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Abstract: Infertility is one of the most important health concerns worldwide. It is characterized by
not being successful of pregnancy after some periods of periodic unprotected sexual intercourse.
In vitro fertilization (IVF) is an assisted reproduction technique that efficiently addresses infertility.
IVF replaces the actual mode of reproduction through a manual procedure wherein embryos are
cultivated in a controlled laboratory environment until they reach the blastocyst stage. The standard
IVF procedure includes the transfer of one or two blastocysts from several blastocysts that are grown
in a controlled environment. The morphometric properties of blastocysts with their compartments
such as trophectoderm (TE), zona pellucida (ZP), inner cell mass (ICM), and blastocoel (BL), are
analyzed through manual microscopic analysis to predict viability. Deep learning has been extensively
used for medical diagnosis and analysis and can be a powerful tool to automate the morphological
analysis of human blastocysts. However, the existing approaches are inaccurate and require extensive
preprocessing and expensive architectures. Thus, to cope with the automatic detection of blastocyst
components, this study proposed a novel multiscale aggregation semantic segmentation network
(MASS-Net) that combined four different scales via depth-wise concatenation. The extensive use
of depthwise separable convolutions resulted in a decrease in the number of trainable parameters.
Further, the innovative multiscale design provided rich spatial information of different resolutions,
thereby achieving good segmentation performance without a very deep architecture. MASS-Net
utilized 2.06 million trainable parameters and accurately detects TE, ZP, ICM, and BL without
using preprocessing stages. Moreover, it can provide a separate binary mask for each blastocyst
component simultaneously, and these masks provide the structure of each component for embryonic
analysis. Further, the proposed MASS-Net was evaluated using publicly available human blastocyst
(microscopic) imaging data. The experimental results revealed that it can effectively detect TE,
ZP, ICM, and BL with mean Jaccard indices of 79.08, 84.69, 85.88%, and 89.28%, respectively, for
embryological analysis, which was higher than those of the state-of-the-art methods.

Keywords: human blastocyst; infertility; embryo; semantic segmentation; in vitro fertilization

1. Introduction

Infertility is a medical health condition characterized by not being successful of preg-
nancy after a year of sufficient sexual intercourse without protection [1]. In China, the
infertility prevalence was 16.4% and it is expected to increase up to 18.2% by 2023 [2]. Over
the years, multiple schemes have been proposed to deal with infertility. These schemes are
collectively referred to as assisted reproductive technologies (ART). In vitro fertilization (IVF)
is considered the most effective ART that is commonly utilized to deal with infertility [3]. IVF
is a manual reproductive technique in which embryos are cultivated outside the human
body in a controlled laboratory environment until they reach the blastocyst stage. Then,
these embryos are transferred back to the uterus of the patient [4]. The morphological
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attributes and formation of the specific embryo compartments are the indications of the
embryo reaching the blastocyst stage. Based on these formations and developmental ca-
pabilities the transfer of viable embryos can increase the chance of pregnancy by IVF [5].
Conventionally, embryologists use time-lapse microscopic analysis to assess the specific
composition of the blastocyst and the proper formation of its specific compartments. The
formation of these compartments (such as trophectoderm (TE), zona pellucida (ZP), inner
cell mass (ICM), and blastocoel (BL)) is a sign of implantation and development capabilities
of a blastocyst.

TE is the external layer of a mammalian blastocyst that provides the nutrients for
embryo development, and it protects the ICM from the outer environment. Studies have
shown that morphological properties and scores can be correlated with clinical implantation
rate in IVF [6]. ZP contains an extracellular glycoprotein matrix that manages sperm-egg
interaction and encapsulates the oocyte, including ZP1, ZP2, ZP3, and ZP4 [7]. Further, ZP
morphology is important for selecting viable blastocysts [8]. ICM contains the pluripotent
epiblast (EPI), which is covered by a thin layer of endoderm. This endoderm, EPI, and
TE give rise to the embryo to form a yolk sac and placenta before being transferred to the
uterus [9]. In addition, ICM formation and morphological development provide effective
evidence for viability testing of an embryo [10]. BL, an important component of the
blastocyst, is a fluid cavity created on the fifth day. Its creation indicates that the embryo
has converted to the blastocyst stage and, at this stage, the ICM is situated on the side of
the blastocyst. Moreover, BL morphometric properties are important for the embryological
analysis of IVF [11]. The embryologist finally evaluates the viability of the blastocyst
based on these aforementioned properties [12]. According to blastocyst euploid selective
transfer (BEST) trials, the success rate of single euploid blastocyst transfer was 69% and
61% for clinical pregnancy and ongoing pregnancy, respectively, whereas the success rate
of untested 2-blastocyst transfer was 81%, and 65% for clinical pregnancy and ongoing
pregnancy, respectively [13,14]. A single-embryo transfer is considered safe as it helps to
avoid maternofetal risks [15]. Blastocyst competence assessment is important to determine
the best single embryo that has the highest potential for pregnancy [16].

The manual embryonic analysis is time-consuming and requires continuous keen
observations and subject knowledge. In the current era of machine learning and arti-
ficial intelligence (AI), deep-learning-based methods aid humans with several medical
applications [17]. Thus, AI can help in the assessment of sperm, embryos, and oocytes to
improve the success rate of IVF [18]. Deep-learning-based semantic segmentation can help
pixel-wise detection of blastocyst compartments (TE, ZP, ICM, and BL) for morphological
analysis. Very few methods have been developed based on semantic segmentation, with
most involving expensive architectures for detecting these compartments. To address these
issues, this study proposed a multiscale aggregation network (MASS-Net) that combined
four different scales for valuable spatial information aggregation to accurately detect TE,
ZP, ICM, and BL in blastocyst images. MASS-Net is based on a few layers (a combination
of 33 general convolutions and depth-wise separable convolutions (DWSC)). MASS-Net
includes the following important provisions:

• It detects the blastocyst components without using conventional image process-
ing schemes.

• It is a multiscale semantic segmentation network that uses four different scales without
increasing the depth of the network.

• The feature boost block (FBB) helps pick the boundaries of the components (TE, ZP,
ICM, and BL) that are not easily discernible.

• The proposed MASS-Net trained semantic segmentation models were made publicly
available in [19].

The remainder of this paper is organized as follows. Section 2 provides insights into
materials and methods. Section 3 presents the results of the proposed MASS-Net. Section 4
presents the discussion. Finally, Section 5 presents the conclusions of the study.
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2. Materials and Methods
2.1. Datasets

To verify the performance of the proposed MASS-Net, a publicly available blastocyst
microscopic image dataset introduced in [20] was used. This dataset included human
blastocyst images with pixel-level annotations of TE, ZP, ICM, and BL acquired by an
expert embryologist. Moreover, these images and multiclass annotations are publicly avail-
able for research purposes [20]. The dataset comprises 235 Hoffman modulation contrast
microscopic images at magnifications of 1.6×, and 20× objective lenses. These images were
captured for different patients between 2012 and 2016 using an Olympus IX71 (Olympus
Corp., Tokyo, Japan) inverted microscope and Research Instrument Cronus 4 software
(Research Instruments, Falmouth, England) at the Pacific Center for Reproduction Canada.
In addition, to realize a fair comparison with the state-of-the-art learning-based method on
the same dataset, the train-test split method mentioned in [21,22] was enforced. Out of a
total of 235 images, 200 (85%) and 35 (15%) were used for training and testing, respectively.
Figure 1 shows an example image and an expert annotation image. However, arranging
many training examples in terms of medical images to sufficiently train a semantic segmen-
tation network is challenging. Therefore, image augmentation was used to create synthetic
images using various image operations (flipping, rotations, and image translations) to
create 3200 images from 200 training images.

Figure 1. Example microscopic blastocyst image used in the experiments. (a) Original images;
(b) expert annotations for blastocyst components of TE (shown by red color), ZP (shown by
green color), ICM (shown by blue color), BL (shown by yellow color), and background (shown
by black color).

2.2. Overview of the Proposed MASS-Net-Based Segmentation of Blastocyst Components

This study proposed a deep-learning-based semantic segmentation method for blasto-
cyst component detection that can be used for embryological analysis through morpho-
metric properties. Figure 2 shows the overall workflow of the proposed MASS-Net-based
embryo component detection, which is based on multiscale aggregation using the depth-
wise (channel-wise) concatenation of features. The multiscale aggregation provides differ-
ent resolution scales of spatial information combined to create rich features for detecting
embryo components without preprocessing. Microscopic embryo images are of inferior
quality and these components are not easily discernible. However, the effective design
of MASS-Net with rich spatial information learning aids the network in identifying these
pixels. According to Figure 2, MASS-Net acquires the blastocyst image at the input without
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image enhancement and applies the multiscale convolutional operation. Thereafter, at
the output, the network provides four individual masks for the TE, ZP, ICM, and BL. The
binary mask for each component assigns the positive class as ‘1’ and other pixels as ‘0’.
These masks represent the morphology of a specific component that can be used to assess
morphometric properties for viability checks.

Figure 2. Summarized workflow of the proposed method (MASS-Net) for embryo component
segmentation for embryonic analysis. Abbreviation: MASS-Net, multiscale aggregation semantic
segmentation network.

2.3. MASS-Net Design Principles

In general, semantic segmentation is performed with an encoder-decoder structure
wherein the decoder is the same as the decoder. Certain examples of encoder-decoder
structures are SegNet [23] and U-Net [24]. However, as these conventional networks are
designed for various general tasks, they cannot perform well for a specific task where minor
classes, such as ZP or ICM, are available. Moreover, conventional semantic segmentation
design is based on very deep networks (using many convolutional layers) that consume
many trainable parameters [23–25]. Consequently, networks that are sufficiently deep
and utilize many convolutional layers are prone to spatial information loss. In addition,
intensive use of pooling layers causes spatial size reduction that can remove minor features
during training.

Considering embryo component segmentation, these components have very close gray
levels and indistinctive boundaries. Moreover, these components can be excessively small,
and thus, with feature empowerment, they cannot be effectively detected via networks that
use multiple pooling layers. The structure of MASS-Net is shown in Figure 3 to explain
the connectivity of the downsampling and upsampling blocks. MASS-Net considers four
main design principles for effective semantic segmentation architecture. First, the semantic
segmentation model, which is based on a low number of trainable parameters. MASS-Net
extensively uses DWSC with a shallow decoder that helps reduce the number of trainable
parameters. Second, the extensive use of pooling layers causes spatial information loss [26],
which prevents the extensive usage of pooling layers and uses strided convolutions with
learned weights for better performance. Third, multiscale architectures can extract valuable
context information using different image resolutions, and a combination of these scales
can improve segmentation performance [27,28]. MASS-Net has a low number of trainable
parameters and a network that may suffer segmentation performance on a single scale.
Thus, the multiscale aggregation (Scale-8, Scale-4, Scale-4, Scale-2, Scale-1) provides a
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rich combined feature of these scales to boost the segmentation performance. Fourth, the
components (ZP, TE, ICM) can be very small and can be partially or completely eliminated.
MASS-Net uses a feature booster block (FBB) that uses few convolutional layers without
reducing the spatial dimension of the feature, which helps retain these small components
in the image.

Figure 3. The architecture of the proposed MASS-Net. Here in this figure 3 × 3 kernel convo-
lution (3 × 3 conv.), batch normalization in combination with rectified linear unit (BN + ReLU),
2 × 2 transposed convolutions with stride = 2 (Transposed Conv.), and 3 × 3 kernel-based DWSC
(DW-Sep-Conv.).

2.4. Structure of Proposed MASS-Net Downsampling Block

The Scale-8 (shown by the top block of Figure 3) was created by a 3 × 3 convolution
with stride value and dilation factor of 8 each (S = 8, DF = 8). The Scale-8 block comprised
eight low-cost DWSC and three transposed convolutions for upsampling three times. Fur-
ther, the Scale-2 (shown by the second block from the top of Figure 3) was created by a
3 × 3 convolution with stride value and dilation factor of 2 each (S = 2, DF = 2). The Scale-2
block comprised five 3 × 3 convolutions, two DWSC, two transposed convolutions for
upsampling, and one max-pooling layer. Furthermore, the Scale-4 (shown by the third
block from the top of Figure 3) was created by a 3 × 3 convolution with stride value
and dilation factor of 4 each (S = 4, DF = 4). The Scale-4 block comprised three further
3 × 3 convolutions, four DWSC, and two transposed convolutions for upsampling. In addi-
tion, the feature booster block (FBB) is a special block that retains the feature map size and
uses a few convolutions for minor information retention. It uses four 3 × 3 convolutions
with a few channels.

Figure 4 mathematically illustrates the four-scale connectivity pattern (Scale-8, Scale-2,
Scale-4, and Scale-1 by FBB). The input block accepts the input image and outputs the Fi, a
feature that is equally provided to each scale block, where each scale block outputs F8

S , F2
S ,

F4
S , and FBB features for Scale-8, Scale-2, Scale-4, and FBB, respectively. These four features

include multiscale spatial information that are combined to create a dense aggregated
feature SA expressed as Equation (1).

SA = F8
S F2

S F4
S FBB (1)
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where SA is the dense concatenated feature generated by the depth-wise (channel-wise)
concatenation of F8

S (feature from Scale-8 block), F2
S (feature from Scale-2 block), F4

S (feature
from Scale-4 block), and FBB (feature from feature booster block). Further, © represents the
depthwise concatenation of these features. Considering the design principles of MASS-Net
mentioned in Section 2.3, the proposed network used multiple DWSC to lower the trainable
parameters. Consequently, the proposed MASS-Net consumes only 2.06 million trainable
parameters, which is much lower than those of conventional networks.

Figure 4. Dense connectivity pattern used in MASS-Net architecture for multiscale aggregation.

Table 1 presents the information regarding feature map sizes for each block (layer-wise)
to explain the different features of the proposed network. MASS-Net avoids multiple pool-
ing operations, as shown in Figure 3, using only one max-pooling layer in the Scale-2 block.
Further, it employs an FBB that is specifically designed to deal with minor information
features. Moreover, according to Equation (1), the downsampling block provides a dense
aggregated feature SA to the upsampling block.

Table 1. Details of feature map sizes for MASS-Net architecture.

Block
Layer Size of Layer

K × K × C, (Stride) Filters/Groups Repetition Output Size

Input Conv 3 × 3 × 1 (S = 2) 16 1 200 × 200 × 16

Scale-8 block

S8-Conv-S 3 × 3 × 16 (S = 8) 32 1 25 × 25 × 32

S8-DWSC 3 × 3 × 32 (S = 1) 32 8 25 × 25 × 32

S8-Tconv-A 2 × 2 × 32 (S = 2) 32 1 50 × 50 × 32

S8-Tconv-B 2 × 2 × 32 (S = 2) 32 1 100 × 100 × 32

S8-Tconv-C 2 × 2 × 32 (S = 2) 32 1 200 × 200 × 32

Scale-2 block

S2-Conv-S 3 × 3 × 16 (S = 8) 32 1 100 × 100 × 32

S2-Conv-A 3 × 3 × 32 (S = 1) 64 1 100 × 100 × 64

S2-Conv-B 3 × 3 × 64 (S = 1) 64 1 100 × 100 × 64

Pool 2 × 2 × 64 (S = 2) - 1 50 × 50 × 64

S2-Conv-C 3 × 3 × 64 (S = 1) 128 1 50 × 50 × 128

S2-Conv-D 3 × 3 × 128 (S = 1) 256 1 50 × 50 × 256

S2-DWSC 3 × 3 × 256 (S = 1) 256 2 50 × 50 × 256

S2-Tconv-A 2 × 2 × 256 (S = 2) 128 1 100 × 100 × 128

S2-Tconv-B 2 × 2 × 128 (S = 2) 64 1 200 × 200 × 64
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Table 1. Cont.

Block
Layer Size of Layer

K × K × C, (Stride) Filters/Groups Repetition Output Size

Input Conv 3 × 3 × 1 (S = 2) 16 1 200 × 200 × 16

Scale-4 block

S4-Conv-S 3 × 3 × 16 (S = 4) 32 1 50 × 50 × 32

S4-Conv-A 3 × 3 × 32 (S = 1) 64 1 50 × 50 × 64

S4-Conv-B 3 × 3 × 64 (S = 1) 128 1 50 × 50 × 128

S4-DWSC-A 3 × 3 × 128 (S = 1) 128 2 50 × 50 × 128

S4-DWSC-B 3 × 3 × 128 (S = 1) 64 2 50 × 50 × 64

S4-Tconv-A 2 × 2 × 64 (S = 2) 128 1 100 × 100 × 128

S4-Tconv-B 2 × 2 × 128 (S = 2) 64 1 200 × 200 × 64

Feature booster block

FBB-Conv-A 3 × 3 × 16 (S = 1) 32 1 200 × 200 × 32

FBB-Conv-B 3 × 3 × 32 (S = 1) 64 1 200 × 200 × 64

FBB-Conv-C 3 × 3 × 64 (S = 1) 64 1 200 × 200 × 64

FBB-Conv-D 3 × 3 × 64 (S = 1) 128 1 200 × 200 × 128

Feature Aggregation S8-Tconv-C S2-Tconv-B S4-Tconv-B FBB-Conv-D 200 × 200 × 288

Upsampling block

US-Conv-A 3 × 3 × 288 (S = 1) 256 1 200 × 200 × 256

US-Conv-B 3 × 3 × 256 (S = 1) 128 1 200 × 200 × 128

US-Conv-C 3 × 3 × 128 (S = 1) 64 1 200 × 200 × 64

US-Tconv-A 2 × 2 × 64 (S = 2) 32 1 400 × 400 × 32

Final masks Class-Mask-
Conv 1 × 1 × 32 (S = 1) 5 1 400 × 400 × 5

2.5. Feature Booster Block (FBB)

Conventional networks use multiple pooling layers when diving deeper into the
network. This pooling phenomenon can benefit larger classes that are available in an image.
The SegNet [23], uses VGG16 as the backbone and five pooling layers. However, although
SegNet performs extremely well for larger classes available in the image (building, sky,
road, etc.), this is not true for the minor classes available in the image (column pole, bicyclist,
etc.). This is primarily due to the extensive usage of pooling layers and the unavailability
of feature empowerment. Thus, the FBB in MASS-Net specifically addresses the feature
degradation issue for the minor classes available in blastocyst microscopic images. It is
evident from Table 1 that FBB maintains the feature map size at 200 × 200. This feature
map size is sufficient to represent minor features (ICM, TE, and ZP) in the image. Therefore,
FBB empowerment boosts segmentation performance.

2.6. Structure of MASS-Net Upsampling Block

The main objective of MASS-Net was to achieve high segmentation performance for
reliable embryological analysis in addition to designing a network that consumes a low
number of trainable parameters. The downsampling block already considers different scales
whereas the FBB block boosts the feature that helps retain the minor classes. Moreover,
MASS-Net consists of very few convolutional layers and just one transposed convolution.
This shallow upsampling block help to lower the trainable parameters. It is evident from
Table 1 that the upsampling block contains the final convolution with five filters that
represent the number of classes (TE, ZP, ICM, BL, and background) that are considered by
the network. The MASS-Net provides each class mask with these five filters. As shown in
Figure 2 there is a large pixel difference between all of the classes, with the background
and BL classes having many pixels compared to ZP, TE, and ICM. This pixel difference
creates the class imbalance, which can be addressed by using an appropriate loss function.
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This study utilized the Tversky loss function [29], which can handle the class imbalance
effectively. The details for Tversky loss are provided in [29].

2.7. Training of Proposed Method, Experimental Environment and Protocols

The proposed MASS-Net does not use weight migration or fine-tuning; rather, it is
trained from scratch. In the experiments performed, Adam [30] was used as an optimizer
to train 3600 (40 epochs) with an initial learning rate (ILR) of 0.0001, a mini-batch size
of 20 images with an epsilon of 0.000001, and global L2-normalization. In the training
experiments, image shuffling was used to provide variations for each epoch. Figure 5
presents the training accuracy-loss curve for MASS-Net, which shows that MASS-Net
attained a high training accuracy with lower training loss.

Figure 5. MASS-Net training accuracy-loss curve.

2.8. Evaluation of Proposed Method (MASS-Net)

As shown in Table 1 Class-Mask-Conv layers have five filters; therefore, MASS-Net
produced five masks at the output of the network for the ICM, TE, ZP, BL, and background.
These masks represent the blastocyst component pixels by “1” and all of the background
pixels with “0” for each class. Subsequently, to evaluate the segmentation performance, the
output masks of MASS-Net were pixel-wise compared with expert annotation (provided
by an expert embryologist), and a versatile Jaccard index (JI) was used to compute the
performance. MASS-Net is a learning-based method; therefore, following [21,22], JI was
used to fairly compare the proposed method with state-of-the-art methods on the same
dataset and training-testing protocols. The JI is expressed Equation (2): where true-positive
(TP) is a pixel that is predicted as an embryo component pixel and embryo pixel in the
expert annotation. Whereas, a false positive (FP) is a pixel that is predicted as an embryo
component pixel, and is not an embryo pixel in the expert annotation. Finally, a false
negative (FN) is a pixel that is predicted as a non-embryo pixel, and it is an embryo
component pixel in the expert annotation. (# show the number pixels)

Jaccard Index (JI) =
#TP

#(TP + FP + FN)
(2)

3. Results
3.1. Ablation Study for MASS-Net

Two types of ablations were conducted to prove the efficacy of the proposed MASS-
Net. Multiple uses of image size reduction by pooling layers or strided convolutions
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can eliminate minor information from the image. The FBB (explained in Section 2.5)
retains a feature map size of 200 × 200 pixels, which is sufficient for minor features in the
image. To prove the effectiveness of the FBB, the first ablation experiment was conducted
with and without the FBB. It is evident from Table 2 that the FBB improved the overall
segmentation performance while consuming a few trainable parameters. The segmentation
performance of fully convolutional networks decorates with the class imbalance in the
dataset. Several schemes can be used to deal with class imbalance, such as weighted cross-
entropy (WCE) [31], focal loss (FL) [32], dice loss (DL) [33], and TVL [29]. In the second
type of ablation, different loss functions were tested for embryo component segmentation
using the MASS-Net. It is evident from Table 2 that MASS-Net with TVL provided the best
results while using only 2.06 million trainable parameters overall.

Table 2. MASS-Net ablation study results. (#Pram. show the number of trainable parameters).

Method TE ZP ICM BL BG Mean JI #Pram.

MASS-Net (WCE) 77.34 82.14 85.13 87.98 95.86 85.69 2.06 M
MASS-Net (FL) 76.88 85.09 83.70 86.60 90.97 84.65 2.06 M
MASS-Net (DL) 78.98 84.12 84.68 88.92 95.61 86.46 2.06 M

MASS-Net (TVL without FBB) 77.25 84.76 84.55 87.78 95.96 86.06 1.63 M
MASS-Net (TVL with FBB) 79.08 84.69 85.88 89.28 96.07 87.00 2.06 M

3.2. Comparison of MASS-Net with State of the Art Methods

This section provides a comparison of the proposed MASS-Net with state-of-the-
art methods for human blastocyst component detection. Table 3 presents the numerical
performance assessment and comparison of the microscopic blastocyst images. Table 3 is
based on JI described in Section 2.8.

Table 3. Performance comparison of proposed MASS-Net with current state-of-the-art methods for
blastocyst component segmentation. (#Pram. show the number of trainable parameters).

Method TE ZP ICM BL BG Mean JI #Pram.

U-Net (baseline) [24] 75.06 79.32 79.03 79.41 94.04 81.37 31.03
M

Ternaus U-Net [34] 76.16 80.24 77.58 78.61 94.50 81.42 10 M

PSP-Net [35] 74.83 80.57 78.28 79.26 94.60 81.51 35 M

DeepLab-V3 [25] 73.98 80.84 80.60 78.35 94.49 81.65 40 M

BlastNet [22] 76.52 81.15 81.07 80.79 94.74 82.85 25 M

SSS-Net (Residual) [21] 77.40 82.88 84.94 88.39 96.03 85.93 4.04 M

SSS-Net (Dense) [21] 78.15 84.51 84.50 88.68 95.82 86.34 4.04 M

MASS-Net
(Proposed without FBB) 77.25 84.76 84.55 87.78 95.96 86.06 1.63 M

MASS-Net
(Proposed with FBB) 79.08 84.69 85.88 89.28 96.07 87.00 2.06 M

3.3. Visual Results of Proposed MASS-Net for Embryonic Component Segmentation

This section presents the blastocyst segmentation visual results provided by the pro-
posed MASS-Net on a publicly available microscopic blastocyst image dataset. Figure 6
presents MASS-Net segmentation visual results in comparison with expert annotation;
where (a) input blastocyst image, (b) medical expert annotation for TE, ZP, ICM, BL, and
BG, and (c) MASS-Net multiclass predicted masks are displayed.
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Figure 6. MASS-Net visual results for embryo component segmentation: (a) input microscopic
blastocyst image, (b) expert annotation, and (c) MASS-Net multiclass predicted mask.

4. Discussion

The semantic segmentation is a specific machine learning procedure that deals with
pixel-wise classification. Dealing with the segmentation for minor classes is challenging,
and conventionally the depth of the network is increased to get good segmentation per-
formance. The number of trainable parameters substantially increases as we increase the
depth of the network (using more layers). It can be noticed from Table 3 the proposed
MASS-Net is using only 2.06 million trainable parameters, and these parameters are much
lower than the famous semantic segmentation methods presented in Table 3. The proposed
MASS-Net is a step towards development of mobile low-cost platform. However, it is
very difficult to manage good segmentation performance with low number of parame-
ters. MASS-Net with effective multiscale design and feature booster block manages the
competitive segmentation performance with reduced depth of the network.

4.1. Visual Representation of Predictions

A neural network predicts a label based on a specific feature for a specific class.
Recognition of these specific features is extremely important for the successful development
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of custom networks. The ions from the network are based on specific features, and these
features are important for the development of a robust segmentation network. The gradient-
weighted class activation map (Grad-CAM) [36] helps highlight the features that contribute
to the prediction of a label. The neural network gradually learns the related features,
and as one enters the deeper layers, this learning improves. Figure 7 presents the Grad-
CAM blastocyst images. These Grad-CAMs were extracted from the rectified linear units
(ReLUs) of the four different layers of Table 1 (S2-Tconv-B, US-Conv-A, US-Conv-B, and
US-Tconv-A). Grad-CAM shows that the proposed MASS-Net gradually learns the pixels
of all blastocyst components without bias.

Figure 7. MASS-Net Grad-CAM visualization for ICM (row-1), TE (row-2), ZP (row-3), and BL
(row-4): (a) original blastocyst microscopic image, (b) expert annotation, and Grad-CAM obtained
from the ReLU of (c) S2-Tconv-B, (d) US-Conv-A, (e) US-Conv-B, and (f) US-Tconv-A.

4.2. Embryonic Analysis

The morphological properties of blastocyst components are extremely important for
determining embryo viability [6,21,37]. The MASS-Net effectively detects these components
in a multiclass scenario. MASS-Net outputs individual binary masks for each component.
Figure 8 presents examples of the output masks produced by MASS-Net. In these masks,
each embryo component is represented by ‘1′ (white pixels), and the non-embryo com-
ponent ‘0’ (black pixels). These masks provide accurate pixel-wise detection that can be
used to analyze morphometric properties that are important for testing embryo viability.
Moreover, the creation of a specific compartment can be detected automatically. Thus,
an embryologist can analyze these MASS-Net-provided masks that can aid in collective
assessment before transferring the embryo to the patient’s uterus.

Figure 8. MASS-Net individual masks: (a) original image, (b) expert annotation by embryologist,
(c) TE predicted mask, (d) ZP predicted mask, (e) ICM predicted mask, (f) BL predicted mask, and
(g) combined predicted mask.
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5. Conclusions

The primary objective of this study was to present a novel and effective network
for detecting blastocyst components using a simpler multiclass network. MASS-Net is a
multiclass network that utilized different scales to aggregate them to render a powerful
feature through dense concatenation. The FBB was based on a few convolutions, thus
retaining a larger spatial size. The FBB provided rich low-level feature information, and
this spatial information was added to the other scales, resulting in enhanced segmentation
performance. Further, the intensive use of depth-wise separable convolutions and shallow
upsampling blocks helped reduce the overall number of trainable parameters. Collectively,
MASS-Net provided an accurate segmentation of TE, ZP, ICM, and BL for embryonic
viability assessment.

The proposed method can extract the blastocyst components exactly from the embryo
images, and these results are pretty close to medical expert annotation. Currently, this
system cannot directly provide the quality (scoring) of the blastocyst, but it can help the
embryologist in decision making. For example, the proposed method can detect if that
component is formed (available). Our proposed method can directly predict the blastocyst
quality if the training data is provided with blastocyst quality annotation. We are using
a publicly available dataset (without blastocyst quality score annotation). Therefore, the
current method can be used to aid the embryologist.

In the future, we have a plan to directly collaborate with the medical institutions
to collect the data with blastocyst quality score annotations. Furthermore, our proposed
method is a step toward the development of a mobile low-cost system. A similar system
can be used to predict embryo quality using a shallow cost-effective architecture. In
addition, this multiscale network will be utilized for the segmentation and analysis of other
medical diseases. Furthermore, similar feature booster-based methods will be developed to
further reduce the number of trainable parameters to create a low-cost mobile system for
embryonic analysis.
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