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Abstract: Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may affect
testicles. Lower testosterone levels have been associated with worse clinical outcomes and higher
mortality. Our objective was to evaluate the hypothalamic–pituitary–gonadal axis of men admitted
with SARS-CoV-2 pneumonia and its link with the pneumonia-treatment intensification. Short-term
changes in hormonal parameters were also assessed. Methods: Men admitted with SARS-CoV-2
pneumonia were recruited in two different hospitals in Piedmont, Italy. In all patients, the assessment
of total testosterone (TT), calculated free testosterone (cFT), gonadotropins, inhibin B (InhB), and
other biochemical evaluations were performed at admission (T0) and before discharge (T1). Through
a review of medical records, clinical history was recorded, including data on pneumonia severity.
Results: Thirty-five men (median age 64 [58–74] years) were recruited. Lower TT and cFT levels at
T0 were associated with CPAP therapy (p = 0.045 and 0.028, respectively), even after adjusting for
age and PaO2/FIO2 ratio in a multivariable analysis. In those discharged alive, lower TT and cFT
levels were associated with longer hospital stay (p < 0.01). TT, cFT, and InhB were below the normal
range at T0 and significantly increased at T1 (TT 1.98 [1.30–2.72] vs. 2.53 [1.28–3.37] ng/mL, p = 0.038;
cFT (0.0441 [0.0256–0.0742] vs. 0.0702 [0.0314–0.0778] ng/mL, p = 0.046; InhB 60.75 [25.35–88.02]
vs. 77.05 [51.15–134.50], p < 0.01). Conclusions: Both TT and cFT levels are associated with adverse
clinical outcomes in men admitted with SARS-CoV-2 pneumonia. As TT, cFT and InhB levels increase
before discharge, short-term functional recovery of steroidogenesis and an indirect improvement of
spermatozoa functional status could be hypothesized.

Keywords: SARS-CoV-2; COVID-19; pneumonia; testosterone; men; hypogonadism; hospitalization;
mortality; fertility

1. Introduction

At the end of 2021, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infected 27 million people globally, with more than 5.6 million deaths [1]. Its clinical mani-
festations are heterogeneous: beyond the well-known effects of the virus on the respiratory
tract, smaller percentages of patients also reported gastrointestinal [2], neurological [3]
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and cardiovascular symptoms [4]. The host cell entry mechanism of SARS-CoV-2 has
been thoroughly studied. The virus presents a surface-anchored spike protein contain-
ing a receptor-binding domain (RBD) that specifically recognizes angiotensin-converting
enzyme 2 (ACE2) as its receptor [5]. Moreover, to fuse viral and lysosomal membranes,
SARS-CoV-2 spike protein needs to be proteolytically activated by transmembrane protease
serine 2 (TMPRSS2) and lysosomal proteases cathepsins [6,7]. Due to the widespread
co-expression of ACE 2 and TMPRSS2 in several tissues, SARS-CoV-2 gain access to many
different body areas such as the lungs, nose, brain, intestine, heart, kidneys, fallopian tubes,
and testes [8–10]. In particular, it has been hypothesized that in the testis, local inflam-
matory response to SARS-CoV-2 could impair Leydig cell function, blood–testis barrier
and directly damage seminiferous epithelium [11]. Therefore, potential consequences on
spermatogenetic and steroidogenic functions may occur [12]. Beyond these direct mech-
anisms, levels of testosterone can be negatively influenced by indirect factors linked to
SARS-CoV-2 infection as corticosteroid therapies or disease-related health impairment, such
as obesity, hypertension, diabetes mellitus, which are known causes of functional hypogo-
nadism [13–16]. Furthermore, these metabolic comorbidities in SARS-CoV-2 pneumonia
were linked to a worse prognosis [17,18].

Testosterone levels seem to be involved in disease progression and severity [19,20];
in fact, testosterone decreases pro-inflammatory cytokines (IL-1 beta, IL-6, TNF-alpha),
exerting an anti-inflammatory effect [21,22]. It is known that testosterone levels regularly
decrease in men in their mid-30s and continue at an average rate of 1.6% per year [23]. Males
aged over 65 years had major risks of complications from SARS-CoV-2 infection [24]. Some
authors found a link between testosterone levels and clinical outcomes in admitted patients
with COVID-19 pneumonia [25,26]. In particular, Rastrelli et al. found that lower baseline
testosterone levels seemed to predict poor prognosis and mortality outcome in SARS-CoV-
2-pneumonia men admitted to respiratory care unit [22]; another Italian group reported in
COVID-19 infected men lower testosterone levels in patients with severe pneumonia in
comparison with mild disease [27].

Even though a follow-up study involving SARS-CoV-2 pneumonia patients high-
lighted that testosterone levels increased over 7 months after recovery, little is known about
impairment of the hypothalamic–pituitary–gonadal axis in men with this disease [28].

The aim of this prospective, multicentric study was to evaluate the hypothalamic–
pituitary–gonadal axis of men admitted with SARS-CoV-2 pneumonia and its link with
the pneumonia-treatment intensification. Additionally, short-term changes in hormonal
parameters were assessed during hospitalization.

2. Materials and Methods
2.1. Study Population

A prospective, multicentric study was performed at “Città della Salute e della Scienza”
University Hospital in Turin, Italy and “Cardinal Massaia” Hospital in Asti, Italy. Male
patients were consecutively enrolled in general wards from March through June 2021. To
be included in the study, patients had to be affected by SARS-CoV-2 pneumonia, defined
by a positive nasopharyngeal swab and a chest X-ray or computer tomography consistent
with interstitial pneumonia.

Clinical history was collected for each subject, focusing on cardiovascular comorbidi-
ties (arterial hypertension, diabetes mellitus, obesity), COPD, and the presence of other
relevant diseases according to Charlson Comorbidity Index (CCI) [29]. The number of days
from symptoms onset to hospital admission and a ratio of arterial oxygen partial pressure
to fractional inspired oxygen concentration (PaO2/FiO2) were also recorded. Acute res-
piratory distress syndrome (ARDS) was defined by the Berlin criteria using PaO2/FiO2;
severe ARDS was characterized as PaO2/FiO2 < 100 mmHg, moderate ARDS as Pao2/FiO2
100–200 mmHg, and mild ARDS as Pao2/FiO2 200–300 mmHg [30].

The first morning after hospitalization (T0) and the last day before discharge (T1),
blood samples were drawn before 8 AM after overnight fasting to assess:
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- a hormonal profile including total testosterone (TT), sex hormone-binding globulin
(SHBG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17-β estradiol
(E2), albumin (ALB), inhibin B (InhB), Prolactin (PRL), 25OH vitamin D (25OHD), and
prostatic serum antigen (PSA);

- an inflammatory/biochemical profile including blood count with lymphocytes cells
count, C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH),
ferritin, D-dimer, and fibrinogen.

Moreover, calculated free testosterone (cFT) was determined by Vermeulen formula
using TT, SHBG and ALB levels [31].

Data about the clinical course of SARS-CoV-2 pneumonia, comprehensive of pharma-
cological support therapy (steroids—considered as dexamethasone or equivalent—heparin,
antiretroviral—remdesivir—and immunomodulant therapy—tocilizumab), and oxygen
support therapy (nasal cannula or Ventimask, CPAP, HFNC), were collected.

Written informed consent was obtained from all patients. This study was approved by
the Local Ethical Committee (Studio CORACLE PROT.N. 0036628 16/02/2021).

2.2. Statistical Analysis

Continuous skewed variables are presented as median [25th–75th percentiles]. The
Wilcoxon matched-pairs signed-rank test was conducted to highlight any difference in
variables between T0 and T1. The Mann–Whitney U test was used for skewed data, while
Fisher’s exact test was used for categorical variables. Spearman coefficients of correlation
were also performed. Multivariable analyses were conducted using both a linear and
logistic regression mode. The statistical analysis was conducted using the IBM SPSS
program (IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY, USA: IBM Corp).
The statistical significance level was set at p < 0.05.

3. Results
3.1. Baseline Assessment/Admission Evaluation

Thirty-five patients were included in the study; the median age was 64 [58–74] years.
The median time interval between the onset of respiratory symptoms and hospital admis-
sion was 8 [6–11] days.

The population characteristics are summarized in Table 1, including comorbidities;
40% of individuals had a CCI score >4, resulting in an estimated 10-year survival of 53%.

At admission, 94% of patients presented with mild ARDS, 6% with moderate ARDS,
and no one with severe ARDS; the median PaO2/FiO2 was 271 [238–305].

An inflammatory pattern was observed, in line with active viral infection (CRP:
58.2 [22.9–136.7] mg/L, LDH: 659 [500–852.25] mg/dL, ferritin 1098.5 [634–1983.25] mg/dL,
D-dimer 1030 [429–1703] mg/dL, and LYM 0.94 [0.57–1.14] cells/mm3).

Median TT (1.98 [1.06–2.67] ng/mL) and cFT levels (0.0415 [0.0239–0.0704]) were
below the normal range, in accordance with a hypogonadal status [32]. Moreover, InhB
(62.85 [33.02–91.4]) and 25OHD (11.2 [7.3–21.4]) were below the reference limits.

The subgroup with a higher CCI score presented had lower TT and cFT levels. Higher
TT levels were correlated with lower PCT levels (rho = −0.375, p = 0.0314).

Table 1. Demographic data, comorbidities, and ARDS severity at admission of the whole cohort.

Age (Years) 64 [58–74]

BMI (Kg/m2) 29.65 [25.55–30.87]
CCI (score)

0–1 (%) 28.6
2–3 (%) 31.4
≥4 (%) 40

Smoking habits
Current smoker (%) 8.6
Former smoker (%) 60.8
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Table 1. Cont.

Age (Years) 64 [58–74]

Main comorbidities
COPD (%) 21

Arterial hypertension (%) 40
Diabetes (%) 15
Obesity (%) 21

ARDS severity at admission
PaO2/FiO2 ratio 271 [238–305]
mild ARDS a (%) 94

moderate ARDS b (%) 6
severe ARDS c (%) 0

Data are presented as median (interquartile range). BMI = Body Mass Index, CCI: Charlson Comorbidity Index,
COPD: Chronic Obstructive Pulmonary Disease, ARDS: Acute Respiratory Distress Syndrome. a (PaO2/FiO2
200–300 mmHg), b (PaO2/FiO2 100–200 mmHg), c (PaO2/FiO2 <100 mmHg).

3.2. Hospital Stay Analysis

During hospitalization, 94% of individuals were treated with steroids and 89% with
heparin. The prescription criteria for remdesivir (SARS-CoV-2 pneumonia within 10 days
of the onset of symptoms, not requiring HFNC) and tocilizumab (COVID-19 pneumonia
rapidly worsening after a starting dexamethasone treatment, with high levels of CRP)
were fulfilled in 46% and 21%, respectively. Initial supplemental oxygen therapy via nasal
cannula/Ventimask was used in 97% of patients; subsequently, 66% and 57% required
CPAP therapy and HFNC, respectively.

CPAP use, considered an adverse clinical outcome, was associated with lower levels of
TT (p = 0.045) and cFT (p < 0.03) at T0. After adjusting for age and PaO2/FIO2 at admission,
both TT and cFT levels were inversely associated with CPAP use (multivariable logistic
regression analysis, Tables 2 and 3).

Table 2. Multivariable logistic regression analysis for CPAP Therapy using TT.

OR 95% CI p *

AGE 0.999 0.883; 1.131 0.990

TT 0.109 0.0129; 0.916 <0.001

PaO2/FiO2 0.950 0.915; 0.987 <0.001
* Statistical significance levels at p < 0,05. OR: Odds Ratio, CI: Confidence Interval, TT: Total Testosterone,
PaO2/FiO2: ratio of arterial oxygen partial pressure to fractional inspired oxygen concentration.

Table 3. Multivariable logistic regression for CPAP Therapy using cFT.

OR 95% CI p *

AGE 0.974 0.873; 1.086 0.624

cFT 0.450 0.209; 0.969 0.001

PaO2/FiO2 0.953 0.917; 0.989 <0.001
* Statistical significance levels at p < 0,05. OR: Odds Ratio, CI: Confidence Interval, cFT: calculated Free Testosterone,
PaO2/FiO2: ratio of arterial oxygen partial pressure to fractional inspired oxygen concentration.

In the alive subgroup, longer hospitalization stays were significantly correlated with
lower levels of TT and cFT (rho = −0.51, p < 0.01 and rho = −0.55, p < 0.01, respectively)
(Figures 1 and 2), as well as older age (rho = 0.5, p < 0.01) and higher CCI score (rho = 0.60,
p < 0.01). A multiple regression analysis showed that TT levels were independent predictive
factors for days of hospitalization; about 32% of the variance in admission days (Adjusted
R2: 32%, p < 0.01) could be accounted for TT (Beta = −1.99, 95%CI = −3.72; −0.27 p < 0.03)
and age (Beta = 0.23, 95%CI = 0.05–0.41, p < 0.02).
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Figure 1. Relationship between Total Testosterone (TT) and Hospitalization time (R2 = 0.19, p: 0.021).

Figure 2. Relationship between calculated Free Testosterone (cFT) and Hospitalization time (R2 = 0.2,
p: 0.018).

Table 4 summarizes the characteristics of alive patients at T0 and T1. Median time
between T0 and T1 was 10 [7–13] days. At baseline, median TT (1.98 [1.30–2.72] ng/mL) and
cFT (0.0475 [0.0253–0.0824] ng/mL) were below the normal range values. During hospital
stay, median TT and cFT levels increased (TT 1.98 [1.30–2.72] vs. 2.53 [1.28–3.37] ng/mL;
p = 0.038 and cFT (0.0475 [0.0253–0.0824] vs. 0.0702 [0.0314–0.0778] ng/mL; p = 0.046). LH
levels decreased (5.3 [3.20–7.10] vs. 2.9 [2.10–5.6]; p < 0.01), while no difference in FSH
levels were observed. Moreover, InhB levels showed an increase (60.75 [25.35–88.02] vs.
77.05 [51.15–134.50]; p < 0.01). SHBG (25.8 [18.4–36.1] vs. 24.65 [16.75–33.05]; p = 0.046), and
PRL (12 [8.1–16] vs. 16.9 [9.3–23.5]; p < 0.01) raised during observation time.

Table 4. Biochemical and hormonal assessment between admission (T0) and discharge (T1).

Biochemical Assessment Admission (T0) Discharge (T1) p-Value *

WBC (109/L) 7.58 [4.92–12.98] 9.12 [6.417–12.452] 0.572
LYM (109/L) 0.94 [0.57–1.14] 1.15 [1.355–2.26] <0.001
PLT (109/L) 227 [177–307] 243 [198.7–352] 0.102
CRP (mg/L) 58.2 [22.9–136.7] 8 [3.3–12.3] <0.001
PCT (ng/mL) 0.14 [0.06–0.42] 0.09 [0.045–0.46] 0.028
D-DIMER (ng/mL) 1030 [429–1703] 1050 [298–1560] 0.219
LDH (IU/L) 659 [500–852.25] 458 [391–710.5] 0.001
FERRITIN (mg/dL) 1098 [634–1983.25] 796 [453.5–1252.5] <0.001
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Table 4. Cont.

Biochemical Assessment Admission (T0) Discharge (T1) p-Value *

Hormonal parameters

TT (ng/mL) 1.98 [1.30–2.72] 2.695 [1.26–3.43] 0.038
cFT (ng/mL) 0.0441 [0.0256–0.0742] 0.0702 [0.0314–0.0778] 0.017
E2 (pg/mL) 22 [19–34.20] 18.75 [14.75–30.25] 0.131
LH (UI/L) 5.3 [3.20–7.10] 2.83 [2.02–5.5] <0.001
FSH (UI/L) 4.9 [3.40–7.40] 4.45 [3.30–8.97] 0.591
InhB (pg/mL) 60.75 [25.35–88.02] 77.05 [51.15–134.50] <0.001
SHBG (nmol/L) 25.8 [18.4–36.1] 24.65 [16.75–33.05] 0.099
ALB (g/dL) 3.4 [3.07–3.62] 3.45 [3.02–3.70] 0.202
PRL (ng/mL) 12 [8.1–16] 17.05 [9.8–23.67] 0.002
25OHD (ng/mL) 12.5 [7.7–23.8] 16 [12.7–22.17] 0.667
PSA (ng/mL) 0.8 [0.4–2.7] 1.25 [0.57–2.37] 0.473

* Statistical significance levels at p < 0.05. Data are presented as median (interquartile range). WBC: White Blood
Cell, LYM: Lymphocytes, PLT: Platelets CRP: C-Reactive Protein, PCT: Procalcitonin, LDH: Lactate Dehydrogenase,
TT: Total Testosterone, cFT: calculated Free Testosterone, E2: 17-β estradiol, LH: Luteinizing Hormone, FSH:
Follicle Stimulating Hormone, InhB: Inhibin B, SHBG: Sex Hormone Binding Globulin, ALB: albumin, PRL:
Prolactin, 25OHD: 25 OH vitamin D, PSA: Prostatic Serum Antigen (PSA).

E2, 25OHD and PSA did not show any differences between T0 and T1.

3.3. Mortality Evaluation

In-hospital mortality rate was 20%. Deceased patients showed a higher CCI and higher
levels of CRP and PCT (0.42 [0.14–0.63] vs. 0.10 [0.06–0.18]; p = 0.0175). No hormonal differ-
ences were observed between alive and dead individuals; specifically, in deceased patients
TT and cFT were lower (TT 1.55 [0.77–2.29] vs. 1.98 [1.30–2.72]; cFT 0.0222 [0.0134–0.0703]
vs. 0.0441 [0.0256–0.0742]) but the difference did not reach statistical significance.

None of the hormonal parameters was associated with mortality in a logistic regression
model (data not shown).

4. Discussion

The present study shows that, in men admitted with SARS-CoV-2 pneumonia, TT and
cFT levels were below the normal value range at admission, with a higher probability of
hypogonadal symptoms, in accordance with current Endocrine Society guidelines on male
hypogonadism [32]. Moreover, TT and cFT levels appeared to be related to adverse clinical
outcomes such as longer hospitalization days and the necessity of pneumonia-treatment
intensification (CPAP therapy).

SARS-CoV-2 infection can be characterized by a systemic involvement; in fact, aside
from the respiratory tract, the endocrine system is susceptible to SARS-CoV-2, particularly
the hypothalamic–pituitary–gonadal axis. To date, it is unclear whether the observed
impairment of the gonadal function is due to a primary testicular injury [33] or to a
hypothalamic–pituitary dysfunction [34].

It has been demonstrated that Sertoli and Leydig cells express ACE2 receptor [35,36]
primarily used by SARS-CoV-2 for penetration into cells, while TMPRSS2, which is also
involved in the viral entry, is found in primordial spermatozoa [37]. Thereby, direct
colonization of the virus in the testis can be speculated, with a potential gonadal impairment
induced by the release of pro-inflammatory chemokines and cytokines, also known as
“cytokine storm” [38]. In our study, LH levels were in the upper limit of the normal range;
this would resemble a hormonal status similar to primitive hypogonadism, suggesting
an impairment in testicular function. An orchitis-like syndrome has been hypothesized
in SARS-CoV-2 infection [39] as reported in other SARS-CoV and different viruses, such
as Zika, mumps, and human papilloma virus [40]. Some authors succeeded to document
ultrasound findings of acute orchitis, epididymitis and epididymo-orchitis in men infected
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by SARS-CoV-2 [41]. Unfortunately, our findings were not implemented by a testicular
ultrasound evaluation, which could have provided more speculative data.

Conversely, an impairment in hypothalamic–pituitary function might not be excluded.
One of the cornerstones of SARS-CoV-2 pneumonia therapy is represented by high dosage
steroids (e.g., dexamethasone 6 mg daily) [42], which is known to cause gonadotropin
hormone-releasing hormone (GnRH) dysregulation and subsequently secondary hypogo-
nadism [43]. Previous literature has shown how systemic disorders not related to COVID-19
(e.g., cancer, rheumatic, and end-stage diseases) imply a chronic inflammatory status. This
is responsible for the hypothalamic–pituitary–gonadal axis impairment, known as func-
tional hypogonadism [32,44–46]. In fact, in the present study, individuals with a higher
number of comorbidities (represented by a higher CCI) showed lower TT and cFT levels.

Moreover, COVID-19 pneumonia can be characterized by an extensive lung impair-
ment, leading to significant hypoxemia. It has to be considered that in men affected by
chronic hypoxemia, such as in chronic obstructive pulmonary disease (COPD) [47] or in
obstructive sleep apnea syndrome (OSAS) [48], hypogonadism can be observed. Lower
testosterone levels and higher levels of LH have been reported in men with COPD [47] and
in particular during COPD exacerbation [49]. Patients with OSAS show a hypoxia-driven
decrease in LH and testosterone levels [48], associated with an alteration of the circadian
rhythm of testosterone secretion [50], with normalization after CPAP treatment [51].

In summary, the highlighted hypogonadal status could be explained by a contribution
of both primary and secondary mechanisms.

TT and cFT levels, but not other hormonal parameters, were inversely associated with
inpatient days. Although the hospitalization length was positively correlated to age and
consequently to CCI, our multivariable model showed that the inverse association between
gonadal steroids and prolonged hospital stay was independent of age. It is noteworthy
that this analysis included only those discharged alive, with limited statistical power.
Our findings are consistent with other studies that highlighted this inverse link between
testosterone and hospitalization days [27,52].

In the whole group, even though most of the patients presented with a mild ARDS
(median PaO2/FIO2 ratio = 271), 66% of them eventually required CPAP therapy. Both
TT and cFT values were significantly associated with CPAP therapy, even after adjusting
for PaO2/FIO2 ratio and age, as testosterone levels physiologically decrease by 2% yearly
by the age of 35 due to tissue senescence [23]. These findings suggest that testosterone
levels could be considered an independent marker of severity and worsening of respiratory
outcomes. Other oxygen support therapies, such as nasal cannula and HFNC, did not show
the same positive association. The relationship between testosterone and clinical outcomes
has also been described by other authors, who highlighted how lower testosterone levels
are associated with a more severe clinical illness that requires intensive care [22,25,53].

COVID-19 infection shows a significant mortality rate [54], especially in older men
suffering from a higher number of comorbidities [24]. In our cohort, 20% of individuals
died of SARS-CoV-2 pneumonia. Even though TT and cFT were lower in deceased patients,
a statistically significant difference was not highlighted when compared with the alive.
At variance with other studies [25,34,55], TT and cFT levels, as well as other hormonal
parameters, did not predict mortality. This could be probably due to the small sample size
of dead individuals and to other confounding factors.

To date, this is the first study assessing the short-term changes in hypothalamic–
pituitary–gonadal axis function in hospitalized men with SARS-CoV-2 pneumonia. After a
median hospital stay of 10 days, TT and cFT levels improved and reached the low-normal
value range, according to current Endocrine Society guidelines [32]. Moreover, serum LH
significantly decreased, as could be expected after recovering from a testicular injury. A
recent study on men with a SARS-CoV-2 positive nasopharyngeal swab but unspecified
radiological lung involvement showed low TT values at enrollment [53]. An increase in TT
levels was observed after 7 days from diagnosis in mild disease and after a month in severe
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disease; no difference in estradiol levels was reported. Unfortunately, LH measurement
was not performed.

Interestingly, in our sample, InhB levels were low at admission and raised after
10 days of hospitalization, while FSH did not show a significant variation. InhB is a
gonadal glycoprotein predominantly secreted by Sertoli cells [56,57], and it is considered
to be a marker of the functional state of the seminiferous epithelium. Moreover, InhB
seems to be positively associated with spermatogenesis, better than FSH [58–60], with a
particularly strong correlation with low sperm counts [61]. The aforementioned hypothesis
of the direct viral colonization is reasonably supported by the expression of ACE2 receptor
in Sertoli cells and TMPRSS2 in spermatogonial stem cells, elongated spermatids, and
to a lesser extent in stem cells [37]. Previous studies, however, did not report any viral
RNA in semen samples, except for one study in alive patients [2] and one in post-mortem
examination of testicular specimens [62]. Nevertheless, sperm samples collected after
recovering from COVID-19 infection showed a wide spectrum of alterations involving
semen volume, sperm concentration, morphology, motility, and DNA fragmentation [33,63].
Even though semen samples were not collected, data from the present study indirectly
seems to suggest a conceivable spermatogenic impairment at admission for SARS-CoV-2
pneumonia and give a reassuring clue about the short-term improvement of spermatogenic
cells function. In conclusion, this short-term reversibility supports the hypothesis that this
gonadal impairment could be mainly related to COVID-19 infection rather than the burden
of comorbidities.

This study presents some limitations. First, it is not possible to draw definitive
conclusions about causality due to the observational design of the study and the several
comorbidities that could interfere with the hypothalamic–pituitary–gonadal axis. Second,
the sample size is relatively small, particularly after stratification by mortality. Third,
hormonal evaluations were not available before SARS-CoV-2 infection and pneumonia
development, as well as long-term ones after discharge. Lastly, the lack of a control group
with different types of pneumonia or infections could represent an issue but opens a new,
intriguing scenario where it is conceivable to test TT and cFT as biomarkers of adverse
clinical outcomes, also in non-SARS-CoV-2 settings.

Before suggesting a routine assessment of the gonadal function in individuals admitted
with SARS-CoV-2 pneumonia, future studies are warranted to extensively evaluate the role
of androgen levels as an early predictive test for lung disease severity.

5. Conclusions

This multicenter observational study on men admitted with SARS-CoV-2 pneumonia
shows that both TT and cFT levels appeared to be related to adverse clinical outcomes
such as longer hospitalization and the need for pneumonia-treatment intensification, in-
dependent of age. Furthermore, TT, cFT and InhB levels rise before discharge, suggesting
a short-term functional recovery of steroidogenesis and an indirect improvement of sper-
matozoa functional status. In accordance with previous studies, gonadal status could be
considered as a new, simple biomarker to early identify patients with a higher probabil-
ity of worse clinical outcomes, but it has still to be validated, both in SARS-CoV-2 and
non-SARS-CoV-2 settings.
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