.92 32 10.39 7 2.27
Non-smoker 17 14.29 17 14.29 34 11.04 54 17.53
Missing 2 1.68 2 1.68 0 0.00 0 0.00

66–89 years old
Smoker 2 1.68 8 6.72 33 10.72 19 6.17
Non-smoker 26 21.85 23 19.33 75 24.35 54 17.53
Missing 6 5.04 2 1.68 0 0.00 0 0.00

Abbreviation: CRC, colorectal cancer.

Female smokers in the 36–65 age subgroup accounted for approximately 60% of the
total female smokers in the case group. Smoking status was not included as a confounding
factor in the logistic models because of two considerations: (1) Smoking status was not
significantly different between case and control groups. (2) Detailed measurements of
cigarette smoking, especially pack-years, were not collected, which might have biased the
estimates.

The clinico-pathological characteristics of CRC cases are listed in Table 2. Between
males and females, no statistically significant differences as assessed by the chi-square test
were identified in the tumor location, stage, TNM classification, or histological grade.

3.2. Identification of CRC-Associated Genes by Univariate Analysis

A single-gene model using logistic regression was implemented for each investigated
gene to obtain the percent of significance (PS) and odds ratio (OR) for the ground status
(Ground-PS and Ground-OR; Figure 1, STEP-1) using logistic regression analysis. As a gene
with a PS greater than 50 was defined as a significant CRC-associated factor in the present
study, eight genes with significance were identified, seven of which were considered risk
genes (Ground-OR > 1) (Table 3) without considering any interactions from other factors.

https://string-db.org/cgi/input?sessionId=bVqn1xBuFseC&input_page_active_form=single_identifier
https://string-db.org/cgi/input?sessionId=bVqn1xBuFseC&input_page_active_form=single_identifier
https://string-db.org/cgi/input?sessionId=bVqn1xBuFseC&input_page_active_form=multiple_sequences
https://string-db.org/cgi/input?sessionId=bVqn1xBuFseC&input_page_active_form=multiple_sequences
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3.3. Interactions between Genes with Coordinated Biological Functions

The fifteen investigated genes were grouped into six clusters, named LY, TLA, CY, TRf,
TRm, and SN, respectively, according to their biological functions or subcellular locations,
as mentioned in the section on the analysis procedure (Figure 1, STEP-2; Materials and
Methods). Six single-cluster models were constructed to yield basal cluster-PS (B-PS) and
basal cluster-OR (B-OR) for each cluster-grouped gene (Table 3). The greater the extent of
the change in PS (difference between B-PS and Ground-PS), the higher the probability of
the existence of an interaction. The results of the single-cluster analysis showed that four
cluster-grouped genes (written as “gene name/cluster name”) were possibly influenced
by genes grouped in the same cluster, including EXT2/TLA, WEE1/CY, STAT2/TRm, and
GRB2/SN. In addition, EXT2/TLA and WEE1/CY were significant CRC-associated factors
(PS > 50) in the single-cluster analysis, whereas STAT2 and GRB2 lost their significance
upon their inclusion in TRm and SN clusters, respectively.

Table 2. Clinico-pathological characteristics of case group (N = 119).

Total Male Female p §

Characteristics n % n % n %

Tumor Location 0.63
Colon 72 60.50 35 29.41 37 31.09
Rectum 41 34.45 17 14.29 24 20.17
RSJ 1 6 5.04 2 1.68 4 3.36

Pathological Stage 0.72
0–I 33 27.73 14 11.76 19 15.97
II 28 23.53 15 12.61 13 10.92
III 37 31.09 17 14.29 20 16.81
IV 21 17.65 8 6.72 13 10.92

TNM Classification
pT 0.90
pTis 6 5.04 3 2.52 3 2.52
pT1 12 10.08 5 4.20 7 5.88
pT2 19 15.97 7 5.88 12 10.08
pT3 65 54.62 30 25.21 35 29.41
pT4 17 14.29 9 7.56 8 6.72
pN 0.71
pN0 65 54.62 31 26.05 34 28.57
pN1 30 25.21 12 10.08 18 15.13
pN2 23 19.33 11 9.24 12 10.08
pNX 1 0.84 0 0.00 1 0.84
M 0.46
M0 98 82.35 46 38.66 52 43.70
M1 21 17.65 8 6.72 13 10.92

Histological Grade 0.33
G1 5 4.20 2 1.68 3 2.52
G2 85 71.43 43 36.13 42 35.29
G3 9 7.56 3 2.52 6 5.04
Missing 20 16.81 6 5.04 14 11.76

§ The p value was obtained from the chi-square test. 1 Rectosigmoid junction.

3.4. Cluster-Derived Interactions Identified by Two-Cluster Analysis

Multiple-cluster analyses were sequentially performed to identify cluster–gene interac-
tions by constructing two-, three, and four-cluster models (Figure 1, STEP-3). The PS of each
cluster-grouped gene in each cluster-based model was obtained with 500 models through
subsampling and is presented in Supplementary Table S1A. If the PS of a cluster-grouped
gene in a two- or multiple-cluster model was different from its own basal cluster-PS (B-PS),
a cluster–gene interaction possibly existed.
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Table 3. Logistic analysis for single-gene and single-cluster models.

Gene Single-Gene Analysis Single-Cluster Analysis

ID Ground-PS Ground-OR LB UB Model
ID B-PS B-OR LB UB Model ID

MMD 25.2 1.22 0.94 1.59 M1 25.2 1.22 0.94 1.59 M1
EIF2S3 99.4 0.42 0.22 0.79 M74 100.0 0.33 0.16 0.66 M8
EXT2 22.2 0.72 0.47 1.12 M75 76.0 0.57 0.33 0.98 M8

CPEB4 100.0 2.43 1.70 3.49 M76 100.0 3.07 2.03 4.63 M8
MCM4 100.0 1.77 1.20 2.63 M77 97.2 2.16 1.18 3.94 M37
MDM2 100.0 5.08 2.79 9.26 M78 100.0 5.89 3.00 11.55 M37
WEE1 0.0 0.98 0.66 1.46 M79 99.2 0.42 0.22 0.80 M37

POLDIP2 21.0 1.34 0.89 2.01 M80 0.0 0.93 0.53 1.62 M37
ZNF264 73.8 1.55 1.02 2.35 M81 92.8 1.92 1.12 3.31 M29

RNF4 0.0 1.06 0.66 1.68 M82 15.4 0.68 0.37 1.24 M29
IRF4 8.6 1.25 0.88 1.78 M83 0.0 1.06 0.70 1.59 M30

STAT2 81.4 1.52 1.03 2.25 M84 39.0 1.48 0.95 2.31 M30
GRB2 97.6 1.71 1.14 2.56 M71 0.0 1.08 0.66 1.75 M27
NF1 0.0 1.12 0.64 1.95 M72 1.2 0.79 0.41 1.52 M27

DUSP6 100.0 2.64 1.73 4.01 M83 100.0 2.62 1.62 4.22 M27
Abbreviations: PS, percent of significance; Ground-PS, PS for single-gene model; B-PS, basal cluster-PS, PS for
single-cluster model; OR, odds ratio; Ground-OR, OR for single-gene model; B-OR, basal cluster-OR, OR for
single-cluster model; LB, lower bound of 95% confidence interval; UB, upper bound of 95% confidence interval.

Fifteen two-cluster models were conducted. Five cluster-grouped genes were repre-
sented with consistently high significance (PS > 50), and no or negligible effects through
inclusion of the second cluster were observed. There were two protective factors (OR < 1),
EIF2S3/TLA and EXT2/TLA, and three risk factors (OR > 1), CPEB4/TLA, MDM2/CY,
and DUSP6/SN (Supplementary Table S1B).

In total, 18 cluster–gene effects were considered valid interactions according to changes
in the PS of cluster-grouped genes under any of the following conditions (Table 4): (a) the
B-PS of the indicated gene was greater than 50 and then decreased to less than 50; (b) the
B-PS of the indicated gene was lower than 50 and then increased to greater than 50; or
(c) the B-PS of the indicated gene was greater than 50, and the extent of the change in PS
was greater than 5. The cluster–gene interactions are graphically presented in Figure 2,
and the extent of the change in PS (∆PS) is shown in Table 4. The results of the two-cluster
analysis showed that the PS values of eight cluster-grouped genes were affected by one or
multiple clusters, as follows.

Table 4. Cluster–gene interactions summarized from two-cluster analysis.

Cluster

TLA CY TRf TRm SN

Cluster-Grouped Gene ∆PS Model
ID ∆PS Model

ID ∆PS Model
ID ∆PS Model

ID ∆PS Model
ID

EXT2/TLA 23.8 M13 14.0 M9 18.6 M10 21.4 M24
CPEB4/TLA −31.0 M13
MCM4/CY −80.2 M13 −9.8 M23
WEE1/CY −98.2 M13 −87.6 M23

ZNF264/TRf −38.0 M9 −90.6 M38 −23.0 M86 −8.8 M25
RNF4/TRf 83.4 M38 57.8 M86 60.8 M25

STAT2/TRm 26.2 M86
NF1/SN 70.4 M23

Abbreviations: PS, percent of significance; ∆PS, changes in PS of affected cluster-grouped genes (written as
“Gene/Cluster”), calculated according to Supplementary Table S1A.

The PS of EXT2/TLA was positively increased by four other single clusters, namely,
CY, TRf, TRm, and SN clusters. CPEB4/TLA was influenced by the CY cluster because
of its reduced PS. Furthermore, the PS values of two genes grouped in the CY cluster,
MCM4 and WEE1, were negatively affected by the TLA or SN clusters. MCM4/CY lost its
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significance when controlling for the TLA cluster, while WEE1/CY became an insignificant
factor because of the strong negative effect of both TLA and SN clusters. Additionally,
ZNF264/TRf was negatively affected by four other clusters, with the CY cluster exhibiting
the strongest influence. RNF4/TRf became a significant factor through an increase in PS
when controlling for CY, TRm, or SN clusters. Furthermore, the TRf cluster had a moderate
positive effect on the PS of STAT2/TRm. Finally, the interaction between the CY cluster
and NF1/SN was observed.
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Figure 2. Schematic presentation of valid cluster–gene interactions identified by two-cluster analysis.
String derived from the edges of a cluster indicates the existence of cluster-derived influence on the
pointed gene grouped in another cluster. The magnitude of the change in the percent of significance
(PS) of the pointed gene from its basal PS (B-PS) is shown with an arrow (increase) or dot (decrease)
next to the pointed gene. The LY cluster is not shown because of the absence of interaction with other
clusters.

3.5. Complex Cluster–Gene Interactions Identified by Multiple Cluster Analysis

Three- and four-cluster analyses further showed more cluster–gene interactions based
on 21 constructed models, and the results are shown in Supplementary Table S1. Accord-
ing to their PS, EIF2S3/TLA, EXT2/TLA, MDM2/CY, and DUSP6/SN were commonly
represented as CRC-associated with high significance (PS = 77.6–100). High expression
of MDM2/CY and DUSP6/SN was significantly associated with a higher risk of colorec-
tal cancer with OR ranges of 5.95–10.62 and 2.14–3.82, respectively. EIF2S3/TLA and
EXT2/TLA were protective factors with OR ranges of 0.17–0.35 and 0.11–0.44, respectively
(Supplementary Table S1B).

Except for POLDIP2/CY and IRF/TRm, the remaining cluster-grouped genes were
influenced by complex interactions according to the variation in their PS for multiple-cluster
models. A brief summary of additional findings other than those of the two-cluster analysis
is presented as follows.

First, the CY/TRf combination had an intrinsic influence on two genes grouped
in the TLA cluster: CPEB4/TLA was mostly represented as a significant risk factor
(PS = 65.8–100.0), except for the presence of the CY/TRf combination (M88; PS = 38.0).
With respect to EXT2/TLA, the positive effect derived from the CY cluster (M13; PS = 99.8)
or TRf cluster (M9; PS = 90.0) disappeared in the TLA/CY/TRf model (M88; PS = 77.6).

Second, three cluster-grouped genes became significant CRC-associated factors in the
presence of certain cluster combinations: TLA/SN set for MMD/LY (M28, M17, M20, and
M21), LY/TLA/SN set for STAT2/TRm (M21), and LY/TLA set for GRB2/SN (M28, M20,
and M21; Figure 3a).

Third, the CY cluster combined with the LY/TRf or TLA/TRf set had an enhanced
positive effect on NF1/SN (M41 versus M5 or M85 versus M14; Figure 3b). However, this
CY-derived effect vanished in the absence of the TRf cluster, for example, in TLA/CY/SN-
based models (M23 versus M14 and M17 versus M5; Figure 3b).
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Fourth, with respect to two factors (MCM4 and WEE1) in the CY cluster, the findings
of the TLA-derived negative effect on their PS were mostly similar to those obtained from
the two-cluster analysis. MCM4/CY and WEE1/CY lost significance (PS < 50) upon the
inclusion of the TLA cluster in the three- and four-cluster models (M14, M16, M17, M85,
M87, M88, and M105; Figure 4). However, the addition of the TRf or TRm cluster to the
LY/CY/SN set slightly compensated for the SN-derived negative effect on MCM4/CY
(M41 versus M5 and M43 versus M5; Figure 4a).
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Fifth, ZNF264/TRf and RNF4/TRf were oppositely affected by CY- or LY/CY-containing
models in the three-cluster analysis (M40, M88, and M41; Figure 5). The CY-derived
negative effect on ZNF264/TRf was partially reversed by the coexistence of TLA/SN
(M85); however, the LY/TLA/SN set suppressed the PS of ZNF264/TRf (M20). In addition,
the TLA cluster eliminated the SN-derived positive influence on the PS of RNF4/TRf
(M6 vs. M11).
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3.6. Intricate Networks between Genes Involved in Translational Regulation and RAS Signaling

MMD, the only gene in the LY cluster, became a significant factor for LY/TLA/SN-
containing models. According to this finding, we constructed 11 two-gene models and
15 three-gene models (STEP-4; Figure 1) based on the combination of seven genes, which
were grouped into LY, TLA, and SN clusters. The association of each gene in the multiple-
gene model with CRC was examined by logistic regression analysis and represented by PS
(Table 5) and compared with its own Ground-PS (Table 3). Three genes, CPEB4, GRB2, and
DUSP6, were considered risk factors for colorectal cancer disease (OR > 1; Table 6), and
EIF2S3 and EXT2 were considered protective genes.

The complex interactions between seven genes are schematically presented in Figure 6.
The analysis results showed that three genes, EIF2S3, CPEB4, and DUSP6, were consistently
represented as CRC-associated factors with high significance (PS > 98.0; Table 5) in all
multiple-gene models. Four genes were affected by other genes or combinations as follows:
EXT2, EIF2S3, and MMD could interfere with the CPEB4-derived negative effect on GRB2,
whose PS increased from 23.4 (M57) to 99.8 (M59), 79.8 (M58), and 52.4 (M33), respectively.
Moreover, the PS of NF1 was positively affected by EIF2S3 (M53) or CPEB4 (M48), but
not by the EIF2S3/CPEB4 combination (M49). However, this EIF2S3–NF1 interaction was
impeded by the addition of MMD (M45 versus M53). In addition, the significance of
EXT2 was increased in the presence of GRB2 (M56), DUSP6 (M62), CPEB4/DUSP6 (M65),
CPEB4/GRB2 (M59), or CPEB4/NF1 (M50). Finally, MMD was identified as a significant
CRC-associated factor in the MMD/CPEB4/DUSP6 model (M36).

3.7. Interactions between Gene Products Using STRING Database

The search results for interaction networks of “Single Protein” based on the STRING
database showed that no interactions were the same as those identified in this study
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(Supplementary Figure S1). Furthermore, regarding the networks of multiple proteins,
five protein–protein interactions were identified (Figure 7). Known interactions were
marked for IRF4–STAT2 and WEE1–GRB2, and co-expression was identified for NF1–
MDM2, whereas two interactions, WEE1–MDM2 and GRB2–DUSP6, were indicated as
“textmining” (co-mentioned in PubMed Abstracts). In addition, no association was found
for other proteins.

Table 5. Logistic analysis for gene–gene interactions. Percent of significance (PS) of each gene for
each two-gene or three-gene model is listed.

Model ID Combination MMD EIF2S3 EXT2 CPEB4 GRB2 NF1 DUSP6

Two-gene models
M44 MMD/CPEB4 3.0 100.0
M48 CPEB4/NF1 100.0 69.6
M53 EIF2S3/NF1 99.8 57.0
M54 EXT2/NF1 28.2 0.2
M55 EIF2S3/GRB2 100.0 100.0
M56 EXT2/GRB2 100.0 100.0
M57 CPEB4/GRB2 100.0 23.4
M61 EIF2S3/DUSP6 100.0 100.0
M62 EXT2/DUSP6 79.8 100.0
M63 CPEB4/DUSP6 100.0 100.0
M68 MMD/DUSP6 0.4 100.0

Three-gene models
M31 MMD/EIF2S3/GRB2 7.8 100.0 99.0
M32 MMD/EXT2/GRB2 0.2 100.0 100.0
M33 MMD/CPEB4/GRB2 20.8 100.0 52.4
M34 MMD/EIF2S3/DUSP6 0.0 100.0 100.0
M35 MMD/EXT2/DUSP6 0.2 77.2 100.0
M36 MMD/CPEB4/DUSP6 99.8 100.0 100.0
M45 MMD/EIF2S3/NF1 42.2 100.0 20.8
M46 MMD/EXT2/NF1 25.2 31.0 0.0
M47 MMD/CPEB4/NF1 0.6 100.0 62.2
M49 EIF2S3/CPEB4/NF1 100.0 100.0 0.0
M50 EXT2/CPEB4/NF1 94.6 100.0 49.8
M58 EIF2S3/CPEB4/GRB2 100.0 100.0 79.8
M59 EXT2/CPEB4/GRB2 100.0 100.0 99.8
M64 EIF2S3/CPEB4/DUSP6 100.0 100.0 100.0
M65 EXT2/CPEB4/DUSP6 100.0 100.0 100.0

Table 6. Logistic analysis for gene–gene interactions. Odds ratios (ORs) of each gene for each
two-gene or three-gene model are listed.

Model ID Combination MMD EIF2S3 EXT2 CPEB4 GRB2 NF1 DUSP6

Two-gene models
M44 MMD/CPEB4 0.83 2.73
M48 CPEB4/NF1 2.89 0.48
M53 EIF2S3/NF1 0.31 1.90
M54 EXT2/NF1 0.71 1.21
M55 EIF2S3/GRB2 0.32 2.05
M56 EXT2/GRB2 0.43 2.47
M57 CPEB4/GRB2 2.29 1.39
M61 EIF2S3/DUSP6 0.29 3.06
M62 EXT2/DUSP6 0.57 2.88
M63 CPEB4/DUSP6 2.09 2.22
M68 MMD/DUSP6 0.89 2.83

Three-gene models
M31 MMD/EIF2S3/GRB2 1.20 0.31 1.90
M32 MMD/EXT2/GRB2 1.10 0.43 2.36
M33 MMD/CPEB4/GRB2 0.76 2.66 1.52
M34 MMD/EIF2S3/DUSP6 0.95 0.29 3.15
M35 MMD/EXT2/DUSP6 0.90 0.58 3.05
M36 MMD/CPEB4/DUSP6 0.58 2.76 2.89
M45 MMD/EIF2S3/NF1 1.28 0.30 1.68
M46 MMD/EXT2/NF1 1.23 0.70 1.07
M47 MMD/CPEB4/NF1 0.86 3.15 0.49
M49 EIF2S3/CPEB4/NF1 0.33 2.88 0.82
M50 EXT2/CPEB4/NF1 0.51 3.28 0.51
M58 EIF2S3/CPEB4/GRB2 0.26 2.54 1.65
M59 EXT2/CPEB4/GRB2 0.26 2.77 2.46
M64 EIF2S3/CPEB4/DUSP6 0.24 2.32 2.55
M65 EXT2/CPEB4/DUSP6 0.38 2.50 2.55
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Figure 7. Network analysis of 15 proteins encoded by 15 investigated genes using STRING database
version 11.5. The option “Multiple Proteins by Names/Identifier” of “Search” domain was used.
Visualization of interactions and notations is according to the output of database.

4. Discussion

Cancer cells are characterized by the deregulation of cell signaling [16,17], which
is suggested to activate relevant oncogenic pathways and facilitate invasion ability and
disease dissemination [18]. In this study, the novel approach was the gene-function-based
cluster; each includes genes involved in coordinated biological functions or subcellular
locations. We have six clusters: SN for RAS signaling, CY for the cell cycle process, TRf
for general transcription, TRm for immune-associated transcription, TLA for translation,
and LY for lysosomal membrane proteins. The utility of gene-function-based clusters for
the analysis of the complex regulation of colorectal cancer-associated gene expression in
circulating tumor cells is disclosed.

Single-cluster models uncover interactions between genes involved in different steps of
coordinated cellular processes: The SN model reveals interactions between the downstream
ERK1/2 inactivator DUSP6 and the upstream regulator GRB2 of RAS/ERK signaling [19,20],
whereas this interaction is represented as “textmining” according to the STRING database.
The CY model shows that the G2 checkpoint kinase WEE1 [21] is strongly influenced by
the combination of DNA replication-associated molecules, including MCM4, MDM2, and
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POLDIP2. Furthermore, EIF2S3 and CPEB4 together had noticeable effects on EXT2 using
the TLA model. In addition, the existence of the IRF4–STAT2 interaction is revealed by the
TRm model, and this agrees with the search results obtained from the STRING database.
Based on the current knowledge, IRF4 is involved in STAT3-oncogenic signaling [22],
whereas STAT2 is reported to be associated with STAT1 and interferon regulatory factor 9
(IRF9) to form IFN-stimulated gene factor 3 (ISGF3) [23].

The complexities of cluster–gene interactions indicate gene regulations across different
pathways in circulating tumor cells. First, as EXT2/TLA is positively affected by four dif-
ferent clusters, EXT2 presumably plays a central role in the invasive character of colorectal
cancer with respect to extracellular matrix (ECM) assembly [24–26]. Second, the signifi-
cance of ZNF264/TRf was suppressed by four different clusters, whereas the CY cluster
exerted the strongest effect. This finding is concordant with a report on the involvement of
ZNF264-based transcriptional activity during the cell cycle process, especially replication
stress and genomic instability in cancer [27]. Thirdly, the notable increase in the significance
of RNF4/TRf by the CY cluster may indicate that RNF4 likely participates in the DNA dam-
age response and the maintenance of chromosomal integrity during the cell cycle through
the SUMO-targeted ubiquitin ligase (STUbL) pathway [28]. Based on this assumption, the
SN-derived positive influence on the significance of RNF4/TRf is acceptable, since the
impactful factor ERK1/2 inactivator DUSP6/SN [19,20] may drive the reduction in the
mitogenic signal. The fourth and the fifth cluster-grouped genes with varying significance
were MCM4/CY and WEE1/CY, in which strong and intricate modulations derived from
SN and TLA clusters were observed. It is presumed that factors involved in RAS signaling
and translation closely coordinate or counteract each other to regulate the cell cycle process.

Interaction networks between LY, TLA, and SN clusters are supposedly associated
with the regulation of the cell cycle process. For instance, GRB2/SN only represents a
significant factor for the coexistence of the LY/TLA combination but without the CY cluster.
In contrast, the CY cluster was crucial for the significance of NF1/SN. Thus, NF1 might
be required for spindle organization and chromosome segregation in circulating tumor-
derived cells, as in neuron cells [29], rather than for the inactivation of the Ras protein [30].
In addition, the complexity of modulations can be also observed for two transcription
factors grouped in the TRf cluster. The TLA-derived negative effect on the significance
of ZNF264/TRf was partially reversed in the TLA/SN combination model, whereas the
TLA-derived effect was enhanced by the addition of the LY cluster. Moreover, the SN-
derived positive effect on the significance of RNF4/TRf was completely suppressed by
the TLA/SN combination. Finally, our results suggest that CPEB4 may be involved not
only in the translational regulation of mitosis as reported [31] but also in DNA replication,
since the CY cluster consistently had a negative effect on the significance of CPEB4/TLA.
Furthermore, CPEB4/TLA unexpectedly became an insignificant factor in the presence of
the CY/TRf combination.

Two-gene and three-gene models confirmed intricate interactions between MMD and
factors involved in RAS signaling and translation. The presence of the CPEB4/DUSP6
combination is a prerequisite for the significance of MMD, which supports the reported
five-gene model for colorectal cancer [7,8]. Lower MMD expression may indicate a low
amount of active ERK1/2 if MMD is regulated by LPS stimulation in macrophages, as
reported by Liu et al. [32]. Based on this assumption, the combination of low MMD
expression and DUSP6 overexpression significantly impedes the transduction of mitogenic
signals. It is presumed that some circulating tumor cells are likely to exhibit reversible
G0-G1 arrest and have high metastatic potential, as reported for dormant cancer cells in
the circulation [4,15]. Moreover, limited mitotic activity has been reported to be favorable
for the increased malignancy of endometrial cancer stem-like cells [33] and chemotherapy
resistance in cancer [34–36]. In addition, two factors of RAS signaling pathways, GRB2 and
DUSP6, may be involved in the invasiveness of circulating tumor cells through intricate
interactions with the suppressor gene EXT2. Finally, we verified the presumption that
translation factors may participate in the regulation of cell proliferation via the MAPK/ERK
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signaling pathway, since EIF2S3 and CPEB4 showed strong but opposite effects on NF1.
Our results for EIF2S3 expression in colorectal cancer-derived cells are in accordance with
findings in acute myeloid leukemia [37].

5. Conclusions

Overall, DUSP6, MDM2, and EIF2S3 were consistently selected as significant factors
associated with colorectal cancer in all logistic models and were not modulated by any
other genes or clusters. These results suggest that limited G1/S transition, uncontrolled
DNA replication, and the cap-independent initiation of translation may be dominant and
concurrent scenarios in circulating tumor cells from colorectal cancer. The primary strength
of this study is the approach based on gene-function-based clusters for the identification
of complex interactions between factors involved in mitogenic signaling, cell cycle pro-
cesses, transcription, and translation in cells with high metastatic potential. Moreover,
the cluster–gene interactions identified in this study are novel. Most of the interactions
between proteins encoded by the 15 investigated genes have been neither published nor
included in the STRING database. In addition, these results provide clues for the varied
gene-specific associations with colorectal cancer in univariate and multivariate analyses.
Thus, the approach based on gene-function-based clusters is expected to be useful for the
identification of rational gene signatures for clinical diagnostic and prognostic utilities, as
well as for the validation of drug targets.

Our study had several limitations. First, the findings of cluster–gene and gene–gene
interactions might not be associated with colorectal cancer, since patients with other cancer
types were not included in the investigation. Second, the subjects in the control group
were only confirmed to be cancer-free, without knowing other health conditions, such as
inflammatory bowel diseases; thus, interference with the identified interactions in this study
could not be excluded. Third, the appropriateness of the grouping of genes is uncertain
because the cellular functions of some proteins encoded by the investigated genes are not
fully understood. For instance, proteins exert oncogenic activity only after translocation
from the cytosol to the nucleus. Furthermore, we lack the knowledge of proteins that may
function as double-edged swords. Therefore, the grouping of gene clusters in this study
may provide a partial scope for crosstalk between regulatory pathways in cancer cells.
Fourth, only age and sex were controlled in the logistic models, whereas other confounding
variables, such as measurements of cigarette smoking, body mass index (BMI), and other
lifestyle risk factors, were not fully collected during the inclusion period. Fifth, the small
sample size and the proportion of patients with different clinical stages of the disease may
have influenced the results.

Future research should include different grouping principles of genes to identify more
novel interactions. Moreover, how these factors, when located in different subcellular
compartments, interact with each other requires further investigation. In addition, the
examination of the specificity of cluster–gene and gene–gene interactions for colorectal
cancer is required through investigations of other cancer types. Multiple drug targets could
be potentially conceived to develop advanced therapeutic agents in precision medicine.

It was concluded that combined cluster-based and gene–gene analyses can be used
to explore the crosstalk between cellular activities and rationally represent parallel sce-
narios in colorectal cancer-derived cells. Multiple gene-based signatures can provide a
better overview of the characteristics of circulating tumor cells isolated from patients with
colorectal cancer and further dynamic and personalized information for prognoses and
therapeutic responses.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11010145/s1. Table S1A: Logistic analysis for cluster–
gene interactions. Percent of significance (PS) of each cluster-grouped gene for multiple-cluster
models are listed; Table S1B: Logistic analysis for cluster–gene interactions. Odds ratios (ORs) of
each cluster-grouped gene for multiple-cluster models are listed; Figure S1: STRING analysis of
15 investigated genes.
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CPEB4 Cytoplasmic polyadenylation element binding protein 4
CRC Colorectal cancer
DUSP6 Dual specificity phosphatase 6
EIF2S3 Eukaryotic translation initiation factor 2 subunit gamma
EXT2 Exostosin glycosyltransferase 2
GRB2 Growth factor receptor bound protein 2
IRF4 Interferon regulatory factor 4
MCM4 Minichromosome maintenance complex component 4
MDM2 MDM2 proto-oncogene
MMD Monocyte to macrophage differentiation-associated
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POLDIP2 DNA polymerase delta interacting protein 2
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STAT2 Signal transducer and activator of transcription 2
WEE1 WEE1 G2 checkpoint kinase
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