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Abstract: Oxidative stress involves the increased production and accumulation of free radicals,
peroxides, and other metabolites that are collectively termed reactive oxygen species (ROS), which are
produced as by-products of aerobic respiration. ROS play a significant role in cell homeostasis through
redox signaling and are capable of eliciting damage to macromolecules. Multiple antioxidant defense
systems have evolved to prevent dangerous ROS accumulation in the body, with the glutathione
and thioredoxin/thioredoxin reductase (Trx/TrxR) systems being the most important. The Trx/TrxR
system has been used as a target to treat cancer through the thiol–disulfide exchange reaction
mechanism that results in the reduction of a wide range of target proteins and the generation of
oxidized Trx. The TrxR maintains reduced Trx levels using NADPH as a co-substrate; therefore,
the system efficiently maintains cell homeostasis. Being a master regulator of oxidation–reduction
processes, the Trx-dependent system is associated with cell proliferation and survival. Herein, we
review the structure and catalytic properties of the Trx/TrxR system, its role in cellular signaling in
connection with other redox systems, and the factors that modulate the Trx system.

Keywords: thioredoxin system; structure and catalytic function; inhibitors and activators; redox
regulation; apoptosis

1. Introduction

Redox-dependent proteins play a significant part in maintaining redox homeostasis and
the redox-dependent regulation of cellular processes, including proliferation/differentiation
and apoptosis [1–3]. In the antioxidant system of cell protection, along with key antioxidant
enzymes, an important role is played by the thioredoxin (Trx)-dependent system that is
involved in the processes of cellular redox-dependent regulation through the control of
thiol–disulfide exchange [4,5]. The combination of antioxidant properties and the ability to
activate the transcription of genes, including some antioxidant enzymes, as well as to inhibit
redox-dependent pathways of apoptosis activation, indicates an important contribution
of this system to the antioxidant defense system, which increases the resistance of cells to
oxidative stress [6].

The Trx-dependent system includes disulfide reductase Trx and thioredoxin reductase
(TrxR), which uses NADPH(H+) as a co-substrate. Trx is necessary for the reduction of
disulfides, particularly the oxidized form of peroxiredoxins, which catalyze the reduction
of H2O2 to water and enhance the mechanism of controlling the cellular reactive oxygen
species (ROS) level. As a result of the reduction of the oxidized substrate with the partici-
pation of Cys32 and Cys35 in the active center of the dithiol form of Trx, its oxidized form is
formed, the reduction of which is carried out by TrxR, which also makes an independent
contribution to the antioxidant potential of the cell by reducing lipid hydroperoxides [7].
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Over the past ten years, numerous studies have been devoted to the role of the
Trx-dependent system in oncogenesis. The overexpression of both cytoplasmic and mi-
tochondrial TrxR isoforms (TrxR1, TrxR2) has been found in various types of malignant
neoplasms, including breast, lung, oral cavity, and squamous cell carcinoma [8,9]. The
hyperexpression of Trx isoforms in tumor cells is aimed at utilizing the excess amount of
ROS produced by them and is closely related to the degree of tumor growth [10,11]. The
Trx-dependent system plays a significant role in the activity of redox-dependent signaling,
the change in the state of which in tumor cells is still poorly understood.

Herein, we review the structure and catalytic properties of the Trx/TrxR system, its
role in cellular signaling in connection with other redox systems, and the factors that
modulate the Trx system.

2. Trx/TrxR System: Structure and Functions
2.1. Trx1 and Trx2 Isoforms: Structure and Functions

In mammals, the Trx system is important for protection from the effects of ROS [12].
Trx folds with a redox-active C-X-X-C motif form a superfamily of proteins associated with
thiol–disulfide exchange that involves disulfide bridge formation. This mechanism has
been found in all organisms [7,13]. Proper oxidative protein folding within cells is essential
for protein stability and function, and misfolding leads to severe diseases. Trx, the most
representative member of this family, is a 12 kDa protein found in bacteria, plants, and
animals [14].

The three-dimensional structures of Trxs from different species (E. coli Trx family and
Chlamydomonas reinhardtii) have been revealed by X-ray crystallography [15,16], and the
structures of both oxidized and reduced Trx states from Ehrlichia chaffeensis have been
elucidated by NMR in solution [17].

The basic Trx fold motif is made up of three α-helices surrounding a central core made
of four β-sheets [18,19]. In addition to the basic fold, Trx itself has an extra β-sheet and
α-helix at the N-terminus. In the core region, five β-strands are flanked by four α-helices.
The β-sheets and α-helices of the Trx fold can be subdivided into N-terminal β1α1β2α2β3
and C-terminal β4β5α4 motifs connected by a loop of residues involving the α3-helix. The
β-strands of the N-terminal motif run in the same direction, whereas the two β-strands
of the C-terminal motif are anti-parallel to each other. The α2 and α4 helices line up in a
parallel fashion in one direction on the sheet while the α3 runs along the opposite face of
the β-strands and is perpendicular to the other helices [20,21].

In mammalian cells, two major Trx types have been characterized that differ in their
intracellular localization, tissue-specific expression patterns, and subcellular structure:
cytosolic Trx-1 and mitochondrial Trx-2 [18]. Although Trx-1 is mainly located in the
cytosol, it can migrate to the nucleus upon nitrosative/oxidative stress [22] or be secreted
out of the cell [23]. Trx-2 is the vital mitochondrial redox isoform [24]. Both Trx-1 and
Trx-2 are characterized by a conserved disulfide active site sequence Trp-Cys-Gly-Pro-Cys
(WCGPC) [25].

The two residues Cys32 and Cys35 at the active site (essential for Trx activity and confor-
mation) are readily oxidized and undergo a reversible redox reaction between an oxidized
disulfide and a reduced dithiol [18]. Other conserved residues are not strictly required for
the activity but dictate the thermodynamic and redox properties of the protein [20].

The proposed mechanism for the reaction of protein disulfide reduction is as follows:
first, the reduced Trx binds non-covalently to an oxidized disulfide-containing protein
substrate via a conserved hydrophobic surface area surrounding the Trx active site [26].
The pKa ~7 of the N-terminal active site cysteine is substantially lower than the pKa of free
cysteine residues in solution [27]. Under physiological conditions, a large fraction of the
sulfur in the N-terminal cysteine is present as a thiolate, a reactive deprotonated form of
thiol. This thiolate can act as a nucleophile to interact with a variety of substrates, leading
to the formation of an intermolecular mixed disulfide (Trx–S–S–protein) and releasing a
free thiol [28]. In contrast, the high pKa ~9 of the C-terminal cysteine promotes its existence
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as a thiol. The C-terminal thiol must be activated as a thiolate to facilitate the next step of
the reaction where the fully reduced target protein and the disulfide-containing Trx are
generated [20,26]. Oxidized Trx is reduced to its active state by electrons from NADPH(H+).
The reaction is catalyzed by TrxR and enables the onset of the next reaction cycle [20].

Besides two cysteine residues in the Trx-1 active site, the mammalian Trx-1 contains
additional conserved cysteine residues outside their active site (at positions 62, 69, and
73 of human Trx-1) that are not found in mammalian mitochondrial Trx-2 or in Trx from
other species [25,29]. Cys62 and Cys69 are buried in the protein interior and lie at either end
of a short α3-helix and Cys73 is on a hydrophobic patch on the protein surface [30]. These
additional cysteine residues are involved in the activity of mammalian Trx depending on
their redox state; for example, the non-active site disulfide formed between Cys62 and
Cys69 inhibits Trx-1 activity for redox signaling under oxidative stress conditions. The
S-nitrosylation of Trx at Cys69 under basal conditions is required for ROS scavenging and to
preserve the redox regulatory activity, thereby contributing to the protein’s anti-apoptotic
functions [31].

Along with participation in oxidation-reduction pathways, Trx possesses chaperone-
like properties that are important for protein folding and renaturation after stress. Trx
promotes the functional folding of citrate synthase and α-glucosidase after urea denatura-
tion and galactose receptor folding in E. coli [32]. In vitro, both tobacco plastid isoforms
Trxs f and m facilitate the reactivation of the cysteine-free form of chemically denatured
glucose-6 phosphate dehydrogenase and prevent the thermal aggregation of malate de-
hydrogenase [33]. The cytosolic soybean Trx revealed the same activity as a molecular
chaperone for peroxisome matrix proteins [34].

Recently, it has been reported that Trx-2 from Trypanosoma brucei acts as a molecular
chaperone to prevent protein aggregation induced by temperature-mediated structural
changes [35]. In comparison to Trx-1, detailed information on the structure and function
of Trx-2 is relatively scarce. The crystal structure of full-length Trx-2 from the multi-stress
resistant bacterium Deinococcus radiodurans (DrTrx-2) has been elucidated. Trx-2 showed an
N-terminal extension that forms a zinc finger domain with two CXXC motifs [36].

2.2. TrxR1 and TrxR2 Isoforms

TrxR (EC 1.6.4.5) is a homodimeric selenocysteine-containing flavoprotein that cat-
alyzes the NADPH-dependent reduction of thioredoxin [37]. Trx and TrxR form the Trx
antioxidant system for maintaining cellular redox homeostasis [4,6]. Around 55 kDa for
each TrxR subunit has been identified primarily in mammals, and a TrxR of 35 kDa for each
subunit is present in bacteria, plants, archaea, and most unicellular eukaryotes [38]. In the
mammalian TrxR, each monomer includes FAD as a prosthetic group, an NADPH binding
site, and a redox active site containing a dithiol/disulfide motif. The human placental
TrxR has been purified and cloned and shows only 31% sequence identity with prokaryotic
TrxRs [39].

The catalytic site -Cys-Val-Asn-Val-Gly-Cys- of the human TrxR is located in the FAD
domain, whereas the respective site of E. coli TrxR, -Cys-Ala-Thr-Cys-, is part of the NADPH
domain [40,41]. The C-terminus of the mammalian TrxR has a conserved Gly-Cys-SeCys-
Gly containing a unique and important SeCys as another catalytic active site that is essential
for the reduction of Trx and other substrates, including glutaredoxin 2 (Grx-2), protein
disulfide isomerase, selenite, vitamin C and cytochrome c, and drugs such as motexafin,
gadolinium, and alloxan. The broad substrate specificity of the mammalian TrxR is due to
its flexible C-terminal tail and the high reactivity of the SeCys pair that is not found in its
bacterial counterparts [42].

TrxR has three mammalian isoforms: cytosolic and nuclear TrxR-1, mitochondrial
TrxR-2, and TrxR-3 (also known as thioredoxin glutathione reductase, TGR), the latter of
which is expressed only in the testes [43,44]. These isoforms are encoded by three separate
genes, TNXRD1, TNXRD2, and TNXRD3, respectively. TrxR-1 and humanTrxR-2 are closely
related, displaying 56% identity and 84% similarity to the primary amino acid sequence.
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However, TrxR-2 differs from TrxR-1 by the presence of a 33-amino acid extension at
the N-terminus that has the characteristic properties of the mitochondrial translocation
signal [45].

The first step of the reductive half reaction of TrxR includes the reduction of FAD by
NADPH in one subunit, and then FAD subsequently transfers the reducing equivalents
to the N-terminus (Cys-Val-Asn-Val-Gly-Cys), in which Cys59 and Cys64 form an active
site motif, and reduces the disulfide to a dithiol pair. This N-terminal dithiol pair further
gives electrons to the C-terminal selenenylsulfide (Cys497–SeCys498) of another subunit and
reduces it to a selenolthiol pair. This reduced C-terminal selenolthiol pair acts as a second
redox center; electrons are transferred from the redox-active disulfide via the redox center
at the C terminus to TrxR substrates such as oxidized Trx, glutaredoxin 2, protein disulfide
isomerase, and small molecules, e.g., selenites, hydrogen peroxide, dehydroascorbate,
lipoic acid, ubiquinone, cytochrome c, alloxan, and motexafin gadolinium [43].

2.3. Extracellular Trx/TrxR

Trx-1 is mainly localized in the cytosol but can be secreted out of the cells in two
forms, a full-length Trx-1 and a truncated form called Trx-80. The latter lacks redox activity
but stimulates peripheral blood mononuclear cells (PBMC) [46,47]. Although Trx lacks a
classical signal peptide, it is exported to the extracellular environment via the ER/Golgi-
independent pathway (also called unconventional or non-classical secretion). The precise
mechanism of Trx secretion is unclear.

To date, no specific cell surface receptors for Trx have been identified [14,48]. Trx-1
is an autocrine growth factor for human T-lymphotropic virus-1 and Epstein–Barr virus
(EBV)-transformed B lymphocytes and also acts as a cytokine and chemokine for immune
cells [49]. Increased levels of extracellular Trx have been reported in many pathologi-
cal conditions associated with oxidative stress. For instance, extracellular thioredoxin
(Etrx3/REQ_13520) is essential for the resistance of Rhodococcus equi, an actinobacterial
pathogen, to oxidants [50]. There is increasing evidence that extracellular Trx also plays a
role in the immune response due to its ability to selectively recognize the C46–C99 disulfide
of IL-4, thereby inactivating the cytokine activity in TF-1 erythroleukemia cells [51].

Extracellular Trx stimulates tumor cell proliferation [52]. Mechanisms presume an
increased cytokine production (IL-1, IL-2, and TNFa), as well as the stimulation of growth
factors and proliferation-associated transcription factors [53].

Additionally, Trx has been identified as a lipid raft (LR)-associated protein [54]. LRs,
the plasma membrane microdomains, contain sphingolipids and cholesterol [55] that are
able to form membrane macrodomains, control the redox state of cell surface molecules,
and influence the downstream signaling pathways [14]. In particular, a Trx-C35S mutant
in which Cys35 of the active site was replaced with serine, was quickly bound to the cell
surface and internalized in a LR-dependent manner. This suggests that the cysteine residue
in the Trx active site plays a fundamental role in the internalization of extracellular Trx
through LR [56].

2.4. Cytosolic and Mitochondrial Trx/TrxR. Role in Apoptosis Mechanism

Apoptosis signal-regulating kinase 1 (ASK1) belongs to the mitogen-activated protein
kinase (MAPK) family that phosphorylates and activates both c-Jun N-terminal kinase
(JNK) and p38/MAPK pathways [57]. Reduced Trx-1 binds to the N-terminal regulatory
domain of ASK-1 through its redox-active site that is modulated by oxidative stress [58].
The inhibition of Ask1 oxidation via the overexpression of Trx-1 impairs JNK activation
and apoptosis [59].

A single Trx-1 cysteine (Cys32 or Cys35) is required to induce ASK-1 ubiquitination and
degradation. Recent results have revealed that the modification of Cys residues in human
cytosolic Trx-1 by p-benzoquinone leads to the dissociation of the Trx1–ASK-1 complex, with
subsequent activation of ASK1, the p38/MAPK pathway, and apoptosis [60]. Additionally,
TAT-2GTP1, a cell-permeable derivative of the biotinylated 2GTP1 peptide, selectively
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disrupts the Trx1–Ask1 interaction that induces phosphorylation and the subsequent
activation of ASK1, leading to JNK activation and reduced viability of cancer cells [61].
Trx-2 associates with mitochondrial ASK1 and activates the JNK-independent apoptosis
pathway. Trx-1 and Trx-2 bind to Cys250 and Cys30 in the N-terminal regulatory domain of
ASK-1, respectively [62]. The Trx-2–ASK-1 signaling pathway plays a regulatory role in
mitochondria-induced apoptosis during the progression of Pemphigus vulgaris [63].

The final actor in this triad is Trx interacting protein (Txnip) (also called Trx binding
protein-2; TBP-2), which binds specifically to reduced Trx and can function as a potent
negative Trx regulator. The interaction between Trx and Txnip involves disulfide bond
formation between the reduced Trx and Txnip Cys247 [64]. This interaction allows for the
breakdown of the Trx-1–ASK-1 complex and the reactivation of ASK1 activity, which in
turn induces apoptosis through JNK and p38 cascades [65]. The Trx system is regulated by
the ASK-1/JNK/p38/survivin apoptosis pathway during testicular ischemia reperfusion
injury (tIRI) [66].

Caspases, the executors of apoptosis, comprise a family of cysteine proteases [67];
that is, their activity depends on cysteine in their active site. Trx can suppress apoptosis
by catalyzing the S-nitrosation of procaspase-3 and caspase-3 in Jurkat cells [68]. It has
been demonstrated that under physiological conditions, reduced Trx-1, but not Trx-2,
interacts via its active site cysteines with apoptosis inducing factor (AIF) to suppress AIF-
mediated DNA damage by modulating AIF–DNA interaction, whereas under oxidative
stress conditions, the interaction between Trx-1 and AIF is disrupted [69].

2.5. Nuclear Trx Function

Under nitrosative/oxidative stress conditions, Trx-1 migrates into the nucleus. This
phenomenon is involved in cell survival [22]. Similarly to ROS, reactive nitrogen species
(RNS) can induce nitrosative damage. Nitric oxide (NO) is synthesized via the oxidation
of L-arginine by three NO synthase isoforms: endothelial (eNOS), inducible (iNOS), and
neuronal (nNOS) [70]. NO has emerged as an essential regulator of several cellular functions
including blood coagulation, inflammation, and cell adhesion. Additionally, NO has been
implicated in neurodegenerative diseases and cancer [71].

The mechanism of Trx-1 nuclear migration under nitrosative stress conditions evoked
by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), is strongly associated with the
p21Ras-ERK1/2 survival signaling pathway. As a result of the nitrosylation of p21Ras and
the activation of ERK1/2 MAP kinases, Trx-1 is accumulated in the nucleus through the
down-regulation of Txnip. Trx1 nuclear translocation activates the transcription factors
related to cell survival and proliferation [22,72].

3. Inhibitors and Activators of the Trx/TrxR System
3.1. TrxR Inhibitors

As is analyzed below, Trx/TrxR overexpression has been observed in many malig-
nancies. Thus, there is increasing interest in the development of Trx/TrxR inhibitors that
have potential anticancer activity [73,74]. Zhang and co-workers presented four classes of
TrxR inhibitors: (1) metal-containing inhibitors (Au, Pt, Sn, Ru, Rho, La, Si, Fer); (2) natu-
ral products and their synthetic analogues (phenylpropanoids and polyphenols, quinone
compounds, terpenoids, nitrosoureas, and chromenes); (3) Se-, S-, Te-, and As-containing
compounds; (4) miscellaneous inhibitors [75,76]. The chemical structures of inhibitors and
half maximal inhibitory concentrations (IC50) are summarized in Tables 1 and 2.
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Table 1. Gold-N-heterocyclic carbine((NHC)–Au–Cl complexes and auranifin as rat TrxR in-
hibitors [77].

Compound Structure IC50, µM

2,3,4,6-tetra-o-acetyll-thio-b-
D-glucopyrano-sato-S-
(triethyl-phosphine) gold
(auranofin)
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3.1.1. Inhibition of TrxR by Metal Complexes

According to the hard and soft acids and bases (HSAB) theory, the thiol and selenol
groups (‘soft base’) in the side chains of Cys and Sec have a high affinity for metal complexes
(‘soft acid’) and yield various metal complexes that are potent Trx/TrxR inhibitors [75].
Among the mammalian TrxR inhibitors, gold(I) complexes are the most potent inhibitors re-
ported thus far [92]. As is shown in Table 1, these inhibitors have a strong effect against TrxR,
with IC50 values in the nanomolar range, but are less effective in comparison with auranofin.

Among the metal inhibitors, auranofin (AF), a gold-containing compound, is classified
by the WHO as an anti-rheumatic agent. As an anticancer drug [93], auranofin triggers
apoptosis via the up-regulation of death receptors and caspase activation in Hep3B hepato-
cellular carcinoma cells [94]. Mitochondrial TrxR-2 represents an attractive target for aura-
nofin, which causes mitochondrial dysfunction in cancer cells [76]. Platinum-containing
drugs (PtDs) cisplatin, carboplatin, and oxaliplatin are other examples of effective metals
for TrxR suppression. The inhibition of mammalian TrxR-1 by PtDs is accompanied by
the transcriptional activation of Nrf-2-regulated genes including TRXRD1 [95]. Compared
with Pt, Au anticancer compounds are strikingly more effective inhibitors of recombinant
TrxR-1 [96]. For instance, the IC50 values of auranofin are 0.12 and 3.17 µM for HeLa and
MRC-5 cells (Table 2), respectively. These values are lower for cisplatin (11.5 and 7.9 µM,
respectively) [97].

Mercury-containing organic compounds inhibit both Trx and TrxR activities in vitro.
In vivo results showed that methylmercury (MeHg) inhibited Trx and TrxR in the brain
and liver of experimental zebra sea breams. These results indicated that the Trx system
could be a target for the toxicity of MeHg, with TrxR being particularly affected [79].

3.1.2. Mechanisms of Trx/TrxR Inhibition by Natural and Synthetic Compounds

Traditional therapy using natural products has long been used for anticancer, antioxi-
dant, and anti-inflammatory purposes, involving flavonoid products, of which curcumin,
myricetin, and quercetin are among the best known examples [98]. Curcumin was found to
be an antioxidant and anticancer agent by irreversible covalent modification of the redox-
active residues Cys496 and Sec497 in TrxR [99]. Combinations of curcumin and quercetin
modulate Wnt/β-catenin signaling and induce apoptosis in A375 melanoma cells [100].

Myricetin and quercetin irreversibly inhibit TrxR (IC50 values of 0.62 and 0.97 µmol/L,
respectively) and arrest the growth of a lung cancer cell line. The inhibition of TrxR was
related to time exposure to the inhibitors, the concentration of NADPH(H+), and the
amount of dissolved oxygen [101].
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The natural diterpenoid isoforretin A (IsoA) has been shown to effectively inhibit Trx-1
by conjugation to Cys32 and Cys35 residues in the catalytic sites of Trx-1. IsoA induces
intracellular ROS burst and apoptosis in hepatocellular carcinoma [102].

Indolequinones have exhibited potent antitumor activity, with growth inhibitory IC50
values in the low nanomolar range (Table 2). The compound 5-methoxy-1-methyl3-[(2,4,6-
trifluorophenoxy)methyl]indole-4,7-dione was found to induce time- and concentration-
dependent apoptosis and to be a potent inhibitor of TrxR-1 in MIA PaCa-2 cells at concen-
trations equivalent to those that induce growth-inhibitory effects [83].

3.1.3. Trx/TrxR Inhibition by Organochalcogen and Organoarsenic Compounds

Organochalcogen compounds contain S, Se, and Te or a dichalcogenide bond (-S-S-,
-Se-Se-, or -Te-Te-) [103]. Diselenides and ditellurides have similar chemical properties
to disulfides. The catalytic process of the thioredoxin system involves the essential thiol–
disulfide and selenolthiol–selenenylsulfide exchange reactions, and these exchange reac-
tions are readily intervened in by dichalcogenides, leading to the inhibition of TrxR or
Trx [76]. Under physiological conditions in vivo, diselenides (RSeSeR) can be reduced to
form selenol/selenolate intermediates (RSeH/RSe−) via NAPDH oxidation by a reaction
catalyzed by TrxR. Diselenoamino acid derivatives can mimic GPx and be a substrate for
mammalian TrxR [104].

3.2. Activators of the Trx/TrxR System

TRX gene expression can be induced by natural substances such as estrogens, prosta-
glandins, and cAMP. Geranylgeranylacetone (GGA), a Trx inducer agent, is a natural
product that is derived from a plant source and used as an anti-ulcer drug. GGA protects
cells through Trx induction at the mRNA and protein levels and the activation of NFκB
and AP-1 transcription factors [105]. Inducible Trx-1 expression and GGA can protect from
morphine effects in mice [106].

Selenite can be used to recover TrxR activity and cell viability inhibited by HgCl2 or
MeHg. Treatment with selenite and NADPH led to almost full recovery of TrxR inactivated
by HgCl2. The mechanism seems to be due to the reduction of selenite to selenide, which
can remove the mercury from the selenoenzyme TrxR active site to generate mercury
selenide [107].

4. Trx/TrxR Functions in Health and Disease

Oxidative stress is a condition that refers to the increased production and accumulation
of ROS which are natural byproducts of aerobic respiration and energy extraction [108].
These include free radicals such as superoxide anions (O2

•−), hydroxyl radicals (•OH), and
non-radical molecules such as hydrogen peroxide H2O2 and singlet oxygen 1O2, which
all constitute partly reduced forms of molecular oxygen (O2) [109]. Under physiological
conditions, low basal ROS levels are produced by mammalian cells to mediate diverse
physiological responses, including growth, migration, and differentiation. However, ROS
excess can damage DNA, proteins, and lipids and lead to cell death, cancer, and/or
senescence. In order to avoid or reverse ROS-induced damage to macromolecules, proper
redox conditions must be maintained [110].

Multiple antioxidant defense systems have evolved to protect against lethal accu-
mulation of ROS in the cell, including the Trx system, glutathione, and enzymatic ROS
scavengers (e.g., glutathione peroxide and glutathione-S-transferases). Both enzymatic and
non-enzymatic antioxidants are regulated by the common transcription factor nuclear factor
Nrf2, which is translocated to the nucleus in response to oxidative stress (Figure 1) [111].
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Figure 1. Translocation of Trx-1 and Nrf2 from the cytoplasm to the nucleus after exposure to
oxidative stress. Trx1 nuclear translocation activates the transcription factor Nrf2. The activity of
Trx-1 is inhibited by Txnip. Nrf2 can regulate the transcription of different target gene groups,
including redox homeostasis (NQO1, HO1, GCLC, GCLM, GSR1, GPX2, PRDX1, PRDX6, SLC7A11,
TXN, TXNRD1, TXNIP, and SRX1), pentose phosphate pathway (PPP) metabolism, NADPH synthesis
(G6PDH, ME1, PGD, and IDH1), detoxification (AKR1B3, GSTA1, GSTA2, GSTA3, GSTM1, GSTM2,
GSTM3, GSTM4, GSTP1, PGD, PTGR1, MRP4, and MRP5), and protein turnover (PSMA1, PSMB5,
and SQSTM1) genes.

Active phosphorylated Nrf2 is transferred to the nucleus to affect the transcription
of genes encoding antioxidant proteins and enzymes such as glutathione peroxidase
1 (GPX1), glutathione S-transferase mu 1 (GSTM1), glutamate–cysteine ligase catalytic
subunit (GCLC), glutathione reductase (GSR), ferrochelatase (FECH), TRX, TXNRD1, and
NAD(P)H quinone dehydrogenase 1 (NQO1) [112]. Many reports have shown that Nrf2
is able to regulate the redox-regulated enzymes such as heme oxygenase-1 (HO1) via
the activation of extracellular regulated kinase (ERK) and phosphatidylinositol 3-kinase
(PI3K/Akt) signaling [113]. Additionally, AMPK activation directly phosphorylates Nrf2 at
Ser550 in vivo and at Ser558 residue in vitro, which, in conjunction with AMPK-mediated
glycogen synthase kinase 3β (GSK3β) inhibition, facilitates the nuclear accumulation of
Nrf2 for the antioxidant response element (ARE)-mediated gene transcription. Besides its
role in the activation of Nrf2, the PI3K/Akt pathway causes the inhibitory phosphorylation
of GSK3β [114]. Taken together, the Nrf2 target genes can be divided into different groups,
as depicted in Figure 1.

The Trx/TrxR system plays an important role in the regulation of Nrf2 activity. Nuclear
Trx1/Ref-1 is important for the reduction of critical Cys residues in Nrf2: one is important
for DNA binding and the other is involved in nuclear export [115]. Furthermore, some
reactive molecules that target TrxR1 may not only inhibit the enzyme but also transform the
protein to pro-oxidant SecTRAPs (selenium compromised thioredoxin reductase-derived
apoptotic proteins) with NADPH oxidase activity, thus further promoting the activation of
Nrf2 in any cells that survive such an oxidative challenge [116]. The DNA binding activity
of transcription factors NF-kB, AP-1, p53, and the glucocorticoid receptor is also regulated
by the Trx1-reducing activities of essential cysteine residues [22].

As mentioned above, redox signaling is essential for controlling cell fate by the Trx
system [117], so it is not surprising that this system has been implicated in cancer biol-
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ogy [118]. Elevated expression of Trx/TrxR has been detected in multiple human tumor
types such as breast, thyroid, prostate, and colorectal carcinoma, and melanoma where it is
associated with aggressive behavior [74,119].

The Trx/TrxR system also plays a crucial role during carcinogenesis, including the
promotion of proliferation and tumor growth. Tumor cells transfected with Trx cDNA show
increased growth and decreased apoptosis, while cells transfected with a redox-inactive
Trx mutant display attenuated growth [120].

In cardiovascular disorders associated with oxidative stress, Trx-1 scavenges ROS
and exerts a protective role to maintain cellular redox balance [121]. Under conditions of
hypoxic/ischemic stress, Trx-1 effectively aids wound healing through improved angio-
genesis, as well as increased capillary density and cell proliferation in a murine ischemic
wound model. Experimental data demonstrate that Trx-1 therapy at the ischemic wound
modulates the expression of pro-angiogenic genes by activating the PI3K/Akt survival
pathway followed by GSK-3 β-inhibition and β-catenin translocation to the nucleus. Nu-
clear β-catenin binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of
transcription factors and triggers the expression of angiogenic genes such as the vascular
endothelial cell growth factor (VEGF) gene. VEGF subsequently binds to its receptor Flk-1
and activates the p38-MAPK cascade for migration and survival [122].

Similar results have been obtained in a number of cell cancer lines (MCF-7 human
breast, HT29 human colon carcinomas, and WEHI7.2 mouse lymphoma) transfected with
human Trx-1. The human Trx-1 increases HIF-1-α levels, VEGF production, and tumor
angiogenesis. In contrast, transfection with a redox-inactive Trx-1 mutant (Cys32,35/Ser32,35)
markedly decreased HIF-1α and VEGF in MCF-7 cells [123].

Extensive overlaps have been reported between the Trx and glutaredoxin systems. It
has also been reported that the GSH/Grx system has a backup role in reducing Trx-1 in
TrxR-1-deficient HeLa cells [124]. Both systems act as antioxidant regulators in response
to oxidative/nitrosative stress. Increased cellular levels of ROS and RNS can damage
DNA and promote carcinogenesis; consequently, antioxidant cellular reductants Trx and
GSH, which reversibly regulate thiol modifications, have long been considered cancer-
suppressing molecules [125]. They also participate in DNA synthesis and repair as electron
donors for ribonucleotide reductase. Electrons required for the reduction of ribonucleotide
reductase are supplied by NADPH via Trx or Grx systems [126,127]. Furthermore, they
provide the counterbalancing responses that regulate proliferation and survival [3].

Finally, Trx also contributes to peroxiredoxins (Prxs) by modulating the redox status
and functions as an important mediator of redox signaling [128,129]. Reduced Trx can trans-
fer reducing equivalents to the oxidized form of Prxs, and reduced Prx in turn scavenges
ROS, e.g., H2O2 [130]. Mitochondrial Prx-3 is a substrate for both Trx-2 and Grx-2 with
similar catalytic efficiency via the dithiol reaction mechanism, while mitochondrial Prx-5 is
limited to the Trx system [131]. These three antioxidant (Trx/Grx/Prx) systems together
contribute counterbalancing responses that regulate the cellular processes of proliferation
and apoptosis.

5. Conclusions and Future Perspectives

The thioredoxin system is known to protect cells from oxidative stress by maintaining
the balance of the thiol–disulfide redox status, and its inhibition is considered a good
anticancer strategy. In addition to its function as a master regulator in the redox processes,
the Trx/TrxR system has received great attention over recent decades and has been impli-
cated in vital processes such as DNA repair and synthesis, proliferation, differentiation,
and apoptosis.

Indeed, in some types of cancer, the increased levels of Trx and TrxR are directly
linked to aggressive tumor behavior. Current research is focused on Trx–TrxR natural
and synthetic inhibitors, through covalently binding to Trx catalytic sites Cys32 and Cys35

and through binding to the Sec residue present in the active site of TrxR. In order to be
useful, more in vitro and in vivo studies are nonetheless needed to elucidate the potential



Biomedicines 2022, 10, 1757 13 of 18

of Trx–TrxR inhibitors for the development of new chemotherapeutic drugs. In addition,
more detailed analyses and research effort are required to understand the mechanistic roles
of mitochondrial Trx-2 and TrxR-2 isoforms in tumor development and drug resistance.
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