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Abstract: The available treatments for cholestatic liver fibrosis are limited, and the disease often
progresses to liver cirrhosis. Tamoxifen is a selective modulator of estrogen receptors, commonly
used in breast cancer therapy. A recent in vitro study showed that tamoxifen deactivates hepatic
stellate cells, suggesting its potential as an antifibrotic therapeutic, but its effects in vivo remain
poorly investigated. In the present study, we show that tamoxifen protects against the cholestatic
fibrosis induced by a diet supplemented with 0.025% 3,5-diethoxycarbonyl-1,4-dihydrocollidine
(DDC). Mice fed with a DDC-supplemented diet for four weeks and treated with tamoxifen
developed a significantly milder degree of liver fibrosis than vehicle-treated mice, as evidenced
by a lower percentage of Sirius red-stained area (60.4% decrease in stained area in male and
42% decrease in female mice, p < 0.001 and p < 0.01, respectively) and by lower hydroxyproline
content. The finding was further confirmed by qPCR analysis, which showed a lower expression
of genes for Collal, Acta2, Sox9, Pdgf, and Krt19, indicating the inhibitory effect on hepatic stellate
cells, collagen production, and biliary duct proliferation. The degree of protection was similar
in male and female mice. Tamoxifen per se, injected into standard-diet-fed mice, increased
the expression of genes for 116 (p < 0.01 and p < 0.001 in male and female mice, respectively)
and TgfB (p < 0.01 for both sexes), and had no adverse effects. We showed that tamoxifen sex-
independently protects against cholestatic DDC-induced liver fibrosis. The increased expression
of 116 and Tgfp seems to be a plausible protective mechanism that should be the primary focus
of further research.

Keywords: liver fibrosis; tamoxifen; DDC model; cholestatic liver disease

1. Introduction

Primary sclerosing cholangitis and primary biliary cholangitis are two major types
of cholestatic liver disease affecting approximately 200-500 individuals per million in-
habitants [1]. Currently, available treatments are limited, and the disease often slowly
progresses to liver cirrhosis, at which point liver transplantation remains the only available
therapy. Unfortunately, the recurrence of the disease occurs in a significant number of trans-
plant recipients. The pathogenesis of cholestatic liver disease is initiated by damage in the
small intrahepatic biliary ducts, which is followed by their proliferation and inflammatory
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response, leading to the activation of hepatic stellate cells. The activated hepatic stellate
cells start expressing alpha smooth muscle actin (¢(SMA), proliferate, and differentiate into
collagen-secreting myofibroblasts [2,3].

The most common animal model used to study cholestatic disease is a diet containing
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which induces hepatobiliary injury and
closely mimics key events in the development of biliary fibrosis [4,5]. Exposure to a DDC-
supplemented diet causes progressive accumulation of protoporphyrin, which is excreted
by bile, leading to the obstruction of the lumen of the smaller branches of the biliary tree,
which is followed by their proliferation, inflammatory response, and the development of
hepatic fibrosis [6].

Tamoxifen is a selective modulator of estrogen receptors, commonly used in breast
cancer therapy. It acts by competing with estradiol for the binding site [7]. A recent
in vitro study showed that tamoxifen mechanically deactivates hepatic stellate cells,
suggesting its potential as an antifibrotic therapeutic [8]. However, the antifibrotic
effects of tamoxifen in vivo remain poorly investigated. Kulcsar et al. reported that
tamoxifen has a protective role in a rat model of carbon tetrachloride-induced fibro-
sis [9], but in a later research, Xu et al. found the opposite effect [10]. Studies on
murine models have suggested that tamoxifen might have a hepatoprotective role
in lipopolysaccharide (LPS)-induced acute liver failure, steatosis, and non-alcoholic
steatohepatitis [11,12].

In addition to its use in a clinical setting, tamoxifen is also used in basic biomedical
research, where it is applied in transgenic mouse strains that use the Cre/lox system
to activate or inhibit selected gene targets in an inducible manner [13]. The inducible
modulation of gene expression following the application of tamoxifen has led to many
breakthrough scientific discoveries, but constant caution is necessary, as tamoxifen
per se is not an inert substance and can cause confounding effects. Studies of liver
fibrosis performed in such transgenic animals require the administration of multiple
tamoxifen injections [14], which imposes the need to clearly define the effects of
tamoxifen on fibrogenic processes in order to avoid biased experimental design. Of
special importance are the findings of previous investigations that have established
the modulatory role of tamoxifen on the expression of transforming growth factor
B (TGFB) [15,16]. This cytokine is involved in fibrogenic hepatic processes, and the
findings of recent studies suggest that it might have an inhibitory effect on bile duct
proliferation, which is of critical importance for the development of DDC-induced
cholestatic fibrosis [17,18].

In the present study, we demonstrate that tamoxifen treatment ameliorates DDC-
induced liver fibrosis, and we analyze its modulatory effect on the initial damage of
biliary ducts and subsequent fibrogenic pathways. As tamoxifen effects are often sex-
dependent [15], we have conducted experiments on both female and male animals to define
possible sexual dimorphism.

2. Materials and Methods
2.1. Mice

All the animal experiments in this study were approved by the National Ethics Com-
mittee. We adhered to all the relevant guidelines and regulations for the use of laboratory
animals (EU Directive 2010/63/EU for animal experiments, the National Institutes of
Health Guide for the Care and Use of Laboratory animals) and ARRIVE (Animal Research:
Reporting In Vivo Experiments) guidelines for reporting animal research. Male and female
6- to 8-week-old C57Bl/6 mice were used in these experiments. The mice were bred and
housed in the animal facility of the Croatian Institute for Brain Research, School of Medicine,
University of Zagreb (Zagreb, Croatia) under standard conditions.
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2.2. DDC-Food Supplementation

Standard food pellets (4RF21) and same pellets supplemented with 0.1% and with
0.025% DDC (Sigma-Aldrich, Burlington, MA, USA, cat. No.: 137030) were obtained from
Mucedola (Milan, Italy).

2.3. Fibrosis Induction and Experimental Design

The mice were divided into four groups. The effect of tamoxifen on fibrosis develop-
ment was investigated in two DDC-fed groups. These groups (N = 7-13 animals per group)
were fed with 0.025% DDC-supplemented pellets (0.1% DDC-supplemented pellets were
used in the initial experiment, see below) for four weeks and were given either tamoxifen
(Sigma-Aldrich, Burlington, MA, USA, cat. no. T5648) (75 pg/g) or vehicle (corn oil,
Sigma-Aldrich, Burlington, MA, USA, cat. No. C8267) intraperitoneally per day, starting
one day after introducing DDC feeding and ending one day before sacrifice. The effect
of tamoxifen per se was studied in two standard diet-fed groups that were given either
tamoxifen or vehicle (N = 4 animals per group) in the same manner as in the DDC-fed
groups) [19,20]. At the experimental endpoint, the mice were sacrificed, and blood (for
determination of aminotransferase activities in sera) and liver tissue samples (for gPCR
analysis, histology, immunohistochemistry, and hydroxyproline content determination)
were harvested and stored until analysis. In accordance with the institutional standard of
care and ethical policy, the health of the animals was monitored each day, and animals that,
due to health deterioration, reached the criteria for a humane endpoint were immediately
excluded from the experiment and euthanized. The euthanasia was necessary only in mice
fed 0.1% DDC supplementation.

2.4. Determination of Hydroxyproline Content in Liver Tissue

The hydroxyproline content in the liver tissue was determined using a commercial
kit according to the manufacturer’s instruction (Hydroxyproline Assay Kit, cat. No.
MAKO008, Sigma-Aldrich, Burlington, MA, USA) with slight modification [21]. Briefly,
livers were snap-frozen in liquid nitrogen and stored at —80 °C until the analysis. After
being weighed, the livers were homogenized in ultrapure water (10 mg of tissue per
100 pL of water). Following homogenization, an equal volume of 12 M HCL was added,
and samples were transferred to a pressure-tight polypropylene vial and hydrolyzed
at 100 °C for 20 h. After cooling the samples and centrifugation (10,000 x g for 3 min,
room temperature), the supernatant was transferred to a new tube and completely
dried under a vacuum at 60 °C. After that, the samples were incubated in 100 pL of
Chloramine T/Oxidation Buffer Mixture at room temperature for 5 min, and then we
added 100 pL of freshly diluted 4-(dimethylamino) benzaldehyde (DMAB) reagent. After
incubation (90 min at 60 °C), the absorbance was read at 560 nm, and the concentration
was determined using a standard curve obtained by the measurement of hydroxyproline
standards provided in the kit.

2.5. Histology—Sirius Red Staining

The liver tissue samples were fixed in 4% paraformaldehyde overnight and dehydrated
in increasing ethanol concentrations (70%, 96%, and 100%), transferred to benzene for
30 min, and embedded in paraffin overnight. Sections were cut (5 um) with a rotational
microtome (Leica SM 2000 R, Leica Biosystems, Nussloch, Germany), and finally stained
with Sirius red dye. Two blinded researchers (D.S. and T.K.) independently analyzed the
slides under a light microscope (Axiovert 200; Carl Zeiss, Oberkochen, Germany) equipped
with a camera. Photographs were taken, and the red-stained surface area was quantified
using the Image J processing program (Image] 1.52a) [22].
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2.6. Immunohistochemistry

The liver sections were incubated overnight with primary rabbit anti-aSMA (D4K9N,
Cell Signaling #19245, Danvers, MA, USA) or rabbit anti-keratin19 (D4G2, Cell Signaling
#12434) antibody, which is specific for both keratin 17 and keratin 19, but in the liver, keratin
19 is predominant [23]. After washing, the slides were incubated with HRP (horseradish
peroxidase) conjugated secondary anti-rabbit antibody (MACH 1 Universal HRP-Polymer,
ref no. MRH5381.10, Biocare Medical, Pacheco, CA, USA) and stained with diaminoben-
zidine (DAB). The slides were then analyzed under a light microscope equipped with a
camera (Axiovert 200; Carl Zeiss, Oberkochen, Germany) [24].

2.7. Determination of Serum Activity of Aminotransferases

The serum was separated by centrifugation after clot formation and stored at —20 °C
until analysis. The alanine-aminotransferase (ALT) and aspartate-aminotransferase (AST)
serum levels were determined by standard laboratory techniques in a clinical diagnostic
laboratory using an Olympus AU400 analyzer [24].

2.8. Quantitative PCR Gene Expression Analysis

For quantitative PCR (qPCR), total RNA was isolated from the liver tissue samples
using TRI reagent (cat. no. T9424, Sigma-Aldrich, Burlington, MA, USA) and quantified on
a Nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). A High-
Capacity RNA-to-cDNA Kit (Applied Biosystems) was used for reverse transcription and
generation of cDNA. The cDNA was amplified by ABI Prism 7500 system (Applied Biosys-
tems, Waltham, MA, USA) using TagMan Gene Expression Master Mix (cat. no. 4369514,
Applied Biosystems, Waltham, MA, USA) and commercially available TagMan™ Gene Ex-
pression Assays (Applied Biosystems, Waltham, MA, USA). The analyzed genes included
Collal (Assay ID: Mm00801666_g1), Acta2 (Assay ID: Mm01546133_m1), Pdgfb (Assay ID:
Mm00440677_m1), TgfB1 (Assay ID: Mm01178820_m1), Il6 (Assay ID: Mm00446190_m1),
Sox9 (Assay ID: Mm00448840_m1), Tnfa (Assay ID: MmO00443258_m1), Hes1 (Assay ID:
Mm01342805_m1), Hey1 (Assay ID: Mm00468865_m1), and Krt19 (Assay ID: Mm00492980).
Gene expression was calculated using the AACT method and normalized to the expression
level of the housekeeping gene (GAPDH) using the standard-food-vehicle-treated group as
a reference [24].

2.9. Statistical Analysis

Data are presented as mean with SD. The normality of distribution was tested by the
Shapiro-Wilk test, and the difference between the groups was tested by Student’s t-test.
Variables with non-normal distribution (due to one outlier value greater than mean + 35D)
were log-transformed prior to the Student’s t-test calculation to normalize the distribution.
GraphPad Prism version 6 for Windows (GraphPad Software Inc., La Jolla, CA, USA)
software was used for analysis, and a p-value <0.05 was considered statistically significant.

3. Results
3.1. DDC-Supplementation Model—Dose Adjustment

The initial experiment was performed with 0.1% DDC-supplemented pellets, which
is the most common dose described in the literature [4,5]. However, under this treatment
schedule, more than 50% of the mice needed to be sacrificed within the first 10 days for
ethical reasons because of reaching the criteria for the humane endpoint. We ordered
new pellets from the supplier, supplemented with 0.025% DDC, and in the repeated
experiment, the new regiment allowed all animals to survive until the planned endpoint
of the experiment (4 weeks) without significant health deterioration. The DDC-fed mice
developed cholestatic liver fibrosis with all pathohistological, biochemical, and genetic
findings closely resembling those described in the literature. We assumed that a reduction
in the DDC content was necessary because DDC supplementation in industrially produced
pellets is more effective than manual laboratory supplementation described in the literature.
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3.2. Tamoxifen Treatment Ameliorates Liver Fibrosis Development

The DDC-fed mice (0.025% DDC supplementation) treated with tamoxifen developed a
significantly milder degree of liver fibrosis than vehicle-treated DDC-fed mice, as evidenced
pathohistologically by a lower percentage of Sirius red-stained area (p < 0.001 and p < 0.01
for male and female mice, respectively) and biochemically by lower hydroxyproline content
in the liver tissue (p < 0.05 for male and for female mice, Figure 1). The finding was further
confirmed by qPCR analysis, which showed lower gene expression of Collal, Acta2, and
Sox9, indicating the inhibitory effect on hepatic stellate cell activity and collagen production.
Tamoxifen also reduced the expression of Krt19, a characteristic marker of biliary duct
proliferation. These findings are further supported by lower aminotransferase activities
in the sera of tamoxifen-treated DDC-fed animals (Figure 2). The immunohistochemical
analysis of liver sections confirmed lower protein expression of both xSMA and KRT19
(Figure 3). Furthermore, tamoxifen treatment also prevented the DDC-induced increase in
the expression of the Pdgf gene and the Notch signaling pathway-related genes Hes1 and
Heyl. The latter effect was more pronounced in male mice. The effect of tamoxifen on DDC-
induced expression of pro-inflammatory genes for Tnfa (inhibition) and 116 (stimulation)
was significant only in female mice (Figure 4).
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Figure 1. Tamoxifen ameliorates DDC-induced fibrosis. Male or female mice were fed standard
or DDC-supplemented diet as indicated, and treated with vehicle (black bars) or tamoxifen (red
bars). Light microscope photograph of representative Sirius red-stained liver section for each group
is shown (A). Red area was quantified using Image J software and hydroxyproline content was
determined in liver tissue using the commercially available kit (B—E). Data represent mean + SD,
Student’s ¢-test was used for comparison between the groups, * p < 0.05, ** p < 0.01, *** p < 0.001,
NS—nonsignificant, TMX—tamoxifen, DDC—3,5-diethoxycarbonyl-1,4-dihydrocollidine.
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Figure 2. Tamoxifen treatment decreases aminotransferase activity in plasma and expression of genes
involved in pathogenesis of biliary fibrosis in liver tissue. Male or female mice were fed standard
or DDC-supplemented diet as indicated, and treated with vehicle (black bars) or tamoxifen (red
bars). Aminotransferase activity was determined in sera (A-D). Gene expression was determined
in liver tissue using qPCR (E-L). Data represent mean + SD, Student’s t-test was used for compar-
ison between the groups, * p < 0.05, ** p < 0.01, *** p < 0.001, NS—nonsignificant, ALT—alanine
aminotransferase, AST—aspartate aminotransferase, Collal—collagen lal, Acta2—actin alpha 2,
smooth muscle, Sox9 —SRY (sex-determining region Y)-box 9, Krt19—keratin 19, TMX—tamoxifen,
DDC—3,5-diethoxycarbonyl-1,4-dihydrocollidine.

3.3. Tamoxifen Increases Expression of 116 and TgfP in the Livers of Standard Diet-Fed Mice

The analysis of two standard diet-fed groups (without DDC) found no difference
between the tamoxifen- and vehicle-treated mice in liver histology (Figure 1), in liver
hydroxyproline content or serum aminotransferase activity, and in Collal, Acta2, Krt19,
and Sox9 gene expression (Figure 2), suggesting no toxic or profibrotic effect of tamoxifen
applied per se. This conclusion was further confirmed by the pathohistology of the liver
tissue, as no difference in collagen, Krt19, and «SMA expression was found between
the two standard diet-fed groups (Figures 1 and 3). On the other hand, treatment with
tamoxifen significantly increased the expression of 1/6 and TgfB in the livers of both male
and female standard diet-fed mice (p < 0.01 for both genes in any sex). No influence of
tamoxifen alone (without DDC) on the expression of genes associated with Notch signaling
pathway Hes1 and Hey1 or on Pdgf and Tnfa gene expression was found (Figure 4, p > 0.05
in both male and female mice).
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aSMA

KRT19

Figure 3. Tamoxifen treatment decreases protein expression of xSMA and KRT19. Mice were fed
standard or DDC-supplemented diet, and treated with tamoxifen or vehicle, as indicated. Liver
sections were first incubated with anti-aSMA or anti-KRT19 antibody as indicated, and then incubated
with HRP-conjugated secondary antibody and stained with diaminobenzidine (DAB). Standard diet-
fed mice had low expression of XSMA and KRT19 regardless of treatment. DDC-feeding increased
expression of xSMA and KRT19 in vehicle-treated mice, as shown by brown staining and tamoxifen
treatment significantly reduced this increase. Sections are from male mice, and the same pattern
was obtained in female mice (not shown). The anti-keratin antibody stains both keratin 17 and
keratin 19, but in liver, keratin 19 is predominant. xSMA—alpha smooth muscle actin, Krt19—Xkeratin
19, TMX—tamoxifen, DDC—3,5-diethoxycarbonyl-1,4-dihydrocollidine.
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Figure 4. Expression of inflammatory and Notch-pathway related genes. Male or female mice
were fed standard or DDC-supplemented diet as indicated, and treated with vehicle (black
bars) or tamoxifen (red bars). Gene expression of Tgf3, Pdgf (A-D), Tnf«, 116 (E-H), Hes1, and
Heyl (I-L) was determined in liver tissue using qPCR. Data represent mean + SD, Student’s
t-test was used for comparison between the groups, * p < 0.05, ** p < 0.01, *** p < 0.001, NS—
nonsignificant. Tgfp—transforming growth factor 3, Pdgf—platelet-derived growth factor,
Tnfa—tumor necrosis factor alpha, Il6—interleukin 6, Hesl—hes family bhlh transcription
factor 1, Heyl—Hairy/enhancer-of-split related with YRPW motif protein 1, TMX—tamoxifen,
DDC—3,5-diethoxycarbonyl-1,4-dihydrocollidine.

4. Discussion

In the present study, we further explore the antifibrotic effect of tamoxifen, which was
recently suggested by Cortes et al. in in vitro experiments [8]. We show, for the first time,
that tamoxifen has a protective effect in a DDC-induced model of cholestatic liver injury,
and that the ameliorative effect is of a similar degree in both male and female mice.

All major fibrotic indices in DDC-fed animals (histological, genetic, and biochemi-
cal) were milder in the group that received tamoxifen than in the vehicle-treated group.
Tamoxifen given alone (with a standard diet) did not have any influence on liver histol-
ogy, hydroxyproline content, or serum aminotransferase levels, suggesting no toxic or
profibrotic effect. It caused, however, an increase in Tgfp and 16 expression, whereas the
expression of all other investigated genes remained similar to the vehicle-treated group.

The increased expression of Tgfp following the tamoxifen treatment of standard diet-
fed animals is in accordance with previous reports about the effects of tamoxifen in various
other organs, such as the mammary gland, lungs, and aorta [15,16,25]. As TGFf{} is a well-
known contributor to the activation of hepatic stellate cells and fibrosis development [26],
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this effect seems contradictory. However, the protective effect of TGFf3 has recently been
reported in a bile duct ligation model [17]. Furthermore, it was described that specific
TGFp loss in epithelial cells does not contribute to fibrosis but does protect mice from
cholangiocarcinoma through an inhibitory effect on cholangiocyte proliferation in the DDC
animal model [18]. As the proliferation of cholangiocytes is important for the pathogenesis
of DDC-induced fibrosis, the protective effect of tamoxifen might be mediated through
TgfB expression.

Similar to TgfB, the expression of Il6 was also increased in tamoxifen-treated standard
diet-fed animals. The profibrogenic role of IL-6 has been described in the liver and other
organs [27], but its effect on cholestatic liver fibrosis seems to be protective. Mair et al.,
reported that inhibition of the IL-6 signaling pathway by the conditional inactivation
of Stat3 in hepatocytes and cholangiocytes strongly aggravates fibrosis in the mdr2=/~
transgenic fibrosis model [28]. A similar effect was shown by Plum et al. in the DDC
model [29]. It is important to notice that, in our experiments, there was no significant
difference in the expression of Tgff and II6 between the vehicle- and tamoxifen-treated
DDC-fed animals, as a similar increase in expression occurred in both groups. We assume
that in the vehicle-treated group, the increased expression occurred due to DDC, but in the
tamoxifen-treated group, the increase was also mediated by tamoxifen, since the increase
was larger than expected for the degree of fibrosis. Altogether, we may hypothesize that
the protective effect of tamoxifen might be mediated through a stimulatory effect on /6 and
TgfB secretion, shown in standard diet-fed mice, suggesting these pathways as a primary
focus for further research (Figure 5).
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Figure 5. Proposed mechanism of the protective effect of tamoxifen. Tamoxifen treatment leads to
Increased expression of TGF-{3 which is one of the activation signals for hepatic stellate cells, but this
action is overridden through inhibitory effect on cholangiocyte proliferation. Furthermore, increased
expression of IL-6 promotes survival of both hepatocytes and cholangiocytes thereby decreasing
the profibrotic activation of Kupffer and hepatic stellate cells. Tgf3—transforming growth factor 3,
Pdgf—platelet-derived growth factor, ll6—interleukin 6, Hesl—hes family bhlh transcription factor
1, Heyl—Hairy/enhancer-of-split related with YRPW motif protein 1, TMX—tamoxifen, DDC—3,5-
diethoxycarbonyl-1,4-dihydrocollidine; KC—Kupffer cel; HSC—hepatic stellate cell; HC—hepatocyte;
CC—cholangiocyte. Created with BioRender.com, accessed on 24 April 2022.
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The upregulation of PDGF is a characteristic finding in experimental liver fibrosis
models as well as in human liver fibrotic samples. PDGF exerts a potent proliferative effect
on hepatic stellate cells, leading to increased extracellular matrix production. Inhibitors of
the PDGF pathway show a promising effect in in vitro experiments, but their use in vivo
is still hampered by the lack of efficiency as well as by unwanted side effects [30,31]. As
expected, DDC feeding upregulated PDGF expression in our experiments, and we also
found a lower expression of PDGF in tamoxifen-treated DDC-fed animals. However,
tamoxifen per se, applied to standard diet-fed animals, had no influence on Pdgf expression.
Therefore, we can exclude the possibility that tamoxifen acts through a direct blockade of
PDGEF expression. The lower expression of PDGF found in tamoxifen-treated DDC-fed mice
is most probably a secondary consequence of lower cholangiocyte proliferation mediated
by the previously described effects of IL-6 and TGF-f3, but the possibility that tamoxifen
acted protectively by interfering with pathways that mediate DDC-induced overexpression
of PDGF cannot be excluded completely.

Investigations conducted in the last decade have established the activation of the
Notch signaling pathway as an important contributor to liver fibrosis initiation and progres-
sion. The increased expression of Notch-related genes Hes and Hey occurs in various liver
fibrosis experimental models and in human fibrotic samples [32-34]. Patients suffering
from Alagille syndrome, caused by a mutation in the gene for the Notch signaling path-
way, are less sensitive to hepatic fibrosis development [35]. Novel findings also suggest
Notch involvement in the progression of liver cirrhosis and development of hepatocellu-
lar carcinoma [36,37]. The inhibitors of gamma secretase, a key enzyme in Notch signal
transduction, were reported to ameliorate liver fibrosis in animal models, but the lack of
specificity still prevents the use of such therapy in humans [38]. Our experiments showed
that the Notch signaling pathway is induced in the DDC model, as evidenced by an in-
crease in the primary downstream genes Hes1 and Hey1, and that tamoxifen decreases this
activity when applied to DDC-fed mice. The effect was more visible in male mice. However,
tamoxifen per se, applied to standard diet-fed animals, had no inhibitory effect on the
expression of Notch genes, suggesting no direct interaction with Notch pathway activity.
Similar to PDGEF, the lower activity of the Notch signaling pathway found in tamoxifen-
treated DDC-fed mice is most probably a secondary consequence of lower cholangiocyte
proliferation, mediated by the effects of IL-6 and TGF-f3, but the possibility of indirect
interference should not be completely excluded. To the best of our knowledge, there are
no published studies so far that reported interaction between the tamoxifen and Notch
signaling pathway:.

The findings of previous studies indicate that tamoxifen can often induce different
effects in male and female animals. For example, a sex-dependent effect was recently
reported in the glucose tolerance model and in the unilateral ureteral obstruction model of
kidney fibrosis [39,40]. However, we found a similar degree of antifibrotic effect in both
male and female mice, suggesting no major sex dependency. Nevertheless, there were
minor discrepancies between male and female mice in the expression of genes associated
with fibrogenic mechanisms. Particularly, the expression of genes for Notch-related Hes1
and Heyl decreased more in male mice, while the expression of Tnfa was decreased only in
female mice.

In basic medical research, tamoxifen is extensively used to induce the Cre recombinase
system, enabling the researcher to activate or inhibit selected molecular targets at a specific
time point, specific tissue, or cell line. In the field of liver fibrosis, a particularly large num-
ber of tamoxifen injections are used to ensure the Cre recombinase induction in activated
hepatic stellate cells [14,41]. Our results indicate that there are possible confounding inter-
actions of tamoxifen, especially on IL-6- and TGF-3-mediated effects, emphasizing a need
for caution in experimental design and result interpretation. In the present investigation,
we used the lower dose of tamoxifen commonly used in Cre induction experiments, finding
no gross adverse effects. The toxicity and effectiveness of tamoxifen are variously reported
in the literature and are strain-dependent. Some researchers reported no toxicity when
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this or higher doses were applied to B6 wild-type mice [19,42], while in some transgenic
mice, serious toxicity occurred even with lower doses [43]. Therefore, to define the further
translational potential of tamoxifen treatment, it is also necessary to assess the effectiveness
of various doses and application routes.

5. Conclusions

We showed that tamoxifen sex-independently protects against cholestatic DDC-induced
liver fibrosis. We have not defined the precise mode of action, but the increased expression
of 116 and Tgff seems to be a plausible protective mechanism that should be the primary
focus of further research. The proposed mechanism of action is shown schematically
in Figure 5. The possibility of protection through an inhibitory effect on DDC-induced
expression of Pdgf and Notch-related genes should also be considered.
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