Urine Oxidative Stress Biomarkers as Novel Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Investigation
2.3. Urine Biomarkers Investigation
2.4. Quantification of 8-OHdG, 8-Isoprostane, and TAC
2.5. Quantification of Inflammatory Cytokines
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Homma, Y.; Ueda, T.; Tomoe, H.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Lee, J.G.; Kim, D.Y.; Lee, K.S.; Interstitial Cystitis Guideline Committee. Clinical guidelines for interstitial cystitis and hypersensitive bladder syndrome. Int. J. Urol. 2009, 16, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.F.; Kuo, H.C. Pathomechanism of Interstitial Cystitis/Bladder Pain Syndrome and Mapping the Heterogeneity of Disease. Int. Neurourol. J. 2016, 20 (Suppl. 2), S95–S104. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Birder, L.A. Pathophysiology of interstitial cystitis. Int. J. Urol. 2019, 26 (Suppl. 1), 12–15. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shie, J.H.; Kuo, H.C. Higher levels of cell apoptosis and abnormal E-cadherin expression in the urothelium are associated with inflammation in patients with interstitial cystitis/painful bladder syndrome. BJU Int. 2011, 108 Pt 2, E136–E141. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine cytokines as biomarkers for diagnosing interstitial cystitis/bladder pain syndrome and mapping its clinical characteristics. Am. J. Physiol. Renal. Physiol. 2020, 318, F1391–F1399. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine biomarkers in ESSIC type 2 interstitial cystitis/bladder pain syndrome and overactive bladder with developing a novel diagnostic algorithm. Sci. Rep. 2021, 11, 914. [Google Scholar] [CrossRef]
- Irwin, P.; Galloway, N.T. Impaired bladder perfusion in interstitial cystitis: A study of blood supply using laser Doppler flowmetry. J. Urol. 1993, 149, 890–892. [Google Scholar] [CrossRef]
- Pontari, M.A.; Hanno, P.M.; Ruggieri, M.R. Comparison of bladder blood flow in patients with and without interstitial cystitis. J. Urol. 1999, 162, 330–334. [Google Scholar] [CrossRef]
- Lee, J.D.; Lee, M.H. Increased expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor associated with glomerulation formation in patients with interstitial cystitis. Urology 2011, 78, 971.e11–971.e15. [Google Scholar] [CrossRef]
- Kiuchi, H.; Tsujimura, A.; Takao, T.; Yamamoto, K.; Nakayama, J.; Miyagawa, Y.; Nonomura, N.; Takeyama, M.; Okuyama, A. Increased vascular endothelial growth factor expression in patients with bladder pain syndrome/interstitial cystitis: Its association with pain severity and glomerulations. BJU Int. 2009, 104, 826–831. [Google Scholar] [CrossRef]
- Lee, J.D.; Lee, M.H. Metallothionein overexpression of bladder biopsies associated with tissue hypoxia in patients with interstitial cystitis/painful bladder syndrome. Int. J. Urol. 2014, 21, 719–723. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.I.; Griendling, K.K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ. Res. 2015, 116, 531–549. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Miyata, Y.; Matsuo, T.; Mitsunari, K.; Asai, A.; Ohba, K.; Sakai, H. A Review of Oxidative Stress and Urinary Dysfunction Caused by Bladder Outlet Obstruction and Treatments Using Antioxidants. Antioxidants 2019, 8, 132. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van de Merwe, J.P.; Nordling, J.; Bouchelouche, P.; Bouchelouche, K.; Cervigni, M.; Daha, L.K.; Elneil, S.; Fall, M.; Hohlbrugger, G.; Irwin, P.; et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: An ESSIC proposal. Eur. Urol. 2008, 53, 60–67. [Google Scholar] [CrossRef]
- Yu, W.R.; Jhang, J.F.; Ho, H.C.; Jiang, Y.H.; Lee, C.L.; Hsu, Y.H.; Kuo, H.C. Cystoscopic hydrodistention characteristics provide clinical and long-term prognostic features of interstitial cystitis after treatment. Sci. Rep. 2021, 11, 455. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Jhang, J.-F.; Ho, H.-C.; Hsu, Y.-H.; Kuo, H.-C. Diagnostic and prognostic value of urine biomarkers among women with dysfunctional voiding. Sci. Rep. 2022, 12, 6608. [Google Scholar] [CrossRef]
- Il’yasova, D.; Scarbrough, P.; Spasojevic, I. Urinary biomarkers of oxidative status. Clin. Chim. Acta 2012, 413, 1446–1453. [Google Scholar] [CrossRef][Green Version]
- Roberts, L.J.; Morrow, J.D. Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 2000, 28, 505–513. [Google Scholar] [CrossRef]
- Fraga, C.G.; Oteiza, P.I.; Galleano, M. In vitro measurements and interpretation of total antioxidant capacity. Biochim. Biophys. Acta 2014, 1840, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, N.; Hou, A.; Koul, H.K.; Wilcox, D.T. Partial bladder outlet obstruction in mice may cause E-cadherin repression through hypoxia induced pathway. J. Urol. 2014, 192, 964–972. [Google Scholar] [CrossRef]
- Fusco, F.; Creta, M.; De Nunzio, C.; Iacovelli, V.; Mangiapia, F.; Li Marzi, V.; Finazzi Agro, E. Progressive bladder remodeling due to bladder outlet obstruction: A systematic review of morphological and molecular evidences in humans. BMC Urol. 2018, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, O.; Nomiya, M.; Andersson, K.E. Functional consequences of chronic bladder ischemia. Neurourol Urodyn 2014, 33, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Bhangoo, S.; Ren, D.; Miller, R.J.; Henry, K.J.; Lineswala, J.; Hamdouchi, C.; Li, B.; Monahan, P.E.; Chan, D.M.; Ripsch, M.S.; et al. Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: A mechanism for the development of chronic sensitization of peripheral nociceptors. Mol. Pain 2007, 3, 38. [Google Scholar] [CrossRef][Green Version]
- Adar, T.; Shteingart, S.; Ben Ya’acov, A.; Bar-Gil Shitrit, A.; Goldin, E. From airway inflammation to inflammatory bowel disease: Eotaxin-1, a key regulator of intestinal inflammation. Clin. Immunol. 2014, 153, 199–208. [Google Scholar] [CrossRef]
- Tripp, D.A.; Nickel, J.C.; Wong, J.; Pontari, M.; Moldwin, R.; Mayer, R.; Carr, L.K.; Doggweiler, R.; Yang, C.C.; Mishra, N.; et al. Mapping of pain phenotypes in female patients with bladder pain syndrome/interstitial cystitis and controls. Eur. Urol. 2012, 62, 1188–1194. [Google Scholar] [CrossRef]
IC/BPS | ||||||
---|---|---|---|---|---|---|
ESSIC Type 1 (N = 42, 26.4%) | ESSIC Type 2 (N = 117, 73.6%) | Overall (N = 159, 100%) | Control (N = 28) | p-Value * | p-Value # | |
Age | 56.9 ± 10.9 (28–78) | 53.5 ± 13.2 (21–88) | 54.4 ± 12.7 (21–88) | 58.6 ± 9.9 (39–75) | 0.145 | 0.101 |
Sex | F40, M2 | F99, M18 | F139, M20 | F 28 | 0.075 | 0.048 |
DM | 8 (19.0%) | 10 (8.5%) | 18 (11.3%) | 5 (17.9%) | 0.087 | 0.350 |
BMI | 25.88 ± 4.24 | 23.00 ± 4.07 | 23.76 ± 4.30 | 25.66 ± 4.03 | <0.001 | 0.031 |
VAS | 4.4 ± 2.6 | 4.5 ± 2.8 | 4.5 ± 2.7 | 0.766 | ||
ICSI | 9.8 ± 4.7 | 10.9 ± 4.3 | 10.6 ± 4.4 | 0.194 | ||
ICPI | 10.4 ± 4.5 | 10.7 ± 3.7 | 10.6 ± 3.9 | 0.625 | ||
OSS | 20.2 ± 8.8 | 21.7 ± 7.5 | 21.3 ± 7.8 | 0.272 | ||
MBC (mL) | 782.1 ± 192.5 | 711.1 ± 176.8 | 729.9 ± 183.2 | 0.031 |
IC/BPS | ||||||
---|---|---|---|---|---|---|
Urine Biomarkers @ | (A) ESSIC Type 1 N = 42 | (B) ESSIC Type 2 N = 117 | Overall N = 159 | (C) Control N = 28 | p-Value # | p-Value $ |
8-OHdG | 25.81 ± 18.44 (0) | 38.67 ± 18.68 * (0) | 35.27 ± 19.41 (0) | 18.33 ± 13.48 (0) | <0.001 | <0.001 |
8-isoprostane | 36.47 ± 26.4 * (0) | 44.32 ± 33.11 * (3) | 42.20 ± 31.56 (3) | 20.69 ± 21.15 (0) | 0.169 | <0.001 |
TAC | 1641.8 ± 1317.2 (0) | 1597.4.2 ± 1226.0 (6) | 1610.6 ± 1247.5 (6) | 1119.4 ± 1064.1 (0) | 0.845 | 0.060 |
MCP-1 | 237.57 ± 211.06 * (2) | 297.47 ± 276.06 * (3) | 281.91 ± 261.41 (5) | 142.25 ± 93.02 (1) | 0.214 | <0.001 |
RANTES | 7.97 ± 8.00 (0) | 9.34 ± 8.21 * (1) | 8.97 ± 8.15 (1) | 5.34 ± 4.56 (1) | 0.354 | 0.001 |
CXCL 10 | 25.76 ± 38.68 (1) | 41.04 ± 57.59 * (1) | 37.05 ± 53.61 (2) | 14.76 ± 18.63 (1) | 0.117 | <0.001 |
Eotaxin | 8.25 ± 8.03 (1) | 8.52 ± 6.8 * (2) | 8.45 ± 7.12 (3) | 4.88 ± 3.21 (1) | 0.836 | <0.001 |
MIP-1β | 2.82 ± 2.24 (1) | 2.65 ± 1.96 (2) | 2.69 ± 2.03 (3) | 2.44 ± 1.59 (0) | 0.635 | 0.533 |
IL-8 | 11.71 ± 13.46 (1) | 11.45 ± 13.12 (2) | 11.52 ± 13.17 (3) | 14.62 ± 24.13 (1) | 0.914 | 0.520 |
IC/ BPS | |||||||
---|---|---|---|---|---|---|---|
Urine Biomarkers @ | (A) GR ≤ 1, MBC ≥ 760 mL N = 44 | (B) GR ≤ 1, MBC < 760 mL N = 46 | (C) GR ≥ 2, MBC ≥ 760 mL N = 18 | (D) GR ≥ 2, MBC < 760 mL N = 51 | Control N = 28 | p-Value * | Post Hoc Analysis |
8-OHdG | 29.56 ± 19.31 (0) | 30.12 ± 18.05 (0) | 42.97 ± 18.39 (0) | 42.13 ± 18.40 (0) | 18.33 ± 13.48 (0) | <0.001 | A, B, vs. D B, C, D vs. E |
8-isoprostane | 35.21 ± 26.55 (0) | 37.61 ± 32.18 (1) | 37.28 ± 25.57 (0) | 54.51 ± 34.28 (2) | 20.69 ± 21.15 (0) | <0.001 | A, B, C vs. D A, B, D vs. E |
TAC | 1399.5 ± 1080.4 (0) | 1926.6 ± 1431.2 (1) | 962.8 ± 514.1 (0) | 1753.4 ± 1306.1 (5) | 1609.6 ± 1247.5 (6) | 0.003 | B vs. C C vs. D |
MCP-1 | 209.3 ± 156.9 (1) | 263.7 ± 215.8(1) | 218.2 ± 186.4 (0) | 387.92 ± 355.17 (3) | 142.3 ± 93.02 (1) | <0.001 | A vs. D B, D vs. E |
RANTES | 7.98 ± 8.02 (0) | 8.09 ± 5.67 (1) | 5.09 ± 5.02 (0) | 11.98 ± 10.01 (0) | 5.34 ± 4.56 (1) | <0.001 | C, E vs. D |
CXCL 10 | 26.01 ± 34.24 (0) | 31.41 ± 43.18 (2) | 12.55 ± 22.84 (2) | 60.09 ± 72.69 (0) | 14.76 ± 18.63 (1) | <0.001 | A, C, E vs. D |
Eotaxin | 7.30 ± 6.93 (0) | 8.73 ± 7.30 (1) | 5.85 ± 6.15 (1) | 10.20 ± 7.16 (2) | 4.88 ± 3.21 (1) | 0.004 | B, D vs. E |
MIP-1β | 2.63 ± 2.16 (1) | 2.97 ± 1.87 (1) | 1.27 ± 0.91 (2) | 3.01 ± 2.17 (0) | 2.44 ± 1.59 (0) | 0.016 | A, B, D, E vs. C |
IL-8 | 16.3 ± 18.24 (0) | 11.10 ± 11.13 (3) | 5.99 ± 3.96 (3) | 9.69 ± 10.37 (0) | 14.62 ± 24.13 (1) | 0.090 |
Urine Biomarkers | AUC | Cut-off Value @: | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|
8-OHdG | 0.799 | 24.970 | 75.2% | 80.8% | 94.6% | 42.0% |
8-isoprostane | 0.755 | 22.245 | 68.4% | 76.9% | 92.9% | 35.7% |
MCP-1 | 0.681 | 199.070 | 54.4% | 77.8% | 91.2% | 28.8% |
RANTES | 0.655 | 8.770 | 41.4% | 88.9% | 94.1% | 26.1% |
TAC | 0.649 | 845.210 | 64.9% | 65.4% | 88.9% | 30.4% |
Eotaxin | 0.645 | 6.950 | 47.8% | 85.2% | 93.2% | 27.7% |
CXCL10 | 0.629 | 58.425 | 26.7% | 100.0% | 100.0% | 24.1% |
IL 8 | 0.556 | 2.165 | 84.4% | 37.0% | 85.1% | 35.7% |
MIP-1β | 0.555 | 1.570 | 73.0% | 50.0% | 85.7% | 31.1% |
p-Value | Odds Ratio | 95% CI | Odds Ratio Units * | |
---|---|---|---|---|
IC/BPS (Total) vs. control | ||||
MCP-1 | 0.002 | 2.030 | 1.286–3.205 | 100 |
8-OHdG | <0.001 | 1.687 | 1.258–2.264 | 10 |
8-isoprostane | 0.002 | 1.557 | 1.176–2.060 | 10 |
Eotaxin | 0.017 | 1.141 | 1.024–1.271 | 1 |
RANTES | 0.048 | 1.102 | 1.001–1.213 | 1 |
IC/BPS (ESSIC type 2) vs. control | ||||
MCP-1 | 0.002 | 2.362 | 1.377–4.050 | 100 |
8-OHdG | 0.000 | 2.056 | 1.448–2.919 | 10 |
8-isoprostane | 0.003 | 1.512 | 1.152–1.987 | 10 |
CXCL 10 | 0.030 | 1.224 | 1.020–1.468 | 10 |
Eotaxin | 0.014 | 1.165 | 1.032–1.316 | 1 |
RANTES | 0.036 | 1.116 | 1.007–1.238 | 1 |
IC/BPS (ESSIC type 2) vs. IC/BPS (ESSIC type 1) | ||||
8-OHDG | 0.001 | 1.456 | 1.161–1.826 | 10 |
Urine Cytokines * | Grade of Glomerulation | MBC | VAS | ICSI | ICPI | OSS |
---|---|---|---|---|---|---|
8-OHdG | 0.217 | −0.234 | n.s. | n.s. | n.s. | n.s. |
8-isoprostane | 0.190 | −0.237 | n.s. | n.s. | n.s. | n.s. |
TAC | n.s. | −0.275 | n.s. | −0.276 | n.s. | −0.206 |
MCP-1 | 0.205 | −0.268 | n.s. | n.s. | n.s. | n.s. |
RANTES | n.s. | −0.344 | n.s. | n.s. | n.s. | n.s. |
CXCL 10 | n.s. | −0.305 | n.s. | n.s. | n.s. | n.s. |
Eotaxin | n.s. | −0.350 | n.s. | n.s. | n.s. | n.s. |
MIP-1β | n.s. | −0.249 | n.s. | n.s. | n.s. | n.s. |
IL-8 | −0.207 | n.s. | n.s. | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.-H.; Jhang, J.-F.; Ho, H.-C.; Chiou, D.-Y.; Kuo, H.-C. Urine Oxidative Stress Biomarkers as Novel Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2022, 10, 1701. https://doi.org/10.3390/biomedicines10071701
Jiang Y-H, Jhang J-F, Ho H-C, Chiou D-Y, Kuo H-C. Urine Oxidative Stress Biomarkers as Novel Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines. 2022; 10(7):1701. https://doi.org/10.3390/biomedicines10071701
Chicago/Turabian StyleJiang, Yuan-Hong, Jia-Fong Jhang, Han-Chen Ho, Dan-Yun Chiou, and Hann-Chorng Kuo. 2022. "Urine Oxidative Stress Biomarkers as Novel Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome" Biomedicines 10, no. 7: 1701. https://doi.org/10.3390/biomedicines10071701