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Abstract: Airborne ultrafine particle (UFP) exposure is a great concern as they have been correlated
to increased cardiovascular mortality, neurodegenerative diseases and morbidity in occupational
and environmental settings. The ultrafine components of diesel exhaust particles (DEPs) represent
about 25% of the emission mass; these particles have a great surface area and consequently high
capacity to adsorb toxic molecules, then transported throughout the body. Previous in-vivo studies
indicated that DEP exposure increases pro- and antioxidant protein levels and activates inflammatory
response both in respiratory and cardiovascular systems. In cells, DEPs can cause additional reactive
oxygen species (ROS) production, which attacks surrounding molecules, such as lipids. The cell
membrane provides lipid mediators (LMs) that modulate cell-cell communication, inflammation,
and resolution processes, suggesting the importance of understanding lipid modifications induced
by DEPs. In this study, with a lipidomic approach, we evaluated in the mouse lung and cortex how
DEP acute and subacute treatments impact polyunsaturated fatty acid-derived LMs. To analyze the
data, we designed an ad hoc bioinformatic pipeline to evaluate the functional enrichment of lipid
sets belonging to the specific biological processes (Lipid Set Enrichment Analysis-LSEA). Moreover,
the data obtained correlate tissue LMs and proteins associated with inflammatory process (COX-2,
MPO), oxidative stress (HO-1, iNOS, and Hsp70), involved in the activation of many xenobiotics as
well as PAH metabolism (Cyp1B1), suggesting a crucial role of lipids in the process of DEP-induced
tissue damage.

Keywords: LSEA; lipid mediators; air pollution; inflammation; diesel exhaust particles

1. Introduction

Airborne particulate matter (PM) is a heterogeneous mixture of particles characterized
by different sizes, compositions, and sources. Usually, particles are classified into three
major size groups: coarse particles (diameter <10 and ≥2.5 µm, PM10), fine particles (di-
ameter <2.5 and ≥0.1 µm, PM2.5), and ultrafine particles (<0.1 µm, UFPs) [1]. Long-term
exposure to ambient PM2.5 is considered the fifth-greatest risk factor for global mortality
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in the Global Burden of Disease, Injuries, and Risk Factors Study 2015; indeed, it deter-
mines a high number of premature deaths (i.e., 4–9 million in 2015) [2,3]. The particle
size is highly correlated to their toxicity, as a smaller PM size fraction with an increased
surface area enhances cell-PM interactions [4,5]. Due to their peculiar features, such as high
surface-to-volume ratio, prolonged residence time in the lungs, low clearance efficiency,
translocation across air blood air, and transport in lymphatic circulation, UFPs obtained
increased attention for their potential toxicity on human health [6]. Of note, is their ability
to accumulate in different organs, such as the liver, kidneys, heart, and brain [7–11]. Diesel
combustion produces particles of 15–30 nm in diameter contributing mainly to primary
UFP emissions [12,13]. Diesel exhaust particles (DEPs) represent the solid fraction of diesel
engines [14] and are constituted of a carbon core enriched in high-molecular-weight chem-
ical components, such as PAHs and heavy metals [15,16]. In northern Italy (Lombardy)
they represent the most important sources of PM2.5 responsible for the 20% of fine parti-
cles (https://www.arpalombardia.it/sites/DocumentCenter/Documents/RAPPORTO%
20SULLO%20STATO%20DELL\T1\textquoterightAMBIENTE%20IN%20LOMBARDIA%
20-%202004/08atmosfera.pdf#search=Inventario%20di%20emissioni. Accessed on 9 June
2017). In recent works using an in-vivo model, we demonstrated that DEP exposure led
to strong activation of oxidative and inflammatory stress in lung parenchyma [17] and
brain [18]. DEPs caused additional ROS production, which affects cell components, such
as lipids, finally inducing oxidative damage [19]. Lipid peroxidation is the oxidative
degradation of lipids, especially polyunsaturated fatty acids (PUFAs), which generate
degradative products, such as epoxides and aldehydes involved in oxidative stress-related
pathologies [20–22]. Previous work showed that repeated exposure to PM10 in BALB/c
mice led to lung lipid reshaping [23]; indeed, we measured an increase of phospholipid
and cholesterol content, lipid peroxidation correlated to oxidative stress-induced by PM10.
These data suggested possible PM effects on cell membrane structure and functions. The
cell membrane provides messenger molecules that mediate cell-cell communication, in-
flammation, and resolution processes, suggesting the importance of understanding lipid
modifications induced by UFPs. In this contest, lipid mediators (LMs) could show opposite
or redundant properties. Moreover, the overall balance among various oxygenated PUFA
species might greatly impact physiological and pathological conditions, thus challenging a
straightforward definition of their ability to modulate biological processes.

Starting from these considerations, we have investigated DEP outcomes on LM com-
position in lung and cortex tissues. BALB/c mice were exposed for different times through
intratracheal instillation of particulate, a useful and validated in-vivo model to study
pollutant-induced acute and subacute toxicity [17,18,24]. The lung and brain were chosen
as the first site of DEP accumulation and the target of UFP delivery via the respiratory
system, respectively [25]. Indeed, previous evidences indicated that DEPs induce oxidative
stress, inflammation, and unfolded protein response in the CNS [17,26–28], with the highest
status of oxidative stress and inflammation in the cortex [29].

Here we introduce an ad hoc bioinformatic pipeline to evaluate lipidomic profile
and correlate results with specific biological processes. To this aim, Lipid Set Enrichment
Analysis (LSEA) was developed to evaluate the functional enrichment analysis of lipid sets
belonging to biological processes found in the following databases: Chemical Entities of
Biological Interest (ChEBI), LIPID MAPS® Structure Database (LMSD), Reactome, and Small
Molecule Pathway Database (SMPDB). Our results indicate that DEP treatment impacts the
tissues in terms of PUFA-derived LM profile in association with specific inflammatory and
oxidative stress pathways, with different features related to acute and subacute treatments.
Data obtained from the lipidomic analysis highlighted that PUFA-derived LMs correlate
with the activation of inflammatory processes, oxidative stress and xenobiotic metabolism.

https://www.arpalombardia.it/sites/DocumentCenter/Documents/RAPPORTO%20SULLO%20STATO%20DELL\T1\textquoteright AMBIENTE%20IN%20LOMBARDIA%20-%202004/08atmosfera.pdf#search=Inventario%20di%20emissioni
https://www.arpalombardia.it/sites/DocumentCenter/Documents/RAPPORTO%20SULLO%20STATO%20DELL\T1\textquoteright AMBIENTE%20IN%20LOMBARDIA%20-%202004/08atmosfera.pdf#search=Inventario%20di%20emissioni
https://www.arpalombardia.it/sites/DocumentCenter/Documents/RAPPORTO%20SULLO%20STATO%20DELL\T1\textquoteright AMBIENTE%20IN%20LOMBARDIA%20-%202004/08atmosfera.pdf#search=Inventario%20di%20emissioni


Biomedicines 2022, 10, 712 3 of 16

2. Materials and Methods
2.1. Animal Housing

Data from the literature indicate that the susceptibility to air pollution is gender-related;
as in our previous works, we wanted to analyze the effects of DEP in a homogeneous an-
imal population and for this reason, we used a male mouse model. Before treatments,
to acclimate to the housing facility under controlled environmental conditions (temper-
ature 19–21 ◦C, humidity 40–70%, lights on 7 a.m.–7 p.m.), male BALB/c Ollamhs mice
(7–8 weeks old, 20–25 g weight, Envigo) were housed in groups of three in plastic cages for
five days; food and water were administered ad libitum. The Institutional Animal Care and
Use Committee of the University of Milano-Bicocca approved the protocol and procedures
(protocol 02-2014) that complied with guidelines set by the Italian Ministry of Health (DL
26/2014 “Application of the Directive n. 2010/63/EU on the protection of animals used for
scientific purposes”).

2.2. Intratracheal Instillation

Twelve animals were randomly divided into four experimental groups (n = 3/group)
and exposed in the morning to acute and subacute treatments with isotonic solution (CTRL)
or Diesel exhaust particles (DEP). The experiments were replicated twice, for a total of
6 CTRL and 6 DEP-treated mice for acute and subacute treatments. The sample size was
chosen to minimize the number of animals employed [30]. Every mouse was singularly
exposed to a mixture of 2.5% isoflurane (flurane) anesthetic gas and kept under anesthesia
during the whole instillation procedure. Once a deep stage of anesthesia was reached,
mice were intratracheally instilled using MicroSprayer Aerosolizer system (MicroSprayer
Aerosolizer Model IA-1C and FMJ-250 High-Pressure Syringe, Penn Century, USA) with
100 µL of isotonic saline solution (CTRL) or 50 µg of DEPs in 100 µL of isotonic saline
solution (DEP) as previously described [17,18]. UFP concentration was chosen on the basis
of in-vivo investigations suggesting that a dose of 50 µg/mice is able to induce in lungs
acute and sub-acute inflammatory changes [31,32].

Acute and subacute instillation protocols are illustrated in Figure 1 and previously de-
scribed [33]. The acute treatment consisted of a single instillation of 50 µg DEPs and animal
sacrifice after 3 h. Instead, the subacute treatment consisted of three repeated instillations
every 3 days and animal sacrifice after 24 h from the last instillation [30,34,35]. Mice of each
experimental group were anesthetized by gas to minimize suffering and euthanized with
cervical dislocation. As described previously, the animal tissues have been collected [30,35]
and evaluated for markers of cytotoxicity, inflammation, and oxidative stress.
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2.3. UFP Characterization

DEP batches were provided by ENEA in the framework of the project “Biological
effects and human health impacts of ultrafine particle sources” led by Prof Camatini of
POLARIS research center. Particle sampling procedures and their characterization are
extensively elsewhere reported [15]. Briefly, DEPs were sampled from a diesel Euro 4 light-
duty vehicle without an anti-particulate filter fueled by commercial diesel and run over a
chassis dyno. Aggregates of round carbonaceous particles lower than 50 nm were evident
in TEM and SEM images [15]. PAHs and transition metal (Fe, Zn, Cr, Pb, V, and Ni)
concentrations were high in DEP. Detailed composition summarized in Supplemental
Table S1 was analyzed by Longhin and colleagues [15].

2.4. Lung and Cortex Protein Analysis

The lung and cortex of CTRL and DEP-treated mice were homogenized and assayed
for protein content as previously described [30]. The protein amount was determined by
the BCA assay (Sigma Aldrich, St. Louis, MO, USA).

Protein characterization was performed by Western blot and revealed by immunoblot-
ting with specific antibodies: rabbit polyclonal heme oxygenase-1 (HO-1) (sc-10789; Santa
Cruz Biotechnology™, Dallas, TX, USA), rabbit polyclonal inducible nitric oxide syn-
thase (iNOS) (sc-8310; Santa Cruz Biotechnology™, Dallas, TX, USA), rabbit polyclonal
cytochrome 1b1 (Cyp1b1) (sc-32882; Santa Cruz Biotechnology™, Dallas, TX, USA), goat
polyclonal heat shock protein 70 (Hsp70) (sc-10-70; Santa Cruz Biotechnology™, Dallas,
TX, USA), rabbit polyclonal cyclooxygenase 2 (COX2) (4842; Cell Signalling Technology®,
Danvers, MA, USA). The secondary antibodies were appropriate horseradish peroxidase
(HRP)-conjugated goat anti-rabbit (131460 Thermofisher Scientific™, Waltham, MA, USA)
or donkey anti-goat (sc-2020; Santa Cruz Biotechnology™, Dallas, TX, USA). Immunoblot
bands have been analyzed as previously described [30].

2.5. Sample Preparation and LC-MS Analysis of Lipid Mediators

For LC-MS analyses, lung and cortex tissues were homogenized using zirconium beads
in a high-frequency oscillator (Precellys, Bertin Technologies, Montigny-le-Bretonneux,
France) in phosphate-buffered saline (50 mM phosphate, pH 7.2, and 0.9% sodium chlo-
ride). Protein content was quantified using the BCA method. Recovery and quantita-
tion homogenates containing 1–2 mg protein were spiked with 5 ng each of 15(S)-HETE-
d8,14(15)-EpETrE-d8, Resolvin D2-d5, Leukotriene B4-d4, and Prostaglandin E1-d4 as
internal standards. The samples were then purified using C18 extraction columns as
described earlier [36–38]. Briefly, the internal standard spiked samples were applied to
conditioned C18 cartridges, washed with 15% methanol in water followed by hexane,
and dried under vacuum. The cartridges were eluted with 0.5 mL methanol. The elu-
ate was dried under a gentle stream of nitrogen. The residue was redissolved in 50 µL
methanol-25 mM aqueous ammonium acetate (1:1) and subjected to LC-MS analysis.

HPLC separation (Prominence XR system, Shimadzu) was achieved using a Luna
C18 (3µ, 2.1 × 150 mm) column; the mobile phase consisted of a gradient between A:
methanol-water-acetonitrile (10:85:5 v/v) and B: methanol-water-acetonitrile (90:5:5 v/v),
both containing 0.1% ammonium acetate, the flow rate was 0.2 mL/min. The gradient
program concerning the composition of B was as follows: 0–1 min, 50%; 1–8 min, 50–80%;
8–15 min, 80–95%; and 15–17 min, 95%. The eluate was directly introduced to ESI source of
QTRAP5500 mass analyzer (AB Sciex, Framingham, MA, USA) in the negative ion mode
with the following conditions: Curtain gas: 35 psi, GS1 & GS2: 35 psi, Temperature: 600 ◦C,
Ion Spray Voltage: −1500 V, Collision gas: low, Declustering Potential: −90 V. The eluate
was monitored by the Multiple Reaction Monitoring method to detect unique molecular
ion—daughter ion combinations for each of the lipid mediators using a scheduled MRM
around the expected retention time for each compound. Optimized Collisional Energies
(18–35 eV) and Collision Cell Exit Potentials (7–10 V) were used for each MRM transition.
Spectra of each peak detected in the scheduled MRM were recorded using Enhanced
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Product Ion scan to confirm the structural identity. T Analyst 1.6.3 software and the
MRM transition chromatograms were utilized to collect the data that were quantified
by MultiQuant software (both from AB Sciex). The internal standard signals in each
chromatogram were used for normalization, recovery, as well as relative quantitation of
each analyte [36–38].

2.6. Statistical Analyses

Differential abundance analysis was performed with DESeq2 [39] based on the nor-
malized signals, namely the counts divided by sample-specific size factors determined by
the median ratio of counts relative to geometric mean per lipid species. Low-dimensional
embedding of high-dimensional data was achieved by the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) machine learning algorithm with Rtsne [40] using the variance
stabilizing transformed signals. Linear correlation between lipid molecules and protein
expression levels was performed with Hmisc [41] using Pearson’s r or Spearman’s rho rank
correlation coefficients for parametric and non-parametric distributions, respectively.

2.7. Lipid Set Enrichment Analysis (LSEA)

Lipid-biological process associations were downloaded from Chemical Entities of Bio-
logical Interest (ChEBI, https://www.ebi.ac.uk/chebi/), LIPID MAPS® Structure Database
(LMSD, https://www.lipidmaps.org/), Reactome (https://reactome.org/), and Small
Molecule Pathway Database (SMPDB, https://smpdb.ca/) databases, last accessed on Au-
gust 2021. The Lipid Set Enrichment Analysis (LSEA) pipeline (Massimino, L., Lamparelli,
L.A., Rizzo, A.M. and Ungaro, F. Annotation and functional investigation of lipid-related
molecular pathways by Lipid Set Enrichment Analysis, LSEA) calculates the absolute
and relative abundances of lipid molecules and performs functional enrichment of lipid
sets belonging to biological processes using the Gene Set Enrichment Analysis (GSEA)
software [42] or similar alternatives, such as GSEApy [43].

3. Results
3.1. Lung and Cortex LM Signature

PUFAs are known to regulate the duration and magnitude of inflammation, with
omega-6 and omega-3 fatty acids acting mostly as inflammatory or pro-resolving molecules,
respectively.

To profile their fatty acyl signature, control (CTRL) and DEP treated mouse lung
and cortex tissues were analyzed by liquid chromatography-tandem mass spectrometry
(LC-MS/MS). Lipid mediators were classified based on their precursors: the omega-6
arachidonic acid (AA), dihomo-linolenic acid (DGLA), linoleic acid (LA), and omega-3
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (LNA).
Moreover, a classification related to the major enzymes involved in their biosynthesis was
utilized to better stratify the data.

One hundred and forty LMs were initially identified; out of these, 99 LMs were found
in the majority of the samples and were included in our analyses (Figure 2; Supplemental
Table S2). Two-dimensional embedding of multidimensional LC-MS/MS data by t-distributed
stochastic neighbor embedding (t-SNE) machine learning algorithm (Figure 3A) highlighted
a distinct lipid signature for the lung and cortex, irrespective of the treatment; 52 LMs were
differentially enriched between lung and cortex (Figure 3B,C; Supplemental Table S3).

https://www.ebi.ac.uk/chebi/
https://www.lipidmaps.org/
https://reactome.org/
https://smpdb.ca/
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Figure 3. Differential lipid mediator enrichment between lung and cortex, upon acute and subacute
DEP treatments. (A) Sample dispersion within the t-SNE multidimensional scaling space, where
the group, tissue, and treatment time are coded by color, shape, and size, respectively. (B) MA plot
showing normalized lipid mediator abundance as a function of log2 fold change. Orange dots and
text identify the statistically significant differentially abundant lipid species. (C) Heatmap of the
differentially abundant lipid species. (D) LSEA balloon plot showing the differentially functionally
enriched molecular pathways. Size and color identify dataset enrichment scores and statistical
significance, respectively. (E) LSEA enrichment plots of two examples of differentially functionally
enriched molecular pathways, showing the enrichment score as a function of the dataset rank between
the two conditions. Up and down arrows show the number of differentially abundant lipid mediators.
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Lipid Set Enrichment Analysis (LSEA), a computational pipeline that calculates differ-
ential abundance of single molecules and functional enrichment of lipid-related biological
pathways (Massimino, L., Lamparelli, L.A., Rizzo, A.M. and Ungaro, F. Annotation and
functional investigation of lipid-related molecular pathways by Lipid Set Enrichment
Analysis, LSEA) was used. Functional enrichment analysis highlighted tissue-specificity
for pro-resolving lipid mediator biosynthesis pathways, responsible for docosanoids and
omega-3 derivatives enrichment in the cortex and omega-6-derived eicosanoids in the lung
(Figure 3E; Supplemental Table S4).

To assess the possible lipid changes induced by mouse manipulation, mice from CTRL
(saline), acute, and subacute groups were compared by LSEA. The analysis indicated that
mouse manipulation and saline treatment with subacute protocol upregulated the synthesis
of eicosanoids, such as the oxylipins EpDPE and EpETrE in the cortex (Figure 4A–C;
Supplemental Table S3), two epoxy derivatives with possible anti-inflammatory effects [44].
In the lung (Figure 4D–F), subacute CTRL samples showed significant enrichment in
Resolvins in comparison to the acute saline-treated tissues.
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Figure 4. Differential lipid mediator enrichment between acute and subacute control treatments,
in lung and cortex. Heatmap of the differentially abundant lipid species (A,D), LSEA balloon plot
showing the differentially functionally enriched molecular pathways (B,E), and LSEA enrichment
plot examples (C,F), between Acute and Subacute DEP treatments in cortex and lung.

3.2. Effect of DEP Acute and Subacute Treatment on LMs in Lung and Cortex

To analyze the effect of DEPs on tissue LMs after acute treatment, lung- and cortex-
treated tissues were compared with respective CTRL tissues. LSEA showed the acute DEP
treatment to downregulate eight specific LMs in the lung, mainly hydroxylated derivatives
synthesized by CYP450 enzymes, while no specific metabolic pathways were found to be
dysregulated in the lung after acute DEP treatment (Figure 5A,B; Supplemental Table S4).
By contrast, acute treatment did not induce a specific change in LM concentration in the
cortex, although we observed an overall significant increase of eicosanoids, including
prostaglandins and thromboxanes (Figure 5C–E; Supplemental Table S3).
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Figure 5. Differential lipid mediator enrichment between acute DEP and control treatments, in lung
and cortex. MA plot showing normalized lipid mediator intensity as a function of log2 fold change
(A) and heatmap of the differentially abundant lipid species (B), between DEP and control acute
treatments, in the lung. MA plot showing normalized lipid mediator intensity as a function of
log2 fold change (C), LSEA balloon plot showing the differentially functionally enriched molecular
pathways (D), and an LSEA enrichment plot example (E), between DEP and control acute treatments,
in the cortex. Up and down arrows show the number of differentially abundant lipid mediatiors.

Subacute exposure to DEPs induced lower effects in all analyzed tissues. In particular,
no specific effect was observed in the cortex when compared to saline control, while two
LMs, Maresin-1 and 9(10)-EpOME, were found upregulated by DEPs in the lung during
subacute treatment (Figure 6A,B; Supplemental Table S3). In addition, LSEA showed
downregulation of the Resolvin pathways upon DEP treatment in the lung (Figure 6;
Supplemental Table S4).

Finally, we aimed to assess the differences between the acute and subacute effects
of DEPs. The major differences were found in the lung (Figure 7A–D; Supplemental
Table S3) with the downregulation of many pathways after subacute DEP exposure, in
particular omega-3 oxo derivatives and pro-resolving lipid mediators, while, in the cortex,
a downregulation of docosanoids and DPA-derived LMs was determined in the subacute
protocol (Figure 7E–H; Supplemental Table S4).

3.3. Inflammatory Protein Markers

Proteins related to oxidative stress and inflammation were previously examined in the
lung, heart, hippocampus, cerebellum, and cortex [17]. As shown in the previous study,
after DEP exposure in both respiratory and cardiovascular systems, the inflammatory
response (COX-2 and MPO), as well as pro- and anti-oxidant proteins (HO-1, iNOS, Cyp1b1,
Hsp70), were increased by DEP exposure although the stress persisted only in cardiac tissue
under repeated instillations.
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Figure 7. Differential lipid mediator enrichment between acute and subacute DEP treatments, in
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As shown in Figure 8, acute and subacute DEP treatments induced upregulation
of inflammatory proteins, such as Hsp70, iNOS, HO-1, Cyp1b1, and COX2, particularly
evident in the cortex.
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To investigate whether the upregulation of these inflammatory protein markers was
linked to the observed dysregulation of LMs, we performed a multivariate analysis between
protein levels and LM signals and found many LMs were correlated with proteins in both
treatment protocols (acute and subacute; Figure 9; Supplemental Table S5). In the cortex,
after acute treatment, we observed six LMs being positively correlated with COX2, Cyp1b1,
and Hsp70, while in subacute treatment all proteins were found to correlate with one or
more LMs. Specifically, the negative correlation with HO-1 and the positive with iNOS and
Cyp1b1 were found. Cyp1b1 level was also positively correlated with many LMs in the
lung during acute treatment, while we found a negative correlation of COX2 and Hsp70
and a positive correlation with HO-1 during the subacute treatment of mice.
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between lipid mediators and inflammatory protein markers within the different conditions, namely
Cortex and Lung upon acute or subacute DEP treatments. Color scaling shows positive and negative
correlations in red and blue, respectively.

4. Discussion

Air pollution, in particular UFPs, is one of the most widespread and dangerous envi-
ronmental toxicants in the world. The World Health Organization estimates that 9 out of
10 people are exposed to polluted air, resulting in 7 million estimated deaths (https://www.
who.int/china/home/02-05-2018-who-issues-latest-global-air-quality-report-some-progress-
but-more-attention-needed-to-avoid-dangerously-high-levels-of-air-pollution, last accessed
on 30 June 2021), caused by respiratory complications, such as pneumonia or chronic
obstructive pulmonary disease, and stroke [45].

Moreover, many epidemiological studies support that exposure to air pollution, par-
ticularly NO2 and PM2.5, increases COVID-19 susceptibility to infection and mortality. The
available data suggest that air pollution exposure is correlated to adverse effects and poor
prognosis of patients affected by SARS-CoV-2 disease [46].

UFP adverse biological effects are related to (i) their ability to inhibit phagocytosis,
and therefore, to enhance interaction with the alveolar epithelium [47]; (ii) their capability
to effectively translocate from the respiratory tract to extrapulmonary sites [48–50]. Finally,
the UFP high surface area-to-mass ratio can adsorb potentially toxic chemicals or metals
acting as a source of ROS by increasing proportionally more chemical redox cycling than
PM2.5 [51].

DEP exposure, a primary contributor of UFPs, leads to pulmonary inflammation
disturbing the alveolar cell differentiation. Indeed, DEPs induce a massive synthesis and
secretion of the inflammatory cytokine interleukin-8 by human monocytes [52] and in
the respiratory system [53]. Moreover, a response to exposure to high DEP concentration
increased C-reactive protein serum content, the classical acute-phase protein [54,55].

In addition, DEPs induce the release of the inflammatory cytokine TNF-α, controlled
by the NF-κB expression, activating alveolar macrophages. TNF-α determines, through the
upregulation of NF-κB, macrophage apoptosis. Indeed, DEPs stimulate not only the TNF-α
gene expression but also the apoptotic responses in alveolar macrophages and consequently,
lung inflammation and injury [56]. The process causes respiratory disturbances which
lead to superoxide and H2O2 formation. These ROS stimulate the MEKK-1 (mitogen-
activated protein kinases/extracellular-regulated kinase kinase-1), which activates IKK
(inhibitor of nuclear factor kappa B (IκB) kinase) and JNK (c-Jun N terminal kinases);
both kinases stimulate NF-κB downstream. TNF-α stimulation also causes mitochondrial
oxidative stress, calcium release, and finally the phospholipase A2, lipoxygenase, and acid
sphingomyelinase activation. All these enzymes are involved in lipid mediator synthesis.

Li et al. demonstrated that in the intestines UFP exposure enhances the concentra-
tion of oxidative lipid metabolites, such as AA, HETEs, HODEs, PGD2, and LPA. This
evidence suggests an interplay among air pollution, inflammatory responses, and lipid
mediators [57].

The fatty acid-derived lipid mediators, produced during different phases of the in-
flammatory process, are crucial players in the acute inflammatory response [58]. They are
synthesized from the omega-6 and omega-3 PUFAs, such as arachidonic, eicosapentaenoic,
and docosahexaenoic acids. Indeed, LMs are rapidly synthesized by the innate immune
system cells that are recruited to the site of the event [59]. Then, PUFAs are oxygenated
through enzymatic or free radical-mediated autoxidation reactions into a great number of
bioactive oxygenated LMs [60]. Hundreds of oxygenated species, such as prostanoids and
isoprostanes (isoP), leukotrienes, regio- and stereoisomers of mono- and poly- hydroxyl-,
hydroperoxy-, epoxy-, and keto-fatty acids are generated by the oxygenation of PUFAs
via an enzymatic or non-enzymatic pathways. Cyclooxygenases (COXs), Lipoxygenases
(LOXs), and CYP450 are the main classes of enzymes involved in LM synthesis [61].

In the initial inflammatory phase, COX enzymes drive the synthesis of prostaglandins
and thromboxanes while LOX enzymes drive the synthesis of leukotrienes and lipoxins [61].

https://www.who.int/china/home/02-05-2018-who-issues-latest-global-air-quality-report-some-progress-but-more-attention-needed-to-avoid-dangerously-high-levels-of-air-pollution
https://www.who.int/china/home/02-05-2018-who-issues-latest-global-air-quality-report-some-progress-but-more-attention-needed-to-avoid-dangerously-high-levels-of-air-pollution
https://www.who.int/china/home/02-05-2018-who-issues-latest-global-air-quality-report-some-progress-but-more-attention-needed-to-avoid-dangerously-high-levels-of-air-pollution
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These LMs have different effects on cells by activating GPCRs (G-protein coupled recep-
tors) [62]. COX-and LOX-dependent pathways are clinically targeted in the treatment of
inflammation, cardiovascular disease, asthma, fever, and pain [63].

The PUFA hydroxylation and epoxidation are catalyzed by CYP and produce specific
sets of LMs, such as the AA-derived epoxy-eicosatrienoic acids (EETs) [61]. By contrast,
some CYPs also possess a hydroxylase activity and produce hydroxylated products, such
as AA-derived 20-hydroxyeicosatetraenoic acid (20-HETE). These are hormones, growth
factors and secondary messengers; they exert opposite roles in the regulation of vascular,
renal, and cardiac functions [64].

The early stage of inflammation is crucial for survival, nevertheless, its self-limitation
is equally important. Indeed, the failure of the resolution of inflammation might determine
chronic inflammatory diseases including cardiovascular and neurological disorders, auto-
immune diseases, diabetes, and cancer [65].

The resolution of inflammation is a physiological process carried out by a distinct
class of LMs, the specialized pro-resolving mediators, actively orchestrating the return of
the tissue to its homeostasis after an acute inflammatory response [66]. These mediators
are mainly represented by resolvins (Rvs), lipoxins (LXs), protectins (PDs), and maresins
(Masr), synthesized from the omega-3 PUFAs EPA and DHA through many intermediates
(18-HpETE, 17-HpDHA, and 14-HpDHA) [61].

It was already demonstrated that PMs modulate lipid metabolism in the small intestine,
including the production of HETEs and HODEs via local and systemic pathways [67].
Recently, Lin and collaborators showed that the exposure of PM rich in PAHs results
in increased levels of oxidative products of PUFAs (hydroxy-eicosatetraenoic, HETEs,
and hydroxyl-octadecadienoic, HODEs acids) as well as increased activity of antioxidant
enzymes paraoxonase and arylesterase in the human blood [68]. Furthermore, UFPs induce
systemic oxidative stress and inflammation [69,70] via the FA oxidative metabolism in the
liver and intestines [71].

The development of a specific pipeline provided us the opportunity to evaluate, in a
complex lipidomic data set, the differential abundance of single molecules and functional
enrichment of lipid-related biological pathways.

This evaluation clearly indicated that lung and cortex tissues have different LM
profiles, mainly correlated to their fatty acid abundance, with the prevalence of omega-3-
derived docosanoids in the cortex and omega-6-derived eicosanoids in the lung.

The lipid signature of the analyzed tissues accounts for their different sensitivity to
DEP treatment in both acute and subacute phases.

The data presented in our study confirm the role of lipid mediators during the in-
flammatory processes induced by DEP exposure; moreover, our results indicate that DEP
acute exposure significantly upregulates eicosanoid metabolism in the cortex (Figure 5C–E)
sustaining the generation of systemic inflammation.

The acute treatment has a greater effect on lipidomics, compared to subacute. Indeed,
in the cortex, the subacute treatment was not able to induce LM modulation, while in the
lung was still evident with an upregulation of Maresin-1 and 9(10)-EpOME. The functional
enrichment showed in lung a downregulation of the Resolvin pathways upon subacute
DEP treatment. Maresin-1 is generated from DHA in human peripheral blood mononuclear
cells; in primary human vascular smooth muscle and endothelial cells, Maresin-1 decreases
the proinflammatory TNF-α effects. On the contrary, 4(±)9(10)-EpOME, synthesized from
linoleic acid in neutrophils during the oxidative burst, has been isolated from the lungs of
hyperoxic rats and humans with acute respiratory distress syndrome [72]. The (±)9(10)-
EpOME is cytotoxic and induces mitochondrial dysfunction, which may be due to the diol
metabolites as well as the parent epoxide [73]. Taken together, these data might indicate
the presence of chronic inflammation in the lung after DEP subacute treatment, with one
pro-resolving mediator that is up-regulated, while the general pathway of resolvins is
downregulated and the EpOME indicates the persistence of oxidative stress.
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In our study, LMs also correlate with protein markers of inflammation and oxidative
stress that are greatly upregulated by acute and subacute DEP treatment in cortex tissues.
Interestingly, even if LMs are not significantly modified after subacute treatment, they
strongly negatively correlate with HO-1 and positively with COX2 and iNOS. HO-1 is a
crucial enzyme for the antioxidant response and neuroprotection and the negative correla-
tion with 17-HDoHE and 13-OxoODE, DHA-derived markers of oxidative stress, sustains
its role as a ROS protective enzyme in the brain.

Many other correlations might be discussed within our data and are the results of the
fine statistical evaluation of the protein and lipidomic analyses.

A limitation of this kind of study was revealed from our comparison between acute
and subacute CTRL mice, which indicates the animal model sensitivity to manipulation,
with significant LM variation induced by the procedure of saline instillation; this data has
to be taken into serious consideration when working with omic sciences.

In conclusion, our result pointed out the impact of DEP exposure on lipid mediator
metabolism with specific and different pathways in lung and brain tissues, correlating
also with the protein mediating inflammatory state. In this lipidomic analysis, we set up a
bioinformatic approach, the Lipid Set Enrichment Analysis, which allows deep omic data
analysis to obtain insight into the functional metabolic pathways related to their variations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10030712/s1, Table S1: Chemical compositions of
UFPs from DEP. Table S2: Lipid mediator metadata, raw and normalized data. Table S3: Differ-
ential lipid mediator enrichment results. Table S4: LSEA functional enrichment results. Table S5:
Multivariate analysis results.
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