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Abstract: Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is a mainstay of acute
ischemic stroke treatment but is associated with bleeding complications, especially after prolonged
large vessel occlusion. Recently, inhibition of the NLRP3 inflammasome led to preserved blood–brain
barrier (BBB) integrity in experimental stroke in vivo. To further address the potential of NLRP3
inflammasome inhibition as adjunct stroke treatment we used immortalized brain derived endothelial
cells (bEnd5) as an in vitro model of the BBB. We treated bEnd5 with rt-PA in combination with the
NLRP3 specific inhibitor MCC950 or vehicle under normoxic as well as ischemic (OGD) conditions.
We found that rt-PA exerted a cytotoxic effect on bEnd5 cells under OGD confirming that rt-PA is
harmful to the BBB. This detrimental effect could be significantly reduced by MCC950 treatment.
Moreover, under ischemic conditions, the Cell Index—a sensible indicator for a patent BBB—and the
protein expression of Zonula occludens 1 stabilized after MCC950 treatment. At the same time, the
extent of endothelial cell death and NLRP3 expression decreased. In conclusion, NLRP3 inhibition
can protect the BBB from rt-PA-induced damage and thereby potentially increase the narrow time
window for safe thrombolysis in stroke.

Keywords: NLRP3; inflammasome; MCC950; rt-PA; blood–brain barrier; Cell Index; ASC; ischemic
stroke; i.v. thrombolysis

1. Introduction

Ischemic stroke (IS) is one of the leading causes of death and disability worldwide [1].
Thrombolysis and mechanical thrombectomy are applied early after stroke onset to achieve
rapid recanalization as a prerequisite for a good functional outcome. However, rapid infarct
growth from stroke onset until the initiation of these interventions increases the probability
of futile or even harmful recanalization, mainly due to bleeding complications [2]. In
particular, the application of recombinant tissue plasminogen activator (rt-PA) increases
the risk of hemorrhagic stroke transformation beyond 4.5 h of stroke onset. Furthermore,
there is experimental evidence that rt-PA can impair the blood–brain barrier (BBB) [3–6].

Inflammasomes are molecular protein complexes which sense cellular deviation from
homeostasis and subsequently initiate inflammatory responses [7]. Inflammasomes con-
sist of three components: firstly, a cytosolic pattern recognition receptor (PRR)—most
notably the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)—causing the
oligomerization of the sensor by recognizing inflammatory mediators and DAMPs in sterile
inflammatory processes such as IS [8,9]. Secondly, the recruitment of ASC (apoptosis-
associated speck-like protein containing a caspase recruitment domain) is induced. Thirdly,
ASC filaments provide a docking site for pro-caspase 1 as effector molecule [10,11]. This trig-
gers the autoactivation of caspase 1 and the downstream activation of the pro-inflammatory
cytokines IL-1β and IL-18 as well as the pyroptosis-inducing protein Gasdermin D [12,13],
which are significantly expressed during IS [14–16].
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We could recently show that NLRP3 inflammasome is upregulated early after stroke
onset in neurons and glial cells, but also in endothelial cells (EC) [16]. This upregulation is
of particular interest, as EC die under hypoxic conditions. This leads to a BBB breakdown,
which responds to NLRP3 inhibition [15]. Our goal, now, was the quantification of the
endothelial barrier function in the bEnd5 cell model dependent upon the period of oxygen
and glucose deprivation (OGD) and additional rt-PA administration. Furthermore, we
tested whether NLRP3 inhibition can mitigate rt-PA induced damage of the BBB.

2. Materials and Methods
2.1. Materials

A total of 10 mg of the inflammasome-inhibitor MCC950 (NLRP3 Inhibitor, MCC950,
#538120, Merck, Darmstadt, Germany) were dissolved in 1 mL 1× phosphate-buffered
saline (PBS) (Dulbecco′s Phosphate Buffered Saline, #D8537, Merck). MCC950 was further
diluted with cell culture medium to 100 µmol/L. rt-PA (Actilyse, PZN-03300636, Boehringer
Ingelheim, Ingelheim am Rhein, Germany) was diluted with cell culture medium to a fi-
nal concentration of 50 ng/mL in line with the average concentration of rt-PA detected
in human pial blood samples [17]. Dulbecco’s Modified Eagle’s Medium (DMEM) high
glucose (4.5 g/L) (Dulbecco′s Modified Eagle′s Medium—high glucose, #D5671), DMEM
low glucose (1 g/L) (Dulbecco′s Modified Eagle′s Medium—low glucose, #D5921), sterile
water (Water, #W3500), L-Glutamine (L-Glutamine Solution 200 mM, #59202C), Trypsin
(Trypsin-EDTA solution 0.25%, #T4049), and PI (Propidium iodide solution—solution
1.0 mg/mL in water, #P4864) were all purchased by Merck. Calf serum (FCS) (Ster-
ile Plasma Derived Bovine Serum, #60-00-850) was provided by First Link (UK) Ltd.
(Birmingham, UK). The T75-cell culture flasks (Cellstar Cell Culture Flasks, 75 cm2, #658170)
were provided by Greiner Bio-One GmbH (Frickenhausen, Germany), the 96-well plates
(Nunc™ Cell-Culture, 96-Well, #165306), DAPI (ProLong™ Gold Antifade Mountant with
DAPI, #P36931) and as secondary antibodies Alexa FluorTM 488 goat anti-mouse IgG (Goat
anti-Mouse IgG (H+L), Alexa Fluor 488, #A11001) and Alexa FluorTM 546 goat anti-rabbit
IgG (Goat anti-Rabbit IgG (H+L), Alexa Fluor 546, #A11035) were provided by Thermo
Fisher Scientific (Waltham, MA, USA). For the xCELLigence experiments, xCELLigence
E-Plates (xCELLignece E-Plate VIEW 16, #300601140) were purchased by Agilent (Santa
Clara, CA, USA).

2.2. Cell Culture

We purchased bEnd5 cells from Merck (bEnd5, #96091930). They were grown in
DMEM (high glucose, 4.5 g/L), supplemented with 10% FCS and 1% L-Glutamine (200 mM),
in a humidified (95%) 37 ◦C incubator with 5% CO2 and 21% O2. We plated bEnd5 in
75 cm2 culture flasks and subcultured them using 0.25% (w/v) trypsin in 0.02% (w/v) EDTA
at 80% confluence. We changed media every 2 d. We passaged the cells chosen for experi-
mentation between 18 and 26 times. For resistance measurements, we transferred bEnd5
cells on gold electrode plates (ACEA, San Diego, CA, USA) and for immunofluorescent
microscopy on 96-well plates 24 h prior to commencement of the respective trials.

2.3. Oxygen and Glucose Deprivation (OGD)

We exposed confluent monolayers of bEnd5 cells to hypoxic (1% O2, 95% humidity,
5% CO2, 37 ◦C) and aglycemic conditions by replacing the culture medium with low
glucose-medium (hypoxic DMEM low glucose with 1% L-Glutamine without FCS). We
preincubated the OGD medium for 24 h under hypoxic conditions before administration.

2.4. Treatment Regimes

We used a rt-PA concentration of 50 ng/mL corresponding to the average value of
recently analyzed human post occlusive blood samples [17].

A total of 100 µmol/L of the specific NLRP3 inflammasome-inhibitor MCC950 were
used to treat bEnd5 cells. MCC950 was dissolved as described above. As vehicle treatment,
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the same amount of pure culture or OGD medium was added. The investigators were
blinded to the group allocation.

2.5. xCELLigence Assay

For label-free real-time assessment of transendothelial resistance, we used an Agilent
xCELLigence RTCA DP system. It records the impedance changes compared to the back-
ground of cell-free electrodes at three different alternating current frequencies expressed as
the dimensionless Cell Index [18]. It correlates to the transendothelial electrical resistance
but does additionally reflect the capacitance of the cell layer. When confluent after 24 h
of growth, evidenced by a plateau of the Cell Index, we treated the cells with MCC950,
rt-PA, MCC950 and rt-PA at the same time, or rather vehicle, under either normoxic or
OGD conditions as indicated. Data was processed by the xCELLigence RTCA DP software
1.2.1 (Agilent, Santa Clara, CA, USA).

2.6. Immunofluorescence Microscopy

For histology we fixated bEnd5 cultures with a glyoxal solution containing 40% glyoxal,
acetic acid, water, and 100% ethanol. Cell cultures were dyed with DAPI, PI, and antibodies
against NLRP3 (anti-NLRP3/NALP3, mAb (Cryo-2), #AG-20B-0014, 1:100, Adipogen
Life Sciences, San Diego, CA, USA), Zonula occludens 1 (ZO-1 Polyclonal Antibody, #61-
7300, 1:1000, Thermo Fisher Scientific), and ASC (Anti-ASC (AL177), #AG-25B-0006, 1:100,
Adipogen). We used secondary antibodies in a dilution of 1:100. For recording, we used
a Leica microscope (Leica DMi8, DMC 2900/DFC 3000G camera control, LAS X software
(Leica, Wetzlar, Germany)). To measure cell death bEnd5 cells cultivated on 96-well plates
were visualized with transmitted light microscopy and apoptotic cells with fluorescence
measurements after PI (1:200) staining with the above-mentioned microscope. The red
fluorescent cells were counted. For measurement of NLRP3, ASC, and ZO-1 intensity,
images of the cell cultures were recorded with the same microscope. Subsequently, after
converting the images into 16-bit black and white files, the intensities of the respective
stainings were determined with ImageJ Analysis Software 1.52a (National Institutes of
Health, Bethesda, MD, USA).

2.7. Statistics

Results are presented as grouped summary data indicating median and standard
deviation for each time point. For statistical analysis the GraphPad Prism 8 software
(GraphPad Company, San Diego, CA, USA) was used. Data was tested for Gaussian
distribution with the D’Agostino-Pearson omnibus normality test and then analyzed by
1-way analysis of variance (ANOVA) with post hoc Tukey adjustment for p values. Proba-
bility values < 0.05 were considered to indicate statistically significant results.

3. Results
NLRP3 Inhibition Improves Endothelial Barrier Function and EC Survival after rt-PA
Administration under OGD

The Cell Index is a sensitive read-out for endothelial monolayer integrity. Using the
xCELLigence real-time cell analysis (RTCA) system an accelerating decrease in the Cell
Index could be detected under OGD, which amplified significantly after rt-PA administra-
tion. Coincubation with MCC950, though, stabilizes the Cell Index of the rt-PA + MCC950
group until 15 h of OGD in comparison to rt-PA administration only (Figure 1A). Under
normoxic conditions no significant differences between the single treatment regimens stood
out (Figure 1B). In a next step, the Cell Index under OGD was correlated with the quantified
cell death: while the number of dead EC was the highest in the rt-PA treatment group
with a significant reduction in the rt-PA + MCC950 group, the cell death was lowest in the
MCC950 only group, as shown by propidium iodide (PI) staining (Figure 1C,D). To verify
the role of NLRP3 within the loss of endothelial barrier function during OGD and rt-PA
treatment, an immunofluorescent microscopic analysis of the cell culture was performed. It
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showed an increasing NLRP3 signal during OGD incubation in the vehicle group with a
considerable gain of NLRP3 intensity in the rt-PA group and an unambiguous reduction in
the respective MCC950 groups. After 1 h of OGD only a faint NLRP3 signal was detected
in the MCC950 only group. The staining of the apoptosis-associated speck-like protein
containing a CARD domain (ASC), the essential adaptor molecule for inflammasome acti-
vation, which is described as a readout parameter for inflammasome activation, showed
similar results (Figure 2) [19].

Figure 1. NLRP3 inhibition stabilizes the Cell Index of endothelial cells and reduces endothelial cell
death under OGD. (A) The Cell Index over a period of 24 h of OGD (1% O2, 5% CO2, 95% humidity,
37 ◦C, 1 g/L glucose) as measured with the ACEA xCELLigence DP system. bEnd5 were either
treated with vehicle, MCC950, rt-PA, or rt-PA and MCC950 (n = 24 out of 3 independent experiments).
(B) The Cell Index over a period of 24 h of normoxia. bEnd5 were either treated with vehicle, MCC950,
rt-PA, or rt-PA and MCC950 (n = 24 out of 3 independent experiments). (C) Percentage of apoptotic,
propidium iodide (PI) positive, bEnd5 cells per well after 1 h, 3 h, 4.5 h, 8 h, and 24 h of OGD
depending on the treatment regime (n = 15 out of 3 independent experiments). (D) Representative
microscopic brightfield images of bEnd5 after 4.5 h of OGD and visualization of treatment-dependent
PI (red) uptake; 10× objective; scale bar = 100 µm. Data was analyzed by 1-way ANOVA with post
hoc Tukey adjustment * p < 0.05; ** p < 0.01; and *** p < 0.001. Significance as indicated by * refers to the
comparison between the rt-PA treated group and the rt-PA + MCC950 treated group, by +, ++ p < 0.01,
+++ p < 0.001 to the comparison between the vehicle treated group and the MCC950 treated group, by
o, oo p < 0.01 to the comparison between the vehicle treated group and the rt-PA treated group and by
x, xxx p < 0.001 to the comparison between vehicle and the rt-PA + MCC950 treated group. Merged
images are enlarged by a factor of 2.
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Figure 2. MCC950 treatment reduces NLRP3 and ASC expression under OGD. Representative NLRP3
(green), ASC (red), and DAPI (blue) immunofluorescence stainings of bEnd5 after (A) 1 h, (B) 4.5 h,
(C) 8 h, or (D) 24 h of OGD (1% O2, 5% CO2, 95% humidity, 37 ◦C, 1 g/L glucose) either with
vehicle, MCC950, rt-PA, or dual rt-PA and MCC950 treatment. (E) Quantification of NLRP3 (left) and
ASC (right) expression by intensity measurement of the immunofluorescent stainings (n = 15 out
of 3 independent experiments); 20 × objective; scale bar = 20 µm; scale bars account for all images.
Merged images are enlarged by a factor of 3. Data was analyzed by 1-way ANOVA with post hoc
Tukey adjustment. * p < 0.05; ** p < 0.01; and *** p < 0.001.

The characteristic high transendothelial resistance of brain endothelial monolayers
is achieved by the formation of tight junctions (TJ) that seal the intercellular clefts. These
transmembraneous multi-protein complexes are linked to the cytoskeleton by intracellular
adapter proteins such as zonula occludens-1 (ZO-1). Thus, ZO-1 reduction after OGD
exposure and rt-PA stimulation, as analyzed by immunofluorescent microscopic analysis,
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points to a loss of TJ integrity. After 8 h of OGD, the vehicle group showed a distinctly
reduced ZO-1 signal while it vanished nearly completely in the rt-PA group. In the MCC950
treated groups, though, a distinct intensity remained even after 8 h of OGD (Figure 3).

Figure 3. MCC950 treatment improves ZO-1 expression under OGD. Representative ZO-1 (green)
and DAPI (blue) immunofluorescence stainings of bEnd5 after (A) 1 h, (B) 4.5 h, or (C) 8 h of
OGD (1% O2, 5% CO2, 95% humidity, 37 ◦C, 1 g/L glucose) either with vehicle, MCC950, rt-PA or
dual rt-PA and MCC950 treatment. (D) Quantification of ZO-1 expression by intensity measure-
ment of the immunofluorescent stainings (n = 15 out of 3 independent experiments); 20× objective;
scale bar = 20 µm; scale bars account for all images. Merged images are enlarged by a factor of 2.
Data was analyzed by 1-way ANOVA with post hoc Tukey adjustment. * p < 0.05; ** p < 0.01.

4. Discussion

Intravenous rt-PA treatment in acute ischemic stroke is restricted to 4.5 h after stroke
onset, partly due to an increasing risk of side effects, such as bleeding complications, with
progressing occlusion time. As our principal finding, we show that targeting the NLRP3
inflammasome can protect brain endothelial cells from unwanted toxic side effects of the
thrombolytic agent rt-PA under ischemic conditions.

Prolonged OGD of bEnd5 cells, as a model system of the brain microvasculature during
large vascular occlusion in IS, triggers cell death over time [15]. This is accompanied by a
rise in NLRP3, as well as ASC protein expression and the disruption of endothelial barrier
function. Of note, further deterioration of hypoxic endothelial damage by rt-PA treatment
was significantly attenuated when MCC950 was co-administered. Importantly, to achieve
the greatest possible transferability of the in vitro model, the very same concentration
of rt-PA was applied to the cells that was averagely measured in IS patients behind the
occluding thrombus before mechanical thrombectomy [17]. The observed disruption of
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barrier integrity in the rt-PA treated group within 6 h of OGD resembles data of human
rt-PA observational studies. Here, the number needed to treat (NNT) rises from 10 (3 h) to
19 (4.5 h) and further to 50 (6 h), while the number needed to harm equals the NNT after
6 h [20].

In the given in vitro setting, clinically important variables such as symptom sever-
ity, possible side effects of the treatment, or the overall outcome cannot be examined,
which we consider as a study limitation [21]. Furthermore, to evaluate detailed molecular
mechanisms of NLRP3 activation and corresponding downstream inflammatory processes
when endothelial cells are exposed to rt-PA under ischemic conditions, additional studies
are needed.

Taken together, our study provides evidence that early application of a NLRP3 in-
hibitor does not only preserve the patency of the BBB in middle cerebral artery occlusion,
but furthermore protects hypoxic endothelial cells from side effects of concomitant rt-PA
treatment. Therefore, NLRP3 inhibition presents as a promising therapeutic target to extend
the narrow window of opportunity for acute stroke treatment.
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