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Abstract: Gasdermin D (GSDMD) is the key executor of pyroptotic cell death. Recent studies suggest
that GSDMD-mediated pyroptosis is involved in atherosclerotic plaque destabilization. We report that
cleaved GSDMD is expressed in macrophage- and smooth muscle cell-rich areas of human plaques.
To determine the effects of GSDMD deficiency on atherogenesis, ApoE−/− Gsdmd−/− (n = 16) and
ApoE−/− Gsdmd+/+ (n = 18) mice were fed a western-type diet for 16 weeks. Plaque initiation and
formation of stable proximal aortic plaques were not altered. However, plaques in the brachiocephalic
artery (representing more advanced lesions compared to aortic plaques) of ApoE−/− Gsdmd−/− mice
were significantly smaller (115 ± 18 vs. 186 ± 16 × 103 µm2, p = 0.006) and showed features of
increased stability, such as decreased necrotic core area (19 ± 4 vs. 37 ± 7 × 103 µm2, p = 0.03)
and increased αSMA/MAC3 ratio (1.6 ± 0.3 vs. 0.7 ± 0.1, p = 0.01), which was also observed in
proximal aortic plaques. Interestingly, a significant increase in TUNEL positive cells was observed
in brachiocephalic artery plaques from ApoE−/− Gsdmd−/− mice (141 ± 25 vs. 62 ± 8 cells/mm2,
p = 0.005), indicating a switch to apoptosis. This switch from pyroptosis to apoptosis was also
observed in vitro in Gsdmd−/− macrophages. In conclusion, targeting GSDMD appears to be a
promising approach for limiting the transition to an inflammatory, vulnerable plaque phenotype.

Keywords: gasdermin D; pyroptosis; inflammation; atherosclerosis

1. Introduction

Vulnerable atherosclerotic plaques are characterized by a large necrotic core formed by
excessive necrotic cell death and inflammation [1]. Plaque cells can undergo different types
of regulated necrosis although their significance in atherosclerosis is not always clear-cut.
One of the best-defined forms of regulated necrosis is pyroptosis, a pro-inflammatory form
of regulated cell death that is characterized by the formation of plasma membrane pores via
members of the gasdermin (GSDM) protein family [2,3]. Six members of this family have
been identified, including gasdermin D (GSDMD). GSDMD is N-terminally (NT) cleaved
and is activated by caspase 1 and caspase 4/5 (homologous to caspase 11 in mouse) [3–5].
Subsequently, NT-GSDMDs oligomerize, translocate to the cell membrane and induce pore
formation, which allows the release of cellular content and pro-inflammatory cytokines
such as IL-1β and IL-18, and finally results in membrane disruption and cell lysis [6,7].

In canonical pyroptosis induction, cleavage and activation of caspase 1 is mediated
by inflammasomes, which are large supramolecular complexes that sense intracellular
danger signals through nucleotide-binding oligomerization (NOD)-like receptor sensor
molecules [8]. NLRP3 (NOD-like, leucine-rich repeat (LRR) and pyrin domain containing
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receptor 3) inflammasome-mediated pyroptosis is currently the best characterized pathway
described in atherosclerotic plaques. Activation of the NLRP3 inflammasome can be ini-
tiated by oxidized LDL, cholesterol and calcium phosphate crystals inducing lysosomal
lysis, cathepsin release, and potassium efflux [9–12]. In human atherosclerotic plaques,
mRNA and protein levels of caspase 1, NLRP3, IL-1β, and IL-18 are increased compared to
normal arteries [13–16]. Immunohistochemical analyses of human carotid plaques have
revealed that NLRP3 immunoreactivity colocalizes with CD68-positive macrophages and
occasionally with smooth muscle cells [15,16], and that plaque rupture is associated with
strong immunoreactivity for caspase 1 [17]. In mice, several studies have demonstrated
beneficial effects on atherogenesis and plaque stability when components of the NLRP3
inflammasome, caspase 1 activity, IL-1 or IL-18 are lacking [18–26]. Together, these studies
suggest that modulation of NLRP3- and caspase 1-mediated pyroptosis offers significant
health benefits for patients with advanced atherosclerosis [27]. This assumption is sup-
ported by the CANTOS trial showing beneficial effects of IL-1β antibody canakinumab
in statin-treated patients at risk [28]. In contrast to canonical pyroptosis, caspase 4/5 and
caspase 11 can be directly activated without the need for an inflammasome, resulting in
non-canonical pyroptosis induction [29,30]. Recently, caspase 11 deficiency was reported to
reduce plaque burden and macrophage infiltration in ApoE−/− mice [30], demonstrating
that also non-canonical pyroptosis plays a role in atherogenesis.

GSDMD is the common executor of both canonical pyroptosis (mediated by NLRP3
and other inflammasomes) and non-canonical pyroptosis. Moreover, GSDMD is required
for IL-1β release, not only during pyroptosis but also in viable macrophages [7,31]. In-
terestingly, Gsdmd mRNA is upregulated in peripheral blood monocytes from patients
with coronary artery disease and expression of GSDMD and NT-GSDMD is increased in
ApoE−/− mice fed a high fat diet as compared to chow-fed controls [30]. These experiments
indicate that GSDMD is actively involved in pyroptosis during atherogenesis in both hu-
mans and mice, and thus represents a promising target in plaques for inhibiting pyroptosis
and inflammation. Genetic deletion of Gsdmd or pharmacological inhibition with necro-
sulfonamide reduces infarct size and heart failure in a mouse model of acute myocardial
infarction [32], underlining the involvement of GSDMD in cardiovascular disease and the
possibility for using it as a pharmacological target in atherosclerosis. Therefore, we aimed
to evaluate the impact of Gsdmd gene deletion in atherogenesis. First, the effects of Gsdmd
gene deletion were evaluated in macrophages and smooth muscle cells in vitro. We also
analyzed the expression of cleaved GSDMD in human carotid lesions. Next, the effect of
Gsdmd deletion on advanced atherogenesis was evaluated in ApoE−/− mice.

2. Materials and Methods
2.1. Human Atherosclerotic Plaques

Human carotid endarterectomy specimens were obtained from patients (71 ± 3 years,
70% men) with a carotid stenosis of >70% [33]. Specimens were fixed in 4% formaldehyde
(pH 7.4) within 2 min after surgical removal and paraffin embedded. To identify specific cell
types expressing cleaved GSDMD, double immunohistochemical staining was performed
using anti-cleaved GSDMD (Cell signaling, 36425, Danvers, MA, USA) combined with anti-
CD68 (clone PG-M1, ab9498, Abcam, Cambridge, UK), anti-α-smooth muscle actin (αSMA;
clone 1A4, A2547, Sigma-Aldrich, St. Louis, MO, USA), or anti-CD31 (clone JC/70A, ab783,
Abcam, Cambridge, UK). Images were acquired with an Olympus BX43 microscope and
quantified using Image J software (National Institutes of Health, Bethesda, MD, USA).

2.2. Mice

Standard ApoE−/− mice (Jackson Laboratory, 002052, Bar Harbor, ME, USA) were
crossbred with Gsdmd−/− mice (Genentech, South San Francisco, CA, USA), carrying a 1 bp
insertion in the Gsdmd coding sequence (GAGTGATGTTGTCAGGCATGGGA becomes
GAGTGATGTTtGTCAGGCATGGGA) created with CRISPR/Cas9. Litters were screened
for the Gsdmd−/− genotype by PCR analysis using Gsdmd-specific primers (forward primer:
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GTTTCTTGTCGATGGGAACATTCAG, reverse primer: TGAGTCACACGCAGTATA) fol-
lowed by Sanger sequencing using the reverse primer. Genotyping of the ApoE alleles was
performed by PCR according to the instructions from the Jackson Laboratory. Thereafter,
ApoE−/− Gsdmd−/− mice and ApoE−/− Gsdmd+/+ controls (all females, 6–8 weeks old) were
fed a western-type diet (WD; TD.88137 supplemented with 21% fat and 0.2% cholesterol,
Envigo, Indianapolis, IN, USA) to induce plaque formation. The animals were housed in
a temperature-controlled room with a 12 h light/dark cycle and had free access to water
and food. After 16 weeks WD, an overdose of sodium pentobarbital (250 mg/kg, i.p.) was
administered and blood samples were collected via the retro-orbital plexus. Plasma levels
of total cholesterol were measured using a commercially available kit (Randox laboratories,
Crumlin, UK). Blood leukocyte subsets were analyzed on a BD accuri C6 flow cytometer
as previously described [34]. All experiments were approved by the Ethical Committee of
the University of Antwerp (Code 2019-24) and carried out in accordance with European
Directive 2010/63/EEC.

2.3. Histological Analyses

The thoracic aorta was stained en face with Oil Red O to determine lipid burden. The
heart, brachiocephalic artery, and proximal ascending aorta of ApoE−/− Gsdmd−/− and
ApoE−/− Gsdmd+/+ mice were fixed in 4% formaldehyde (pH 7.4) for 24 h, dehydrated
overnight in 60% isopropanol, and subsequently embedded in paraffin. The proximal
ascending aorta was marked on the distal arch end and the brachiocephalic artery on the
distal carotid end to ensure that they were always cut on the proximal side. Serial cross-
sections (5 µm) of the proximal parts of the brachiocephalic artery, proximal aorta and aortic
root were prepared in random for histological analyses. Atherosclerotic plaque size and
necrotic core area (defined as acellular areas with a threshold of 3000 µm2) were analyzed
on hematoxylin-eosin (H&E) stained sections. Total collagen content was measured on
Sirius red stained sections. Apoptosis was analyzed using an ApopTag Plus Peroxidase
In Situ Apoptosis kit (Millipore, S7101, Burlington, VT, USA). For immunohistochemistry,
the following antibodies were used: anti-MAC3 (BD Pharmingen, 550292, San Diego, CA,
USA) and anti-α-smooth muscle actin (αSMA, 12547, Sigma-Aldrich, St. Louis, MO, USA).
Images were acquired with an Olympus BX43 microscope, which was calibrated for each
magnification. Plaque size was measured based on pixels per µm, which was determined
during the calibration of the microscope. Per mouse, one section was analyzed. Plaques
were manually delineated in Image J software (National Institutes of Health) to establish
the region of interest (ROI). Further analyses within the ROIs were performed using color
thresholding or manual counting (apoptotic cells).

2.4. Cell Culture

Bone marrow-derived macrophages (BMDMs) were harvested by flushing bone mar-
row of the femur with a 25 Gauge needle and heparinized (10 IU/mL) RPMI 1640 medium
(Gibco Life Technology, Merelbeke, Belgium). After washing and filtration, cells were
cultured in RPMI 1640 medium supplemented with Glutamax (Gibco Life Technology,
Merelbeke, Belgium) and 15% L929-cell conditioned medium (LCCM) containing monocyte
colony stimulating factor (M-CSF) for 7 days in 95% air/5% CO2 until 80–90% confluency
was reached. To induce pyroptosis, BMDMs were primed with 100 ng/mL lipopolysac-
charide (LPS, Sigma-Aldrich, St. Louis, MO, USA) for 4 h followed by treatment with
2.5–20 µM nigericin (Enzo Life Sciences, BML-CA421-0005, Brussels, Belgium) or 5 mM
ATP (Calbiochem, 1191, Sigma-Aldrich, St. Louis, MO, USA). Vascular smooth muscle cells
(VSMCs) were isolated as previously described [35,36]. Briefly, aortas were incubated in
an enzyme solution containing 1 mg/mL collagenase type II (Worthington, Lakewood,
NJ, USA), 1 mg/mL soybean trypsin inhibitor (Worthington, Lakewood, NJ, USA), and
0.744 units/mL elastase (Worthington) for 15 min at 37 ◦C to remove the adventitia. Subse-
quently, aortas were placed in a fresh enzyme solution for 75 min at 37 ◦C. Isolated cells
were collected, washed, and resuspended in DMEM/F12 medium (Gibco Life Technology)
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supplemented with 20% heat-inactivated FBS (Gibco Life Technology). Cells were used
from passage 4 till 10 and cultured in DMEM/F12 medium supplemented with 10% heat-
inactivated FBS. To induce pyroptosis, VSMCs were primed with 50 ng/mL TNFα (Abcam,
ab9740, Cambridge, UK) for 2 h followed by treatment with 5 mM ATP (Calbiochem, 1191)
for 2 h. Alternatively, non-primed cells were treated with 300 µg/mL oxidized LDL (oxLDL,
L34357, Life Technologies, Carlsbad, CA, USA) for 48 h. Necrosis was evaluated by label-
ing BMDMs or VSMCs with 1 µg/mL propidium iodide (PI, Molecular Probes, Eugene,
OR, USA) and 10 µg/mL Hoechst (Life Technologies, Carlsbad, CA, USA), followed by
visualization of PI/Hoechst-labeled cells using a Celena S digital Imaging System (Logos
Biosystems, Dongan-gu, Anyang-si, Korea). To measure the release of IL-1β and IL-18,
primed BMDMs were treated with 10 µM nigericin. After 2 h, cell supernatant was collected
and cellular debris was removed by centrifugation. IL-1β and IL-18 secretions were quanti-
fied in the supernatant using a mouse IL-1β Quantikine ELISA kit (R&D Systems, MLB00C,
Minneapolis, MN, USA) and IL-18 mouse ELISA kit (Invitrogen, BMS618-3, Waltham, MA,
USA), respectively.

2.5. Flow Cytometry

Apoptosis was quantified with TdT-mediated dUTP-X nick end labeling (TUNEL).
Briefly, BMDMs were detached with 0.25% trypsin-EDTA (Thermo Fischer Scientific,
25200072, Waltham, MA, USA). Detached BMDMs were fixed in 4% paraformaldehyde
for 1 h at room temperature. After washing with PBS, BMDMs were permeabilized with
0.1% Triton X-100 in 0.1% sodium citrate solution for 2 min on ice. BMDMs were washed
again and incubated with TUNEL reaction mixture using an in situ cell death detection kit
(fluorescein, 11684795910, Roche, Switzerland) for 1 h at 37 ◦C. The samples were washed
twice with FACS buffer (PBS with 0.1% bovine serum albumin and 0.05% sodium azide)
and measured in the FL-1 channel on a BD Accuri C6 flow cytometer. At least 10,000 cells
were measured. Debris was always gated out based on FSC/SSC scatter. Positive con-
trols consisted of BMDMs treated with TNFα combined with cycloheximide. Negative
controls consisted of untreated BMDMs. Unstained controls were included to exclude
background signal.

2.6. Western Blotting

Tissues were homogenized in RIPA buffer containing protease and phosphatase in-
hibitors. Protein concentrations were determined using the BCA method. Samples were
then 1:1 diluted in Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) containing 5%
β-mercaptoethanol (Sigma-Aldrich) and heat-denatured for 5 min at 100 ◦C. Samples were
loaded on Bolt 4–12% Bis-Tris gels (Invitrogen) and after electrophoresis transferred to
Immobilon-FL PVDF membranes (Millipore) according to standard procedures. Subse-
quently, membranes were blocked for one hour in Odyssey Li-COR blocking buffer. After
blocking, membranes were probed with primary antibodies diluted in Odyssey Li-COR
blocking buffer followed by 1 h incubation with IRDye-labeled secondary antibodies at
room temperature. Membranes were visualized with an Odyssey SA infrared imaging
system (Li-COR Biosciences, Lincoln, NE, USA).

The following primary antibodies were used: rabbit anti-GSDMD (Abcam, ab219800,
Cambridge, UK), rabbit anti-cleaved GSDMD (Cell signaling, 10137, Danvers, MA, USA),
rabbit anti-NLRP3 (Abcam, ab263899), rabbit anti-caspase 1 (Abcam, ab179515), and mouse
anti-β-actin (Abcam, ab8226).

2.7. Statistical Analyses

Statistical analyses were performed using Graphpad Prism 9. All data were expressed
as mean ± SEM, except in boxplots where medians are shown. Dots represent the number
of samples from independent experiments or individual mice. Statistical tests are specified
in the text and figure legends. Differences were considered significant when p < 0.05.
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3. Results

3.1. Pyroptosis Is Inhibited in Gsdmd−/− BMDMs but a Switch to Apoptosis Is Induced

Because pyroptosis is mainly characterized in myeloid cells [37,38], BMDMs were
isolated from Gsdmd−/− and Gsdmd+/+ mice. First, GSDMD deficiency was confirmed in
Gsdmd−/− BMDMs via Western blotting (Figure 1A). To induce pyroptosis, BMDMs were
primed with LPS followed by treatment with nigericin, a canonical pyroptosis inducer.
Significant induction of cell death was observed in Gsdmd+/+ cells while Gsdmd−/− cells were
clearly more resistant to pyroptosis induction (Figure 1B). The release of IL-1β and IL-18
was quantified in BMDM supernatant after LPS priming and treatment with nigericin. Both
IL-1β and IL-18 were released by Gsdmd+/+ BMDMs and this was significantly decreased
in Gsdmd−/− BMDMs (Figure 1C). IL-1β and IL-18 were not detected in supernatant of
untreated BMDMs (data not shown). LPS priming induced the expression of NLRP3
and procaspase 1, both in Gsdmd+/+ and Gsdmd−/− BMDMs (Figure 1D). Accordingly,
Western blot analysis further showed that LPS-primed Gsdmd+/+ BMDMs treated with 2.5 to
20 µM nigericin expressed GSDMD and cleaved GSDMD, while Gsdmd−/− BMDMs did not
(Figure 1E). Moreover, both Gsdmd+/+ and Gsdmd−/− BMDMs expressed procaspase 1 and,
upon treatment with nigericin, the active caspase 1 p10 subunit was expressed (Figure 1E).
Altogether, these results confirm that GSDMD-pore formation and pyroptosis induction
are inhibited in Gsdmd−/− BMDMs while upstream NLRP3 assembly and procaspase 1
recruitment (and cleavage) are not affected.

Interestingly, the expression of caspase 1 p10 was significantly higher in Gsdmd−/−

BMDMs as compared to Gsdmd+/+ controls (Figure 1E). Because active caspase 1 can also act
in a pro-apoptotic fashion [39,40], a TUNEL assay was performed on LPS-primed BMDMs
after treatment with nigericin for 1 h (Figure 1F). A significant increase in TUNEL positivity
was observed after nigericin treatment in Gsdmd−/− BMDMs, while PI positivity was not
increased, indicating that the plasma membranes of Gsdmd−/− cells were intact but that
DNA fragmentation typical of apoptosis occurred. In contrast, TUNEL positivity did
not change in Gsdmd+/+ BMDMs after nigericin treatment while PI positivity did increase
significantly (Figure 1F). Similar findings were observed after treatment with ATP, another
classical caspase 1-dependent pyroptosis inducer (Figure 1G).

3.2. Gsdmd−/− VSMCs Are Less Sensitive to Pyroptosis Inducers

There is increasing evidence that pyroptosis is not limited to inflammatory
cells [22,41–43]. Therefore, VSMCs were isolated from Gsdmd+/+ and Gsdmd−/− mice.
Absence of GSDMD in Gsdmd−/− VSMCs was confirmed via Western blotting (Figure 2A).
To induce pyroptosis, VSMCs were primed with TNFα followed by ATP treatment. Cell
death increased significantly in Gsdmd+/+ VSMCs but not in Gsdmd−/− VSMCs (Figure 2B).
Similar to TNFα/ATP treatment, oxLDL, which is also reported to induce pyroptosis [12,44],
increased cell death significantly in Gsdmd+/+ VSMCs but not in Gsdmd−/− cells (Figure 2C).

3.3. Cleaved GSDMD Is Expressed in Human Carotid Lesions

To confirm that GSDMD is not only active in mice, cell-specific expression of cleaved
GSDMD was evaluated in human carotid lesions (Figure 3). In general, cleaved GSDMD
was expressed in the plaque, especially in the shoulder regions, and media (Figure 3B–D).
Double immunohistochemical staining of cleaved GSDMD and CD68 showed that GSDMD
is cleaved in plaque areas rich in macrophages, albeit not all CD68-positive cells contained
cleaved GSDMD (Figure 3B). On sections stained separately for cleaved GSDMD and
αSMA (Figure 3C), the positivity pattern appeared very similar. Indeed, double immuno-
histochemical staining of cleaved GSDMD and αSMA showed a clear overlapping of red
(cl-GSDMD) and purple (αSMA) signal, confirming colocalization of cleaved GSDMD and
smooth muscle cells. The CD31-positive intima delineated the vessel lumen (Figure 3D).
However, no cleaved GSDMD positivity was observed in CD31-positive endothelial cells.
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Figure 1. Pyroptosis is inhibited in Gsdmd−/− BMDMs and a switch to apoptosis occurs. Bone marrow-
derived macrophages (BMDMs) were isolated from Gsdmd+/+ and Gsdmd−/− mice. (A) Deficiency of
GSDMD in Gsdmd−/− BMDMs was confirmed via Western blotting. (B–D) Gsdmd−/− and Gsdmd+/+

BMDMs were primed with 100 ng/mL LPS for 4 h followed by treatment with 10 µM nigericin for 2
h. (B) Cell death was measured using propidium iodide (PI) labelling (two-way ANOVA followed
by Sidak’s multiple comparison, n = 5 independent experiments) and (C) the release of IL-1β and
IL-18 was quantified in the cell supernatant (Mann–Whitney test, n = 5 independent experiments).
(D) Western blot analyses of NLRP3 and procaspase (procasp) 1 on lysates of LPS-primed BMDMs
(two-way ANOVA followed by Sidak’s multiple comparison, n = 4–7 independent experiments, data
are expressed as fold change of target/β-actin ratio). (E) Gsdmd−/− and Gsdmd+/+ BMDMs were
primed with 100 ng/mL LPS for 4 h followed by treatment with 2.5–20 µM nigericin for 2 h. Western
blot analyses of GSDMD, cleaved (cl)-GSDMD, procaspase 1, and caspase (casp) 1 p10 (two-way
ANOVA followed by Dunnett’s multiple comparison between concentrations per genotype, * p < 0.05,
*** p < 0.001; two-way ANOVA followed by Sidak’s multiple comparison between genotypes per
concentration, # p < 0.05; n = 3 independent experiments, data are expressed as fold change of target/β-
actin ratio). (F,G) LPS-primed BMDMs were treated for 1 h with (F) 20 µM nigericin or (G) 5 mM
ATP. TUNEL labeling was performed and analyzed via flow cytometry and cell death was measured
using PI labelling (two-way ANOVA followed by Sidak’s multiple comparison, n = 3–5 independent
experiments). * p < 0.05, ** p < 0.01, *** p < 0.001.
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300 µg/mL oxLDL for 48 h. Cell death was measured using PI labelling. * p < 0.05 (two-way ANOVA
followed by Sidak’s multiple comparison, n = 4 independent experiments).

3.4. Atherogenesis Is Delayed in ApoE−/− Gsdmd−/− Mice but a Switch to Apoptosis Occurs in
Plaques of the Brachiocephalic Artery

To evaluate the effect of Gsdmd gene deletion on atherogenesis, ApoE−/− Gsdmd−/−

and ApoE−/− Gsdmd+/+ mice were fed a western-type diet (WD) for 16 weeks. First, deletion
of Gsdmd was confirmed via Western blotting in the aortic arch, descending thoracic aorta
(desc TA), lung, liver, heart, spleen, and kidney of ApoE−/− Gsdmd−/− mice (Supplementary
Figure S1). After 16 weeks WD, body weight (27.2 ± 0.7 vs. 29.3 ± 1.0 g, 1.5 ± 0.03 vs.
1.5 ± 0.05 fold change compared to starting weight; independent samples t-test, p > 0.05),
plasma cholesterol (685.8 ± 18.2 vs. 652.1 ± 20.0 mg/dL; independent samples t-test,
p > 0.05), and circulating leukocyte subsets (Supplementary Figure S2) were not different
between ApoE−/− Gsdmd+/+ and ApoE−/− Gsdmd−/− mice. En face Oil Red O staining
of the thoracic aorta showed no differences in lipid burden between ApoE−/− Gsdmd+/+

and ApoE−/− Gsdmd−/− mice in the whole thoracic aorta, as well as in the aortic arch and
descending aorta separately (Figure 4).
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Figure 3. Cleaved GSDMD is expressed in human carotid plaques. (A) Overview image of a section
from a human carotid artery lesion stained with hematoxylin/eosin. The boxed area corresponds with
the region shown in (B–D). (B–D) Immunohistochemical staining of cleaved (cl)-GSDMD combined
with (B) CD68, (C) α-smooth muscle actin (αSMA) or (D) CD31. From top to bottom: 1. Image
of section stained for (B) CD68 (red), (C) αSMA (brown), or (D) CD31 (red). 2. Image of section
stained for cl-GSDMD (red). 3. Image of double stained section for cl-GSDMD (red) combined with
(B) CD68, (C) αSMA, or (D) CD31 (purple). 4–7. Magnifications of dotted frames in images 3–5.
Scale bar = 500 µm (A,B–D: 1–3), 100 µm (B–D: 4–7). Representative images are shown. M = media,
L = lumen, I = intima, P = plaque.
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Figure 4. Lipid burden in the thoracic aorta is not different between ApoE−/− Gsdmd−/− and ApoE−/−

Gsdmd+/+ mice. ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+ mice were fed a WD for 16 weeks. The
aortic arch and descending thoracic aorta (TA) were stained en face with Oil Red O to evaluate the
plaque burden (Mann–Whitney test, n = 6 mice per group). The dotted line seperates the aortic arch
(top) from the descending TA (bottom). Scale bar = 5 mm.

In contrast, plaque size was significantly decreased in the brachiocephalic artery
of ApoE−/− Gsdmd−/− mice as compared to ApoE−/− Gsdmd+/+ controls (115 ± 18 vs.
186 ± 16 × 103 µm2; independent samples t-test, p = 0.006, Figure 5A). This suggests
that plaque progression is delayed in ApoE−/− Gsdmd−/− mice. Moreover, the necrotic
core area was significantly decreased in ApoE−/− Gsdmd−/− plaques of the brachio-
cephalic artery as compared to ApoE−/− Gsdmd+/+ controls (19 ± 4 vs. 37 ± 7 × 103

µm2; independent samples t-test, p = 0.03), although the relative necrotic core area
was not altered (Figure 5A). Similarly, the number of cells infiltrated in plaques of the
brachiocephalic artery of ApoE−/− Gsdmd−/− mice was significantly lower as compared
to ApoE−/− Gsdmd+/+ mice (Figure 5A). The total collagen content did not differ be-
tween ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+ plaques in the brachiocephalic artery
(Figure 5B). Moreover, αSMA and MAC3 immunoreactivity did not change signifi-
cantly, however, the ratio of αSMA to MAC3 immunoreactivity increased significantly
in ApoE−/− Gsdmd−/− plaques of the brachiocephalic artery as compared to controls
(Figure 5C), indicating a shift in plaque composition and inflammatory state. Because
a switch in cell death modality was observed in vitro in Gsdmd−/− BMDMs, TUNEL
staining was performed on plaques of ApoE−/− Gsdmd+/+ and ApoE−/− Gsdmd−/− mice.
Similarly to what was observed in vitro, TUNEL positivity in vivo was significantly
increased in plaques of the brachiocephalic artery from ApoE−/− Gsdmd−/− mice com-
pared to ApoE−/− Gsdmd+/+ controls (Figure 5D).

In plaques of the proximal aorta (Figure 6) and aortic root (Supplementary Figure S3),
no differences in plaque size, necrotic core area, cell infiltration, and total collagen content
were observed between ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+ mice. Nevertheless,
MAC3 immunoreactivity was significantly decreased while the αSMA to MAC3 immunore-
activity ratio was significantly increased in plaques of the proximal aorta from ApoE−/−

Gsdmd−/− mice, again indicating a shift in plaque composition and inflammatory state (Fig-
ure 6C). In contrast to what was observed in vitro and in the brachiocephalic artery from
ApoE−/− Gsdmd−/− mice, TUNEL positivity was not increased in plaques in the proximal
aorta (Figure 6D).
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crotic cores (# hash signs), and cell infiltration; (B) Sirius red to measure total collagen content; (C) 
anti-MAC3 and anti-α-smooth muscle actin (αSMA) to determine macrophage and smooth muscle 
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Figure 5. Plaques in the brachiocephalic artery from ApoE−/− Gsdmd−/− mice are smaller but show
increased apoptosis. ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+ mice were fed a WD for 16 weeks.
Sections of the brachiocephalic artery were stained with (A) hematoxylin/eosin to quantify plaque
size, necrotic cores (# hash signs), and cell infiltration; (B) Sirius red to measure total collagen content;
(C) anti-MAC3 and anti-α-smooth muscle actin (αSMA) to determine macrophage and smooth
muscle cell content, respectively, and to calculate the ratio of αSMA/MAC3 immunoreactivity;
(D) TUNEL to count apoptotic cells (dotted boxes are magnified, scale bar = 20 µm). * p < 0.05,
** p < 0.01 (independent samples t-test, boxplot: Mann–Whitney test, n = 10–18 mice per group).
Scale bar = 100 µm. Representative images are shown.



Biomedicines 2022, 10, 1171 11 of 16

Biomedicines 2022, 10, x FOR PEER REVIEW 11 of 17 
 

to count apoptotic cells (dotted boxes are magnified, scale bar = 20 µm). * p < 0.05, ** p < 0.01 (inde-
pendent samples t-test, boxplot: Mann–Whitney test, n = 10–18 mice per group). Scale bar = 100 µm. 
Representative images are shown. 
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Figure 6. Plaques in the proximal aorta from ApoE−/− Gsdmd−/− mice show decreased macrophage
infiltration as compared to ApoE−/− Gsdmd+/+ controls. ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+

mice were fed a WD for 16 weeks. Sections of the proximal aorta were stained with (A) hema-
toxylin/eosin to quantify plaque size, necrotic cores (# hash signs), and cell infiltration; (B) Sirius
red to measure total collagen content; (C) anti-MAC3 and anti-α-smooth muscle actin (αSMA) to
determine macrophage and smooth muscle cell content, respectively, and to calculate the ratio of
αSMA/MAC3 immunoreactivity; (D) TUNEL to count apoptotic cells (dotted boxes are magnified,
scale bar = 20 µm). * p < 0.05, ** p < 0.01 (independent samples t-test, boxplot: Mann–Whitney test,
n = 13–18 mice per group). Scale bar = 100 µm. Representative images are shown.
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4. Discussion

GSDMD is the common executor of canonical and non-canonical pyroptosis. Increas-
ing evidence suggests that pyroptosis occurs in atherosclerotic plaques in both humans and
mice [13–26]. In the present study, we isolated BMDMs and VSMCs from Gsdmd+/+ and
Gsdmd−/− mice and confirmed that canonical pyroptosis is GSDMD-dependent in BMDMs
and VSMCs. Indeed, treatment of LPS-primed BMDMs with classical caspase 1 activators
such as nigericin and ATP induced significant pyroptosis in Gsdmd+/+ controls, but not in
Gsdmd−/− cells. Concurrently, Gsdmd−/− BMDMs showed increased DNA fragmentation,
measured with TUNEL staining, which was absent in Gsdmd+/+ BMDMs. Thus, Gsdmd−/−

BMDMs are resistant to canonical pyroptosis induction, albeit they switch to another type
of cell death that is characterized by DNA fragmentation, strongly suggestive of apoptosis.
A switch from pyroptosis to apoptosis is further supported by the observation that caspase
1 p10 is upregulated in LPS/nigericin-treated Gsdmd−/− BMDMs, and not in Gsdmd+/+

controls, and may act in a pro-apoptotic manner in the absence of GSDMD [39,40,45].
Previous studies have demonstrated that GSDMD, NT-GSDMD, and Gsdmd mRNA are

upregulated in aortas of hyperlipidemic mice and in LPS/oxLDL-treated mouse peritoneal
macrophages [30]. Moreover, the expression of NT-GSDMD is increased in plaques of
LDLr−/− mice [45]. Gsdmd mRNA is also upregulated in peripheral blood monocytes
of atherosclerotic patients [30]. However, to the best of our knowledge, the expression
of cleaved NT-GSDMD has not yet been evaluated in human atherosclerotic plaques.
Therefore, we performed immunostaining on human carotid lesions. We demonstrated that
NT-GSDMD was expressed in human plaques, both in macrophage- and VSMC-rich regions.
However, it should be noted that this finding was based on analysis of a limited number of
plaques and comparison with plaque-free arteries was not made. Other groups have shown
that components of the canonical pyroptosis pathway colocalize with plaque macrophages
and contribute to macrophage pyroptosis and atherogenesis [12,15,24,27]. Interestingly,
in the present study, colocalization of NT-GSDMD with αSMA-positive smooth muscle
cells was even more pronounced than with CD68-positive macrophages. This is in line
with a recent study reporting that caspase 1-dependent pyroptosis occurs in VSMCs and
contributes to the progression of atherosclerosis [22]. Importantly, pyroptosis has also
been described in plaque endothelial cells [46–48]. However, we did not observe any
NT-GSDMD immunoreactivity in the luminal endothelial layer of human carotid lesions.
Similarly, Rajamäki and colleagues also did not observe any NLRP3 immunoreactivity in
the endothelium of human coronary plaques [15].

Disulfiram (used to treat alcohol use disorder) has recently been identified as a potent
GSDMD inhibitor [49]. Furthermore, dimethyl fumarate (used as an immunomodulator
in multiple sclerosis) also covalently binds GSDMD thereby inhibiting pyroptosis in vitro
and in vivo in a mouse model of LPS-induced shock [50]. The availability of safe, EMA-
and FDA-approved drugs that inhibit GSDMD makes it an interesting therapeutic target
to address pyroptosis in atherosclerosis. Therefore, we crossbred atherosclerotic ApoE−/−

mice with Gsdmd−/− mice to evaluate the effect of GSDMD deficiency on atherogenesis.
After 16 weeks WD, Oil red O staining was performed on the thoracic aorta but no change
in overall lipid burden was observed. In line with this finding, plaque size was not
altered in the proximal aorta. However, the plaque size in the brachiocephalic artery of
ApoE−/− Gsdmd−/− mice was significantly decreased as compared to ApoE−/− Gsdmd+/+

mice. Although both the ascending proximal aorta and the brachiocephalic artery of
ApoE−/− mice are atherogenesis-prone sites [51], plaques in the brachiocephalic artery enter
an advanced, human-like stage more rapidly [52,53]. Indeed, plaques in the brachiocephalic
artery of ApoE−/− mice easily reveal a vulnerable plaque phenotype and thinning of the
fibrous cap may even lead to plaque rupture, similarly to human plaques [53–55]. In
contrast, aortic plaques of ApoE−/− mice resemble stable lesions in humans, based on fibrous
cap stress analysis [53]. Altogether, these observations suggest that GSDMD deficiency does
not affect plaque initiation (as lipid burden in the thoracic aorta and proximal aortic plaque
size were not decreased in ApoE−/− Gsdmd−/− mice) but rather the transition to and growth
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of a vulnerable plaque. This is supported by the increased αSMA/MAC3-immunoreactivity
ratio observed in plaques of both the brachiocephalic artery and the proximal aorta of
ApoE−/− Gsdmd−/− mice as compared to controls. This finding suggests a lower degree of
plaque inflammation and vulnerability, and was also observed in plaques of the proximal
aorta despite the unchanged plaque size, demonstrating a general decrease in plaque
inflammation. Moreover, macrophage content was significantly decreased in plaques in
the proximal aorta of ApoE−/− Gsdmd−/− mice as compared to controls. This is in line with
a recent study in which GSDMD expression was suppressed in ApoE−/− mice using an
adeno-associated virus-5 (AAV-5) delivery system [30]. The authors reported a decrease in
F4/80-positive macrophage content in the aorta and aortic valve of AAV-5-GSDMD-treated
ApoE−/− mice as compared to AAV-5-control-treated ApoE−/− mice. Of note, the authors
also reported a decrease in lipid burden and plaque size in the aorta and aortic valve when
GSDMD expression was suppressed, however, only a limited number of mice was included
and preliminary data were reported [30]. Another study reported a decreased lesion area
in the aortic root of LDLr antisense oligonucleotide-treated Gsdmd−/− mice compared to
Gsdmd+/+ controls, which was attributed to decreased IL-1β release resulting in decreased
foam cell formation and ATP release in plasma [45]. Importantly, experimental differences
such as a longer period of feeding WD in the present study, evaluation of different vascular
sites, and the use of different genetic models make comparison with these studies difficult.

In plaques of the brachiocephalic artery, the number of TUNEL positive cells per mm2

was significantly increased in ApoE−/− Gsdmd−/− mice compared to controls. Increased
TUNEL positivity is not specific and DNA fragmentation is reported to occur during
apoptotic death as well as during different forms of necrotic death [56,57]. However, as
necrosis is decreased in plaques of ApoE−/− Gsdmd−/− mice, it is plausible to conclude that
a switch to apoptosis occurs when pyroptosis is defective. Accordingly, in vitro TUNEL
positivity and levels of pro-apoptotic caspase 1 p10 were increased in Gsdmd−/− BMDMs
while PI positivity did not increase. Similarly, Opoku and colleagues recently reported
increased apoptosis, characterized by phosphatidyl serine exposure on the cell surface,
when pyroptosis was defective in Gsdmd−/− macrophages [45]. Importantly, a switch
to apoptosis, which is non-lytic and non-inflammatory (in contrast to pyroptosis), will
limit plaque progression, inflammation, and destabilization and thus, is regarded to be
atheroprotective at this stage of atherosclerosis in ApoE−/− mice. However, as previously
reported by our lab, accumulation of apoptotic bodies can induce secondary necrosis,
eventually resulting in expansion of the necrotic core and plaque size during later stages
of atherosclerosis [58]. Accordingly, large plaques with an inflammatory phenotype were
observed in the aortic root from both ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+ mice,
possibly because after 16 weeks WD plaques in the aortic root are in a more advanced
stage compared to plaques in the brachiocephalic artery. Thus, the effects in the longer
term of targeting GSDMD and the concomitant switch in cell death modality remain to
be elucidated.

5. Conclusions

We report that cleaved GSDMD is present in human atherosclerotic plaques and is
required for inflammatory pyroptosis in murine macrophages and smooth muscle cells
in vitro. GSDMD deficiency in ApoE−/− mice does not inhibit plaque initiation and the
formation of stable aortic plaques, but plays a role in the formation of inflammatory plaques
in the brachiocephalic artery. Indeed, a shift toward a less inflammatory plaque composition
and delayed plaque progression were observed in plaques of the brachiocephalic artery
from ApoE−/− Gsdmd−/− mice as compared to plaques with a more vulnerable phenotype
observed in ApoE−/− Gsdmd+/+ controls. This is accompanied by less plaque necrosis
and a switch to apoptosis when GSDMD is deficient, which is also observed in vitro in
BMDMs. Therefore, targeting GSDMD appears to be a promising approach for limiting
the transition to an inflammatory and vulnerable plaque phenotype, and subsequently
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plaque destabilization. However, the pharmacological translation and therapeutic value in
atherosclerosis patients should be further investigated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10051171/s1, Figure S1: Validation of GSDMD
deficiency in tissues from ApoE−/− Gsdmd−/− mice; Figure S2: Analysis of leukocyte subsets in
plasma from ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+ mice. Figure S3: Plaque analysis in the aortic
root from ApoE−/− Gsdmd−/− and ApoE−/− Gsdmd+/+ mice.
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