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Abstract: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a
worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could
be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a
potentially fatal condition that needs intensive care. Furthermore, the persistence of functional
disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent
patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized
rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19
is still under study, as a better comprehension of these mechanisms would ensure more effective
personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution
to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect
preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways
of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review
is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on
personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an
attractive therapeutic option in this clinical setting.

Keywords: COVID-19; endothelial function; chronic obstructive pulmonary disease; occupational
medicine; heart failure; chronic disease; arginine; rehabilitation; exercise; outcome

1. Introduction

In December 2019, a novel single-stranded RNA virus, called severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was first identified [1]. SARS-CoV-2, which can
cause coronavirus disease 2019 (COVID-19), features a wide spectrum of clinical manifes-
tations [1]. Among them, the worst clinical picture is characterized by the development
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of severe pneumonia, which may rapidly progress to acute respiratory distress syndrome
(ARDS) and multiple organ failure (MOF) [2]. In addition, the persistence of multiple
disabilities and long-term cardiovascular (CV) sequelae in COVID-19 survivors suggests
that convalescent patients may suffer from post-acute COVID-19 syndrome, re-quiring
long-term care and personalized rehabilitation approaches [3]. However, the pathophys-
iology of acute and post-acute manifestations of COVID-19 is still under investigation,
as a better interpretation of these mechanisms would ensure more effective personalized
therapies.

To date, growing evidence supports the key role of endothelial dysfunction in the
pathogenesis of COVID-19 and in determining its severity [4]. Data in recent studies have
demonstrated that severe pulmonary manifestations in COVID-19 patients are not only
due to ARDS, but also to macro- and microvascular involvement, with vascular endothe-
lial injury and subsequent dysfunction [5]. Vascular damage is probably related both to
the direct cytopathic effect of the virus on endothelial cells (ECs) and to the high levels
of cytokines and other inflammatory markers, inducing systemic endotheliitis, platelet
activation, leucocyte adhesion, and reduced nitric oxide (NO) bioavailability [6,7]. Overall,
it is evident that in COVID-19 the pathological process is not limited to the lungs, and the
systemic inflammatory process is responsible for an imbalance between the prothrombotic
and anticoagulant properties of the endothelium, leading to arterial and venous throm-
bosis [8]. Indeed, patients with severe COVID-19 frequently suffer from pulmonary and
systemic vascular complications, including pulmonary embolism, deep vein thrombosis,
and major CV events [9,10]. Consequently, the European Society of Cardiology (ESC) rec-
ommended clinical assessment of endothelial function in the follow-up of all convalescent
COVID-19 patients to prevent long-term CV outcomes [4]. Several methods have been
proposed to clinically evaluate endothelial function in humans, among which the most used
is flow-mediated dilation (FMD) [11]. FMD is a non-invasive and cost-effective approach,
accepted as a valid substitute indicator of subclinical atherosclerosis and coronary artery
endothelial function [12]. In addition, FMD is an independent predictor of CV events [13],
thus providing additional prognostic data along with conventional CV risk factors. Ap-
plying the ESC recommendations [4], several studies have begun to evaluate FMD in
convalescent COVID-19 patients, substantially confirming the presence of a dysfunctional
endothelium even months after disease onset [7,14]. In line with this evidence, an increased
risk of incident CV disease has recently been reported during the convalescence phase,
spanning several categories, including stroke, ischemic heart disease, heart failure, and
thromboembolic disease [15].

As clinical evidence indicates a crucial endothelial contribution to the clinical man-
ifestations of COVID-19, the aim of this review is to summarize the pathophysiology
of endothelial dysfunction in this clinical setting, with a focus on personalized pharma-
cological and rehabilitation strategies targeting endothelial dysfunction as an attractive
therapeutic option.

2. Endothelial Cell Homeostasis

The endothelium is considered a real organ, with its own defined structure capable of
guaranteeing vascular homeostasis through several functions [16]. Under physiological
conditions, ECs are able to respond to a number of hemodynamic and humoral stimuli by
producing a wide range of mediators regulating vascular tone, cellular adhesion, coagula-
tion, smooth muscle cell proliferation, and vessel wall inflammation [16]. However, despite
all of these being defense mechanisms, these functions might become dysregulated under
certain circumstances [17].

To guarantee vascular homeostasis, the endothelium first needs to maintain its intact
structure. There are several molecules involved in this process and the main one is vascu-
lar endothelial-cadherin (VE-cadherin, also known as CD144), which is a component of
endothelial cell-to-cell adherent junctions and a promoter of an optimal organization of
ECs cytoskeleton [18]. Moreover, since the endothelium plays a crucial role in controlling
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immune response, it regulates leucocyte migration into extravascular spaces, defending
against infections and promoting tissue repair [19]. ECs show on their surface a number
of adhesion molecules (e.g., E-selectin, P-selectin), whose concentration increases in re-
sponse to proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis
factor-α (TNF-α). Then, the binding of the leucocytes is reinforced through other adhesion
molecules, including intercellular adhesion molecule-1 (ICAM-1, also known as CD54),
vascular cell adhesion molecule-1 (VCAM-1, also known as CD106), and integrins [20].

Another key function that the endothelium has is the prevention of thrombosis and
the activation of the coagulation cascade, which is a very complex process that involves
many factors, among which the most important are platelets and ECs themselves [16]. In
fact, several mechanisms can provoke endothelial activation and dysfunction through the
loss of ECs structural integrity, leading to the exposure of subendothelial thrombogenic
material (e.g., collagen, laminins, nidogens) into the bloodstream, which ultimately acti-
vates the coagulation process [21]. To prevent blood clot formation, ECs are able to balance
vascular tone by producing several factors that improve dilatation of muscular arteries.
Among these, the most important are NO and prostaglandin I2 (PGI2), which combine both
antiaggregatory and vasodilator effect [22].

ECs express on their surface a large concentration of molecules involved in the activa-
tion of anticoagulant pathways, among which heparan sulphate promotes the anticoagulant
effect of antithrombin III (ATIII), while thrombomodulin (TM) stimulates protein C and
protein S function [23]. The endothelium can also express plasminogen activators, such as
tissue-type plasminogen activator (tPA) and urokinase plasminogen activator (uPA), which
enhance the fibrinolytic processes [24,25]. Moreover, ECs can produce adhesion molecules
for platelets, such as von Willebrand factor (vWF) and P-selectin, which are exposed on
ECs surface upon activation by IL-1β and TNF-α [23]. In turn, platelets produce vascular
endothelial growth factor (VEGF), which stimulates the production of tissue factor (TF)
from ECs, thus enhancing the activation of coagulation cascade [26].

3. Endothelial Function Assessment

Considering its potential reversibility with targeted strategies, several clinical and
laboratory methods have been proposed to evaluate and monitor endothelial function, both
in humans and in animal models.

3.1. Clinical Methods

FMD was introduced in clinical research about 20 years ago [11]. In brief, it consists
of the measurement of changes in brachial artery diameter as a response to shear stress.
In order to evoke this response, a pneumatic cuff placed on the forearm is inflated to a
suprasystolic pressure for 5 min. When the cuff is deflated, the increased flow enhances the
shear stress on the arterial wall, which stimulates the local production of NO, determining
vasodilatation [27]. FMD is a measure of the percentage change of the brachial artery
diameter after cuff deflation. Much scientific evidence has demonstrated that FMD repre-
sents a reliable method for predicting preclinical CV risk [28,29]. Therefore, recognizing
endothelial dysfunction could help physicians in early identification of high-risk patients,
giving a more comprehensive assessment of CV risk, which may consequently contribute
to better evaluation of personalized CV prevention strategies. The recent identification of
age- and sex-specific reference values of FMD in healthy subjects has further confirmed
the potential clinical utility of its assessment [12]. On the other hand, despite being a non-
invasive and inexpensive method, it has been observed that in the same study population
there can be large variations of mean FMD values, depending on some technical variables
(e.g., occlusion time, cuff position, patient preparation for examination) and the subsequent
operator-dependence [30]. When identifying their reference intervals of FMD, Holder et al.
highlighted the need for strict adherence to standardized protocols [12]. However, this may
not be sufficient. Thus, the use of dedicated software for real-time edge detection, wall
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tracking, and shear-rate monitoring has proven to significantly increase reproducibility [31]
(Figure 1).
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Other clinical methods have been proposed for clinical assessment of endothelial
function. While venous occlusion plethysmography (VOP) is largely underused because of
its invasiveness, laser Doppler flowmetry (LDF) has been used as a non-invasive clinical
method for measurement of endothelium-dependent vasodilation in the skin microcir-
culation [32]. More recently, peripheral artery tonometry (PAT) has become a Food and
Drug Administration (FDA)-approved test for an automated assessment of endothelial
function [33]. However, although less operator-dependent and highly reproducible, these
methods have the disadvantage of being more expensive to use in routine clinical practice
and, sometimes, even for research purposes [34].

3.2. Laboratory Methods

Taken together, clinical tests allow measurement of microvascular and macrovascular
reactivity, which may fully or partially reflect NO bioavailability. However, a healthy
endothelium does not only display a vasodilatory phenotype, depending mainly on NO
synthesis [32]. As widely discussed below, under normal circumstances, the endothelium
also has an anticoagulant phenotype, which is reflected in the constitutive expression
of plasminogen activator inhibitor-1 (PAI-1), vWF, and TF, whose soluble forms can be
measured in peripheral blood [35]. The endothelium is also responsible for control of
inflammation and oxidative stress, with healthy individuals having low levels of soluble
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endothelium-derived adhesion molecules or chemokines, including ICAM-1, VCAM-1,
E-selectin, P-selectin, VE-cadherin, and monocyte chemotactic protein-1 (MCP-1) [35]. More
recently, the levels of various components of the glycocalyx (e.g., syndecan-1, endocan,
and heparan sulfate) have been proposed as markers of endothelial injury [36]. Moreover,
endothelial progenitor cells (EPCs), reflecting vascular repair capacity, are detected in the
blood of healthy individuals, with a progressive reduction with aging and various quanti-
tative and functional alterations in response to acute or chronic pathological stimuli [37].
On the other hand, circulating endothelial cells (CECs) and endothelial microparticles
(EMPs) are usually low in healthy individuals, since they reflect the presence of endothelial
injury [38]. Overall, a plethora of endothelial biomarkers have been widely used for the
identification and characterization of specific endothelial cell types and to test endothelial
function both in humans and in animal models.

4. Evidence of Endothelial Dysfunction in COVID-19

From the early stages of the pandemic, it has emerged that endothelial dysfunction
could represent the unifying mechanism of COVID-19. Varga et al. were among the first to
perform histopathological examinations from autoptic specimens, confirming the presence
of endotheliitis in many organs and tissues, with electron microscopy also revealing the
presence of SARS-CoV-2 within ECs [6]. The involvement of ECs in the kidneys, lung,
heart, skin, and even reproductive system was subsequently highlighted in multiple stud-
ies [39,40], suggesting that endothelial damage could represent an important pathogenetic
mechanism of respiratory and multiorgan dysfunction [41,42], with a variety of manifes-
tations ranging from CV complications to adverse perinatal outcomes or even erectile
dysfunction [43,44].

Using both clinical and laboratory methods for endothelial function assessment,
mounting evidence has confirmed the presence of endothelial dysfunction related to
SARS-CoV-2 infection. Summarizing the current evidence, a recent meta-analysis showed
that several biomarkers of endothelial dysfunction, including vWF, tPA, PAI-1, and soluble
thrombomodulin, are significantly associated with increased composite poor outcomes
in patients with COVID-19 [45]. Similarly, in addition to these circulatory markers of
endothelial function, another meta-analysis showed that high circulating levels of VCAM-1
and E-selectin may be associated with increased COVID-19 severity [46]. Mancuso et al.
were among the first to suggest the monitoring of CECs and EPCs as candidate biomarkers
of endothelial damage in COVID-19 patients [47]. More recently, increased production of
EPCs was also demonstrated during convalescence [48].

Applying the ESC recommendations [4], a number of studies also used clinical meth-
ods to test and monitor endothelial function in COVID-19 patients, particularly after
the acute phase [7,14,49]. As stated above, most studies employed FMD, given its cost-
effectiveness and non-invasiveness, but only a small percentage resorted to dedicated
edge-detection software. In the largest study on this topic [7], significantly lower FMD was
documented in convalescent COVID-19 patients as compared to controls, confirmed when
stratifying the study population according to age and major clinical variables. However, no
significant difference was observed between cases and controls in the subgroup analysis
on females, in line with the evidence of a disproportionately worse prognosis for male
gender [50]. Similar findings were documented among six COVID-19 patients without CV
risk when using PAT for endothelial function assessment [51].

5. Pathophysiology of Endothelial Dysfunction in COVID-19

In COVID-19 patients, the dysregulation of many of the homeostatic pathways has
emerged as a mediator of severe disease [52]. Therefore, COVID-19 was ultimately de-
scribed as an endothelial disease [17]. Several hypotheses have been proposed to explain
endotheliopathy in this clinical setting, involving both direct and indirect viral actions.
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5.1. Direct Viral Action

To enter the cells, it has been proven that SARS-CoV-2 is able to bind angiotensin-
converting enzyme 2 (ACE2), normally expressed on human cells, helped by the trans-
membrane protease serine 2 (TMPRSS2) [7]. Thus, it is reasonable to affirm that human
cells expressing ACE2 and TMPRSS2 on their surface represent SARS-CoV-2 target cells [7].
In this regard, there is evidence that ECs show a large concentration of ACE2 on their
surface [53], so they may ideally represent the natural target for the infection. Accordingly,
several reports documented the presence of SARS-CoV-2 within ECs in various organs and
tissues [6,39], thus potentially activating endothelial apoptotic pathways. This is consistent
with the high plasma levels of Tie-2 receptor and syndecan-1 in critical COVID-19 patients,
reflecting the rupture of the endothelial glycocalyx covering the luminal surface of ECs [54].
However, the capacity of the virus to directly infect the endothelium has recently been put
into question [55,56], in line with the evidence that ECs derived from human pluripotent
stem cells have been shown to be resistant to SARS-CoV-2 infection [57]. Despite these
contrasting findings, the hypothesis of a direct viral infection of ECs may—at least in
part—be supported by the evidence that females may be more resistant to the deleterious
effects of SARS-CoV-2, including endothelial dysfunction [7].

It is well known that the ACE2 gene is an “escape gene” localized in the Xp22.2 region
of the X chromosome [58], thus being resistant to chromatin inactivation [59]. Consequently,
it can be argued that females have a “double dose” of ACE2 [60], with estrogens also having
the capacity to upregulate ACE2 expression [61]. This may counteract the downregulation
of ACE2, due to the endocytosis of the enzyme along with the viral particles [62], and due
to the inflammatory upregulation of a disintegrin and metalloproteinase 17 (ADAM17)
deputized to the proteolytic cleavage of ACE2 [7]. It is important to highlight that ACE2
is not only the key to entry for SARS-CoV-2 to human cells. One of its main functions
is converting angiotensin II to angiotensin1-7, with this degradation peptide having sev-
eral counter-regulatory effects on angiotensin II [7]. Angiotensin II is able to decrease
endothelial NO phosphorylation, thus leading to reduced NO synthesis [63]. This effect
is mediated by the angiotensin II type 1 (AT1) receptor coupled to the Gα12/13 family
of G proteins, with the involvement of a RhoA/Rho kinase pathway and the activation
of the p38 mitogen-activated protein kinase (MAPK) [7]. Both G protein and non-G pro-
tein signaling cascades following AT1 binding may determine increased oxidative stress,
with the activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
and the production of reactive oxygen species (ROS), including superoxide anion (O2

−),
hydrogen peroxide (H2O2), and peroxynitrite [64]. The excess of ROS may in turn initial-
ize a number of additional molecular pathways, which finally stimulate the synthesis of
inflammatory cytokines (IL-1β, IL-6, and TNF-α), induce EC apoptosis, and reduce NO
bioavailability [64]. Moreover, angiotensin II is able to directly stimulate inflammation by
activating nuclear factor-κB (NF-κB), thus enhancing the transcription of inflammatory
cytokines and adhesion molecules as well as collagen deposition and the overexpression of
endothelin-1 and PAI-1 [65]. This may ultimately account for the increased thrombotic risk.

5.2. Indirect Viral Action

Beyond a direct effect on ECs, it is reasonable to assume that endothelial dysfunction
is also the consequence of systemic inflammation. The pathophysiological mechanisms
underlying the massive inflammatory systemic response to SARS-CoV-2 infection have
been well-studied [66]. In brief, viral infection of host cells may lead to the release of
proinflammatory cytokines [67] through the recognition mechanisms of the innate im-
mune response (i.e., pattern recognition receptors (PRRs), toll-like receptors (TLRs), and
NOD-like receptors (NLRs)), thus allowing the identification of intracellular viral RNA [5].
The recognition of viral RNA by these receptors activates a number of intracellular signaling
pathways, including NF-κB, which ultimately results in the transcription of proinflamma-
tory cytokines, such as IL-1β, IL-6, and TNF-α [5]. In this process, IL-1β seems to play
a pivotal role, since it upregulates its own gene expression in ECs, stimulating the local
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production of chemokines, which in turn regulates the penetration of inflammatory cells
into tissues [68]. IL-1β also induces the secretion of another proinflammatory cytokine,
namely IL-6, which leads to the amplification of the systemic inflammatory response
through cytokine overproduction [69]. IL-6 provides a large contribution to endothelial
dysfunction in COVID-19 patients. In fact, through JAK-STAT activation, IL-6 enhances the
expression of adhesion molecules on EC surface (i.e., VCAM-1, ICAM-1, and E-selectin),
thus promoting the recruitment of leucocytes into the vascular wall while reducing NO
bioavailability and increasing oxidative stress via activation of NADPH oxidase [21,23].
Contrary to IL-6, which mainly acts through JAK-STAT activation, TNF-α transcriptional ac-
tivity substantially depends on NF-κB [70]. Among a plethora of actions on ECs, including
the overexpression of adhesion molecules, TNF-α downregulates VE-cadherin expression
and stimulates phosphorylation of tyrosine in VE-cadherin [70]. This ultimately results
in the disruption of its contact with beta-catenin and subsequently enhances endothelial
permeability [71]. Moreover, inflammatory cytokines lead to a simultaneous increase in the
expression of vWF and TF on ECs, which will promote blood clotting through the increase
in platelet aggregation and the initiation of the coagulation cascade, respectively [72]. Over-
all, the presence of these indirect mechanisms of endothelial dysfunction, mediated by the
systemic inflammatory response, may justify the systemic involvement of the endothelium
in COVID-19 patients [4] (Figure 2).

Biomedicines 2022, 10, x FOR PEER REVIEW 7 of 17 
 

immune response (i.e., pattern recognition receptors (PRRs), toll-like receptors (TLRs), 
and NOD-like receptors (NLRs)), thus allowing the identification of intracellular viral 
RNA [5]. The recognition of viral RNA by these receptors activates a number of 
intracellular signaling pathways, including NF-κB, which ultimately results in the 
transcription of proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α [5]. In this 
process, IL-1β seems to play a pivotal role, since it upregulates its own gene expression in 
ECs, stimulating the local production of chemokines, which in turn regulates the 
penetration of inflammatory cells into tissues [68]. IL-1β also induces the secretion of 
another proinflammatory cytokine, namely IL-6, which leads to the amplification of the 
systemic inflammatory response through cytokine overproduction [69]. IL-6 provides a 
large contribution to endothelial dysfunction in COVID-19 patients. In fact, through JAK-
STAT activation, IL-6 enhances the expression of adhesion molecules on EC surface (i.e., 
VCAM-1, ICAM-1, and E-selectin), thus promoting the recruitment of leucocytes into the 
vascular wall while reducing NO bioavailability and increasing oxidative stress via 
activation of NADPH oxidase [21,23]. Contrary to IL-6, which mainly acts through JAK-
STAT activation, TNF-α transcriptional activity substantially depends on NF-κB [70]. 
Among a plethora of actions on ECs, including the overexpression of adhesion molecules, 
TNF-α downregulates VE-cadherin expression and stimulates phosphorylation of 
tyrosine in VE-cadherin [70]. This ultimately results in the disruption of its contact with 
beta-catenin and subsequently enhances endothelial permeability [71]. Moreover, 
inflammatory cytokines lead to a simultaneous increase in the expression of vWF and TF 
on ECs, which will promote blood clotting through the increase in platelet aggregation 
and the initiation of the coagulation cascade, respectively [72]. Overall, the presence of 
these indirect mechanisms of endothelial dysfunction, mediated by the systemic 
inflammatory response, may justify the systemic involvement of the endothelium in 
COVID-19 patients [4] (Figure 2). 

 
Figure 2. Physiopathology of endothelial dysfunction in coronavirus disease 2019 (COVID-19). 
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TNF-α: tumor necrosis factor alpha; 
ADAM17: a disintegrin and metalloprotease 17; ACE2: angiotensin-converting enzyme 2; Ang II: 
angiotensin II; Ang 1-7: angiotensin1-7; AT1: angiotensin receptor type 1; AT4: angiotensin receptor 
type 4; Gα12/13: guanine nucleotide-binding protein alpha 12/13; RhoA: Ras homolog family member 

Figure 2. Physiopathology of endothelial dysfunction in coronavirus disease 2019 (COVID-19).
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TNF-α: tumor necrosis factor alpha;
ADAM17: a disintegrin and metalloprotease 17; ACE2: angiotensin-converting enzyme 2; Ang II:
angiotensin II; Ang 1-7: angiotensin1-7; AT1: angiotensin receptor type 1; AT4: angiotensin receptor
type 4; Gα12/13: guanine nucleotide-binding protein alpha 12/13; RhoA: Ras homolog family member
A; ROCK: Rho-associated protein kinase; p38 MAPK: p38 mitogen-activated protein kinase; NO: nitric
oxide; IL-1: interleukin-1; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α; VCAM-1: vascular cell
adhesion molecule-1; ICAM-1: intercellular adhesion molecule-1; PSGL-1: P-selectin glycoprotein
ligand-1; VLA-4: very late antigen-4 integrin; LFA-1: lymphocyte function-associated antigen-1
integrin.



Biomedicines 2022, 10, 812 8 of 16

5.3. Potential Inflammatory Mechanisms from Other Respiratory Diseases

Patients with chronic obstructive pulmonary disease (COPD) have an increased risk
of severe pneumonia and poor outcomes when they develop COVID-19 [73]. Cigarette
smoke and COPD have been associated with higher ACE2 expression in the lungs and
it has been hypothesized that this may increase SARS-CoV-2 infection susceptibility [74].
On the other hand, COVID-19 could represent the ultimate cause of acute exacerbation in
COPD patients [74]. Thus, the strict clinical interrelationship between these two respiratory
conditions led to the hypothesis that the mechanisms of pulmonary endothelial damage in
COPD may also be somehow involved in SARS-CoV-2 infection [74].

In COPD, the recruited leucocytes (cytotoxic CD8+ T cells, neutrophils, monocytes,
and B cells) sustain chronic local inflammation leading to hypoxia, vasoconstriction, and
injury of extracellular matrix and endothelial lining [75]. The first microscopic alteration
in endothelium involves the basement membrane, which becomes thicker than in healthy
individuals [75], later becoming fragmented and more vascularized [76,77]. It has also been
observed that in COPD patients, apoptotic ECs appear in the vascular wall, presenting
fragmented nucleoli and leading to enhanced matrix metalloproteinases (MMPs) activity, so
that the alveolar wall loses its elasticity and collapses [78,79]. It has been demonstrated that
neutrophils are able to generate novel cellular processes such as the neutrophil extracellular
trap (NET) [80], thus attaching to the apical domain of ECs and then migrating by their
pseudopods over one (transendothelial migration, TEM) or between two ECs (paracellular
transmigration, PCM) [81]. Recently, a reverse TEM (rTEM) has also been observed: some
neutrophils migrate from abluminal-to-luminal direction through ECs, thus mediating the
systemic dissemination of inflammation, while other neutrophils reverse back in the inter-
stitial space [82]. Here, lung-resident macrophages increase in number and together with
neutrophils induce degradation of extracellular matrix (ECM), oxidative stress, apoptosis,
expression of surface intracellular markers, and dysregulated activation of proinflamma-
tory mediators and proteases [83]. Overall, these molecular changes induce a decreased
oxygen level in the lung tissue and the subsequent activation of hypoxia-induced factors
(HIF) as well as the transcription of platelet-derived growth factor-β (PDGF-β). HIF-1
induces inflammation, while HIF-2 induces expression of endothelin-1 and arginase (potent
vasoconstrictors) in ECs, while downregulating apelin expression, a molecule involved in
vasodilatation [84]. Moreover, HIF-1α regulates VEGF, inducing its overexpression together
with that of its receptors (VEGFRs). VEGF and VEGFRs are involved in angiogenesis in
COPD, correlating with its severity because the reduction in the number of certain VEGF
isoforms seems to correlate with apoptosis responsible for alveolar septa of emphysematous
lungs [85].

Overall, chronic impairment of the innate and acquired immune responses at least
results in delayed viral clearance in COPD patients, thus potentially favoring SARS-CoV-2
infection [74]. However, whether and to what extent the aforementioned mechanisms that
have been well-studied in COPD may also be involved in the pathogenesis of COVID-19
alterations is yet to be determined. It is reasonable to assume that, since they reflect the
parenchymal modifications of a chronic condition with a different etiology, they may not
be involved in the acute phase but rather contribute—at least in a minimal way—to the
long-term manifestations that have been documented in COVID-19 survivors. Recently,
particular attention has been given to the capacity of hypoxic stress and subsequent HIF
upregulation to activate COPD-like mechanisms in COVID-19 [86]. However, further
laboratory and translational studies are needed to better address this issue.

6. Targeting Endothelial Dysfunction in COVID-19

Considering its systemic nature and reversibility in early stages, endothelial dysfunc-
tion has been proposed as a therapeutic target in different clinical settings [87]. Although
most therapeutic strategies for COVID-19 have focused so far on the suppression of viral
replication, it can be argued that targeting endothelial dysfunction may also represent an
additional and attractive strategy in this clinical setting [88]. Two main classes of drugs,
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namely renin-angiotensin system (RAS) inhibitors and statins, have previously shown a
positive impact on endothelial function in terms of vascular tone and coagulation con-
trol [89]. However, other pharmacological and non-pharmacological strategies have shown
promise in countering endothelial dysfunction [90].

6.1. RAS Inhibitors

The use of RAS inhibitors, including ACE inhibitors and angiotensin receptor blockers
(ARBs) is controversial in COVID-19 patients. In other clinical settings, they have already
shown the capacity to improve endothelial function [91], thus also reducing the thrombotic
risk, given their capacity to reduce TF expression [92]. However, RAS inhibitors are able
to upregulate ACE2 expression [93], thereby theoretically increasing susceptibility to the
virus. On the other hand, as widely discussed above, ACE2 is not only the key to entry
for SARS-CoV-2 into human cells. One of its main functions is converting angiotensin II
to angiotensin1-7, which has several counter-regulatory effects on angiotensin II (e.g., NO
release, antifibrotic, anti-inflammatory, anticoagulant).

In a large observational study in England [94], the use of ACE inhibitors and ARBs did
not increase the risk of intensive care unit (ICU) admittance, while significantly reducing
the risk of COVID-19 among over 8 million participants. Accordingly, no impact on
mortality risk was found when specifically considering hospitalized patients [95,96]. A
meta-analysis of observational studies showed instead that patients with COVID-19 using
RAS inhibitors had a significantly lower risk of death than those who did not [97]. The
first randomized controlled trial (RCT) on this topic, namely BRACE-CORONA, suggested
that the discontinuation of RAS inhibitors in hospitalized COVID-19 patients did not have
any additional beneficial effect [98]. In contrast with their previous meta-analytical data on
observational evidence [97], the same research group recently published a meta-analysis of
RCT, revealing no difference in mortality risk between COVID-19 patients with or without
RAS inhibitors [99].

Overall, current evidence appears to suggest that the use of RAS inhibitors should
not be discontinued in COVID-19 patients, as they may not have deleterious effects on
the course of COVID-19. On the other hand, since ACE2 is both the virus gateway and an
important RAS component, there is no evidence to recommend their use to treat endothelial
dysfunction in COVID-19.

6.2. Statins

Statins may represent another promising pharmacological strategy to target endothe-
lial dysfunction in this clinical setting [100]. Similar to RAS inhibitors, the pathophysiolog-
ical mechanisms through which statins protect the endothelium are multiple, including
the prevention of endothelial NO synthase uncoupling, the inhibition of NF-κB and other
inflammatory pathways, and the reduction in TF expression with subsequent anticoagulant
effect [89]. In the framework of comprehensive reduction of CV risk, another mechanism
of action is the reduction of low-density lipoprotein (LDL) cholesterol, thus contrasting
the LDL-induced endothelial dysfunction and oxidative stress [101]. These potentially
beneficial effects are confirmed by the meta-analytical evidence that chronic statin use
is associated with lower mortality in COVID-19 patients [102,103]. Again, the evidence
from RCTs appears to be completely different, with statins being safe in COVID-19 but
unable to change the outcome [104]. On the other hand, the INSPIRATION-S investigators
also documented that statin treatment may be beneficial in the early phases of the disease,
within 7 days from ICU admission, probably before the inflammatory response leads to
irreversible damage [105].

6.3. Antioxidants and Other Pharmacological Strategies

A number of other pharmacological strategies have been investigated to treat COVID-19
and to prevent the most severe evolution of the disease. Most of them, including corticos-
teroids, heparin, serine protease inhibitors, and biological agents targeting inflammatory
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cytokines (e.g., IL-1, IL-6, TNF-α) or their receptors, have the ability to act at least in part
by counteracting endothelial dysfunction and the imbalanced prothrombotic properties of
the endothelium through direct or indirect mechanisms [106,107].

Since SARS-CoV-2 infection triggers oxidative stress [108], antioxidant therapies have
also been proposed for COVID-19 patients. Given the strict interrelationship between
oxidative stress and endothelial dysfunction, strategies targeting oxidative stress may also
be useful in improving endothelial function [109]. Dimethylfumarate is approved for the
treatment of multiple sclerosis and psoriasis and is also a strong activator of the nuclear
factor erythroid 2-related factor 2 (Nrf2), a well-known antioxidant transcription factor that
restores cellular redox homeostasis [110]. Its use has been proposed for COVID-19, given
its ability to inhibit TMPRSS2, thus limiting the entry of the virus [111]. Sulforaphane is
another potent activator of Nrf2, which is currently being tested in several clinical trials
on COPD and has also shown its potential utility in COVID-19 [112]. Glutathione and
N-acetyl cysteine (NAC), a precursor of glutathione, are potent antioxidants involved in the
removal of H2O2 and other ROS [113]. Moreover, NAC has anticoagulant properties and
provides protection against the deleterious effects of angiotensin II, since it inhibits ACE2
receptors [114]. For these reasons, these compounds have also been tested in COVID-19
with preliminary encouraging results [115,116]. Other antioxidant therapies, including vi-
tamins (e.g., C, D, and E) and zinc, which have already been shown to improve endothelial
function in other clinical settings [117], may lead to an improvement of respiratory symp-
toms during SARS-CoV-2 infection [118]. Being a precursor of NO, L-arginine is another
compound that potentially plays a role in counteracting oxidative stress and endothelial
dysfunction in COVID-19 [119]. L-arginine has already proven its safety and efficacy in
patients with severe COVID-19, significantly reducing hospitalization length and the need
for respiratory support [120]. However, it has not been studied whether it could be effective
in improving endothelial function and CV risk, particularly in the convalescent phase.
Overall, randomized pharmacological studies should elucidate the real utility of these
compounds in COVID-19.

6.4. Rehabilitation and Exercise-Based Approaches

Another therapeutic approach, namely rehabilitation, which has already shown utility
in COVID-19, may target endothelial dysfunction following the acute phase, thus poten-
tially reducing CV risk during convalescence. From the early stages of the pandemic, it
was hypothesized that COVID-19 could leave behind a plethora of clinical and functional
sequelae, not only in the lungs but at a systemic level [3]. Therefore, the possible usefulness
of rehabilitation strategies to reduce the psychological, CV, and respiratory consequences
of the disease has been hypothesized from the beginning [121]. The evidence from recent
RCTs [122,123] and observational studies [124,125] suggest that exercise-based rehabilita-
tion in convalescent COVID-19 patients may be effective in improving symptoms, quality
of life, pulmonary function, and even computed tomography (CT) abnormalities.

In 1986, Sinoway et al. were the first to demonstrate that exercise may improve
endothelial function in tennis players [126]. This was also shown in a number of studies
focusing on rehabilitation and other exercise-based interventions both in healthy subjects
and in different clinical settings (e.g., COPD, heart failure) [127–130], later confirmed by
recent meta-analytical evidence [131]. A number of mechanisms have been called into
question to explain the beneficial effects of exercise on endothelial function, including
upregulation of superoxide dismutase, increased endothelial NO synthase phosphorylation
and reduced uncoupling, downregulation of NADPH oxidase, and EPC mobilization [132].
In COVID-19, we were the first to suggest the potential usefulness of exercise-based
rehabilitation in reducing endothelial dysfunction, with the improvement in FMD being
positively correlated with the improvement in pulmonary function. However, this was only
preliminary evidence, given the observational design, the lack of a control group, and the
absence of concomitant laboratory testing of endothelial function [88]. Large well-designed
observational studies with a controlled design focusing on both clinical and laboratory
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biomarkers of endothelial function are warranted to clarify the possibility of restoring
endothelial integrity through exercise and different rehabilitation approaches.

7. Conclusions

This review summarized the large amount of scientific evidence, which seems to
suggest that endothelial dysfunction represents the common denominator of most clinical
manifestations of COVID-19, both in the acute phase and during convalescence. This may
be supported by the strong interrelationship between inflammation, oxidative stress, and
endothelial function. Although current therapeutic strategies in the acute phase are mainly
focused on blocking viral replication and limiting inflammation, it is likely that novel
approaches aimed at counteracting endothelial dysfunction could represent a valid option,
particularly in a convalescent phase. Further evidence is urgently needed to elucidate the
role of statins, RAS inhibitors, antioxidants, rehabilitation, and exercise-based interventions
in this clinical setting.
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