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Abstract: Repetitive low-level blast exposure is one of the major occupational health concerns among
US military service members and law enforcement. This study seeks to identify gene expression using
microRNA and RNA sequencing in whole-blood samples from experienced breachers and unexposed
controls. We performed experimental RNA sequencing using Illumina’s HiSeq 2500 Sequencing
System, and microRNA analysis using NanoString Technology nCounter miRNA expression panel in
whole-blood total RNA samples from 15 experienced breachers and 14 age-, sex-, and race-matched
unexposed controls. We identified 10 significantly dysregulated genes between experienced breachers
and unexposed controls, with FDR corrected <0.05: One upregulated gene, LINC00996 (long intergenic
non-protein coding RNA 996); and nine downregulated genes, IGLV3-16 (immunoglobulin lambda variable
3-16), CD200 (CD200 molecule), LILRB5 (leukocyte immunoglobulin-like receptor B5), ZNF667-AS1 (ZNF667
antisense RNA 1), LMOD1 (leiomodin 1), CNTNAP2 (contactin-associated protein 2), EVPL (envoplakin), DPF3
(double PHD fingers 3), and IGHV4-34 (immunoglobulin heavy variable 4-34). The dysregulated gene
expressions reported here have been associated with chronic inflammation and immune response,
suggesting that these pathways may relate to the risk of lasting neurological symptoms following
high exposures to blast over a career.
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1. Introduction

Blast exposure is a prominent feature of the Iraq and Afghanistan conflicts due to
the use of improvised explosive devices [1]. The prevalence of blast-exposure injury dra-
matically increased from 60% (2008) to 74% (2009) in the US military, which accounts for
most combat-related casualties [2]. Repetitive high-blast exposure has been associated
with neuronal changes as well as cognitive and affective symptoms [3,4]. In addition to
these concerns from high-pressure blast exposure, repetitive low-level blast exposure is a
major occupational health concern for military and law-enforcement training. Experienced
breachers in military and law-enforcement training encounter more than 100 occurrences
of repetitive low-level blast overpressure throughout their careers [5]. However, the under-
lying biological mechanism of repetitive low-level blast exposure and related neurological
effects are not well-understood. The lack of understanding of repetitive low-level blast
exposure on neurological functioning makes its identification and potential health inter-
vention challenging in a military setting. Previously repetitive low levels of blast exposure
have been associated with neurocognitive and neurosensory decline [6–8], which positively
correlated with blood-based levels of tau, amyloid β (Aβ)40, and Aβ42 proteins [9,10],
suggesting that there may be biological changes in the blood that result from these high
levels of blast exposure over a career.

To date, a growing number of investigations have been conducted to identify biomark-
ers following repetitive blast exposure [5,9–13]. Previously we reported the effects of acute
blast exposure during military training, which include acute changes in amyloid precursor
protein [12], inflammatory markers [interleukin (IL)-6 and tumor necrosis factor-alpha
(TNF-α)] [13], and longitudinal changes in DNA methylation [14]. It is important to under-
stand the biological mechanism following repetitive low-level blast exposure to develop
interventions in preventing short- or long-term associated symptoms that influence the
health-related quality of life of US military service members. To address this critical issue,
we performed transcriptome-wide analysis in whole-blood RNA sequencing to identify
potential gene-expression activity across the genome in an experienced breacher population
with a high number of repetitive low-level blast exposures and an unexposed control
group. In addition, we used multiplexed miRNA assays to quantify the levels of microRNA
expression in the whole blood of the experienced breacher population and unexposed
control group.

2. Materials and Methods
2.1. Study Protocol

This study was reviewed and approved by the Naval Medical Research Center (NMRC)
and the National Institutes of Health (NIH) Institutional Review Boards. All the study
procedures were performed at NIH Clinical Center after obtaining written informed consent.
The detailed procedure of this study protocol has been published elsewhere [5,15].

2.2. Demographic, Clinical History, and Psychometric Testing

All participants were administered demographic and clinical information. Psychometric
tests were conducted to assess cognitive domains and symptomology of the participants.
The groups are well-matched on age, sex, race, and ethnicity. The Immediate Post-
Concussion Assessment and Cognitive Test (ImPACT 2.0) was utilized to evaluate verbal-
memory composite, visual-memory composite, reaction-time composite, impulse-control
composite, and total symptom composite score [16]. The Brief Symptom Inventory (BSI)-18
is an 18-item scale of psychological distress classified into somatization, depression, anxiety,
and global severity index subscales [17]. The Combat Exposure Checklist (CEC) is a
self-report scale used to measure the frequency of stressful events experienced during
deployments. The Neurobehavioral Symptom Inventory (NSI) was used to assess post
concussive symptoms. The NSI is a 22-item self-report scale and has shown both excellent
internal consistency (α = 0.95) as well as the ability to differentiate veterans with TBIs from
those without [18]. Post-Traumatic Stress Disorder (PTSD) Checklist-Military (PCL-M) was
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used to assess PTSD symptoms. The PCL-M is a 17-item self-report PTSD-symptom scale
with scores ranging from 17 to 85. It has been shown to have high test–retest reliability
(r = 0.96) and internal consistency (α = 0.96) in Vietnam veterans [19].

2.3. RNA Sequencing and Bioinformatic Analysis

Peripheral blood samples were collected in PAXgene tubes and stored at −80 ◦C until
analyzed. Samples from 29 participants were analyzed using RNA-seq with Illumina’s
HiSeq 2500 system, using paired-end sequencing. Each sample has at least 30 million
reads—15 million reads for read 1 and 15 million reads for read 2. Each read has 101 bp
for its read length. For bioinformatics analysis, we first performed bioinformatics quality
control (QC) using FastQC, version 0.11.9. Then, we trimmed 15 bp from 5′-end, and 10 bp
from 3′-end, to remove adapter contamination as well as low-quality base calls in 3′-end.
We aligned to GRCh38 reference genome using STAR, version 2.7.6a. We counted number
of reads mapped to genes using htseq, version 0.11.4. Finally, we found differentially
expressed genes using DESeq2, version 1.30.1 with the cutoff of 0.05 on false discovery rate
(FDR) adjusted by independent hypothesis weighting. R, version 4.0.3 (10 October 2020)
and Bioconductor, version 3.11 was used for analysis.

2.4. MicroRNA Profiling and Bioinformatic Analysis

Analysis was performed with nCounter® Human v3 miRNA Expression Panels
(NanoString Technologies, Seattle, WA, USA). The expression panel contained 798 miRNA
probes; this was the maximum number of probes available for analysis in human samples.
The probes were incorporated in the code sets and used for analysis along with positive
and negative controls. All hybridizations took place at 18 h ± 30 min, and all counts
were obtained from nCounter® Digital Analyzer. Raw miRNA data were subtracted from
the geometric means of the negative control incorporated in the code sets, and top-100
normalization was performed using the nSolver analysis software (version 4.0, NanoString
technologies). Normalized data were analyzed by ROSALIND® (with a HyperScale archi-
tecture developed by ROSALIND, Inc. (San Diego, CA, USA). Read-distribution violin
plots, identity heatmaps, and sample MDS plots were generated as part of the QC step. The
limma R library [20] was used to calculate fold changes and p-values and perform optional
covariate correction.

2.5. Statistical Analysis

Statistical analysis was conducted with SPSS version 28.0 (IBM Corp., Armonk, NY,
USA). Demographic and clinical characteristics were compared between the experienced
breacher and control groups using chi-square and independent-samples t-test. Pearson cor-
relation coefficient was performed to assess the association of the interested study variables.
Statistical tests were two-tailed and p < 0.05 was considered a significant difference.

3. Results
3.1. Demographic and Clinical Characteristic

The participants recruited for this study were well-matched on demographic charac-
teristics between the unexposed control (N = 14) and experienced breacher (N = 15) groups
(Table 1). The majority of participants were white, military personnel, and had a mean age
of 40 years. There were no differences in demographics including age, sex, and ethnicity
between experienced breachers and unexposed controls. The mean values of self-reported
career breachers were 4659.20 breaching blast exposures in the experienced breacher group
and 5.86 breaching blast exposures in the unexposed control group over their careers.

Self-reports of several symptoms were different between the experienced breacher and
unexposed control groups (Table 2). A total of 10 out of 15 experienced breachers reported
having memory problems and ringing in the ears, whereas only 4 out of 14 reported these
symptoms in the unexposed control group (p = 0.04). A total of 8 out of 15 experienced
breachers reported having irritability problems, and only 2 out of 14 unexposed controls
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reported irritability (p = 0.027). A total of 9 out of 15 experienced breachers reported having
concentration problems, whereas only 2 were reported in unexposed controls (p = 0.011).
Although it did not reach significance, sleep problems were reported in 9 experienced
breachers as compared to 5 unexposed controls. Self-reports of headaches and depression
were not different between experienced breachers and unexposed controls.

Table 1. Demographic characteristics of study participants.

Unexposed Control
(N = 14)

Experienced Breacher
(N = 15) Significance

Age, mean (SD) 38.86 (7.81) 41.60 (8.42) t = 0.907, p = 0.372
Sex (Male), N (%) 14 (100) 15 (100) N/A

Race, N (%)
White 12 (85.7) 13 (86.7)

χ2 = 2.008, p = 0.571
Black 1 (7.1) 0 (0.0)
Asian 1 (7.1) 1 (6.7)

American Indian/Alaskan 0 (0) 1 (6.7)
Ethnicity (Non-Hispanic), N (%) 13 (92.9) 15 (100) χ2 = 1.110, p = 0.483

Type of Service, N (%)
Military 10 (71.4) 10 (66.7)

N/ACivilian Law Enforcement 4 (28.6) 5 (33.3)
Duration of service, mean (SD) 13.71 (7.12) 18.40 (6.82) t = −1.809, p = 0.082

Total blast exposures, mean (SD) 5.86 (10.42) 5659.20 (9649.52) t = −2.269, p = 0.040
Breaches in career, N (%)

0 13 (92.9) 0 (0.0) N/A
10–39 1 (7.1) 0 (0.0)

100–199 0 (0.0) 1 (6.7)
200–399 0 (0.0) 1 (6.7)

400+ 0 (0.0) 13 (86.7)
Breaches in past year, N (%)

0 14 (100) 2 (13.3) N/A
1–9 0 (0.0) 2 (13.3)

10–39 0 (0.0) 1 (6.7)
40–99 0 (0.0) 1 (6.7)

100–199 0 (0.0) 3 (20.0)
200–399 0 (0.0) 3 (20.0)

400+ 0 (0.0) 3 (20.0)

N/A: Not Applicable.

PCL-M scores were higher in experienced breachers when compared with unexposed
controls (p = 0.029), indicating increased PTSD-related symptoms, although these levels
do not meet clinical criteria for PTSD diagnosis (>44 PTSD cutoff) (Table 2). There was no
difference in BSI subscale score, including somatization, depression, anxiety, and global
severity index scores in experienced breachers when compared with unexposed controls.
There was a significant difference between the groups in visual memory (p = 0.009) and
reaction time (p = 0.034).

The results of Pearson correlation coefficients between behavioral symptoms and
number of blast exposures are shown in Table 3. The number of blast exposures was
positively correlated with BSI subscale, including somatization (ρ = 0.399, p = 0.032),
depression (ρ = 0.430, p = 0.020), anxiety (ρ = 0.496, p = 0.006), and global severity index
(ρ = 0.413, p = 0.026).
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Table 2. Clinical symptoms of study participants.

Unexposed Control
(N = 14)

Experienced Breacher
(N = 15) Significance

Headaches, Yes, N (%) 2 (14.3) 2 (13.3) χ2 = 0.006, p = 0.941
Memory problem, Yes, N (%) 4 (28.6) 10 (66.7) χ2 = 4.209, p = 0.040

Ringing in ears, Yes, N (%) 4 (28.6) 10 (66.7) χ2 = 4.209, p = 0.040
Sleep problems, Yes, N (%) 5 (35.7) 9 (60.0) χ2 = 1.710, p = 0.191

Irritability, Yes, N (%) 2 (14.3) 8 (53.3) χ2 = 4.887, p = 0.027
Depression, Yes, N (%) 3 (21.4) 3 (20.0) χ2 = 0.009, p = 0.924

Concentration problems, Yes, N (%) 2 (14.3) 9 (60.0) χ2 = 6.428, p = 0.011
PCL-M, mean (SD) 20.64 (4.48) 26.07 (7.69) t = −2.338, p = 0.029

NSI, mean (SD) 16.86 (5.29) 16.80 (6.70) t = −0.025, p = 0.980
BSI subscale, mean (SD)

Somatization 45.29 (4.41) 49.33 (7.46) t = −1.762, p = 0.089
Depression 45.21 (6.40) 46.00 (7.05) t = −0.313, p = 0.756

Anxiety 44.07 (5.81) 44.60 (8.95) t = −0.187, p = 0.853
Global severity index 43.50 (6.40) 46.40 (9.15) t = −0.986, p = 0.333
ImPACT, mean (SD)

Verbal memory 92.21 (6.33) 92.13 (6.53) t = 0.034, p = 0.973
Visual memory 68.00 (9.12) 78.60 (11.06) t = −2.804, p = 0.009

Visual motor speed 27.83 (3.25) 27.33 (4.57) t = 0.337, p = 0.738
Reaction time 0.57 (0.07) 0.64 (0.10) t = −2.213, p = 0.034

Impulse control 0.07 (0.28) 0.33 (0.62) t = −1.500, p = 0.150
Total symptom 4.71 (6.75) 12.40 (17.59) t = −1.573, p = 0.133

PCL-M, Post-Traumatic Stress Disorder Checklist-Military; NSI, Neurobehavioral Symptom Inventory; BSI, Brief
Symptom Inventory.

Table 3. Pearson Correlation Coefficients of Study Variables.

Number of Blast Exposures CEC Total Score

ρ p ρ p

BSI-somatization 0.399 0.032 0.377 0.044
BSI-depression 0.430 0.020 −0.003 0.990

BSI-anxiety 0.496 0.006 −0.056 0.773
BSI-global severity index 0.413 0.026 0.162 0.402
ImPACT-verbal memory −0.055 0.776 −0.114 0.557
ImPACT-visual memory 0.053 0.784 0.508 0.005

ImPACT-visual motor
speed −0.324 0.087 0.133 0.491

ImPACT-reaction time 0.448 0.015 0.264 0.166
ImPACT-impulse control 0.202 0.293 −0.069 0.722
ImPACT-total symptom 0.243 0.204 0.223 0.244

BSI, Brief Symptom Inventory; CEC, Combat Exposure Checklist; ImPACT, Immediate Post-Concussion Assess-
ment and Cognitive Test.

3.2. Differential microRNA Expression Differences between Experienced Breacher vs.
Unexposed Control

We identified 14 miRNAs differentially expressed in experienced breachers compared
to unexposed controls (p < 0.05). Among them, eight miRNAs were upregulated and six
miRNAs were downregulated in the experienced breachers compared with the unexposed
controls. These microRNAs were not significantly different after FDR correction. The
volcano plot of differentially expressed miRNAs is shown in Figure 1 and the fold change
of each probe is presented in Table 4.
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Figure 1. Volcano plot for differentially expressed microRNAs between experienced breacher vs.
unexposed control. Green dots indicate genes that are upregulated, and purple dots indicate genes
that are downregulated.

Table 4. MicroRNA differential expression between experienced breacher vs unexposed control.

Probe Name Log2FC p-Value FDR

hsa-miR-371b-5p 1.177 0.015 0.848
hsa-miR-187-3p 1.113 0.019 0.848
hsa-miR-3182 1.043 0.046 0.848
hsa-miR-568 0.901 0.035 0.848
hsa-miR-604 0.795 0.049 0.848

hsa-miR-3202 0.699 0.015 0.848
hsa-miR-206 0.699 0.019 0.848

hsa-miR-624-3p 0.644 0.043 0.848
hsa-miR-93-5p −0.706 0.048 0.848

hsa-miR-628-3p −0.826 0.042 0.848
hsa-miR-106a-5p −0.853 0.045 0.848
hsa-miR-758-5p −0.950 0.007 0.848

hsa-miR-146a-5p −0.959 0.045 0.848
hsa-miR-934 −1.071 0.015 0.848

3.3. Differential Gene Expression between Experienced Breacher vs. Unexposed Control

We performed whole-blood RNA-seq in experienced breacher and unexposed con-
trol individuals. The comparison between experienced breacher vs. control shows one
upregulated gene and nine downregulated genes. We identified one upregulated gene,
long intergenic non-protein coding RNA 996 (LINC00996), and 9 downregulated genes,
namely immunoglobulin lambda variable 3-16 (IGLV3-16), CD200 molecule (CD200), Leukocyte
immunoglobulin-like receptor B5 (LILRB5), ZNF667 antisense RNA 1 (ZNF667-AS1), leiomodin 1
(LMOD1), contactin-associated protein 2 (CNTNAP2), envoplakin (EVPL), double PHD fingers 3
(DPF3), and immunoglobulin heavy variable 4-34 (IGHV4-34) in the experienced breacher
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group compared to control with the multiple corrected threshold of FDR < 0.05. Differential
gene expression with fold changes and adjusted p-values are shown in Table 5.

Table 5. Gene-expression differences between experienced breacher vs unexposed control.

Gene Symbol Gene Name Log2FC FDR

IGLV3-16 Immunoglobulin lambda variable 3-16 −1.880 0.002
CD200 CD200 molecule −0.879 0.024
LILRB5 Leukocyte immunoglobulin-like receptor B5 −1.689 0.024

ZNF667-AS1 ZNF667 antisense RNA 1 −0.974 0.024
LMOD1 Leiomodin 1 −2.688 0.025

CNTNAP2 Contactin-associated protein 2 −1.715 0.030
EVPL Envoplakin −2.263 0.030
DPF3 Double PHD fingers 3 −1.542 0.039

LINC00996 Long intergenic non-protein coding RNA 996 0.866 0.039
IGHV4-34 Immunoglobulin heavy variable 4-34 −1.250 0.043

4. Discussion

In this study, we report significant transcriptome differences in whole-blood associated
with repetitive low-level blast exposures compared to unexposed controls. Differentially
expressed genes reported are related to inflammation and immune-response process. In ad-
dition, the number of blast exposures are strongly correlated with clinical symptoms of BSI-
somatization, BSI-anxiety, BSI-depression, and BSI-global severity scores. Dysregulation
of these genes may associate with persistent clinical symptoms following repetitive blast
exposures. These findings provide some initial insights into the biological changes related
to repetitive low-level blast exposure.

Our finding of downregulated CD200 may play a role in chronic inflammation within
the CNS by releasing inflammatory cytokines after exposure to blast. CD200 is an immune
inhibitory molecule which is highly expressed in neurons and plays a critical role in
inhibiting microglia activation [21]. The downregulation of CD200 expression has been
observed in both chronic active and inactive multiple sclerosis lesions from postmortem
brains in patients [22]. Downregulation of CD200 in our study may reflect the chronic
neuroinflammation activity by microglia activation in individuals exposed to repetitive
low levels of blast. Activated microglia is a neuroinflammatory process that affects the
astrocytes, leading to astrogliosis, which was observed in the elevation of glial fibrillary
acidic protein reported in the preclinical model of repetitive low-level blast exposure [11].
The ongoing inflammatory activity in the CNS can be detected in the peripheral circulation.
In support of this, we also report the downregulation of IGLV3-16, IGHV4-34, and LILRB5
genes, which are linked to immune-system response and may play an important role
in proinflammatory cytokine production [23,24]. Previously, we observed the elevation
of plasma IL-6 and TNF-α proteins in a military training population with >5 psi blast
exposure compared with low-level <2 psi blast exposure [13]. More recently, analysis of
inflammatory proteins in this population of experienced breachers and control subjects
showed increases in brain-derived extracellular vesicles (EVs) for IL-6 and TNF-a with a
corresponding decrease in IL-10 EVs (unpublished data). These findings further support
the important role of CD200 in the peripheral and CNS activity in response to inflammation
after exposure to a high number of blasts during a career.

In addition, we reported a downregulation of CNTNAP2 gene expression in this cohort.
CNTNAP2 encodes CASPR2, a transmembrane protein associated with voltage potassium
channels and a neurexin superfamily protein that plays a critical role in neurodevelop-
ment [25,26]. The CNTNAP2 gene, located on chromosome 7q35, is one of the largest genes
in the human genome [27,28]. Multiple mutations within the gene have been identified and
are characterized with a set of neurologically related phenotypes that include intellectual
disability, seizures, and language impairment. Additionally, mutations have been clinically
associated with neurological disorders such as autism spectrum disorder and Pitt Hopkins-
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like Syndrome 1 [29–31]. Most identified mutations within CNTNAP2 were heterozygous,
indicating that a single allele disruption could be sufficient to cause disorder and deficit.
Preclinical models examining homozygous disruption and complete loss of function in the
CNTNAP2 gene have demonstrated an exacerbated and severe neurodevelopmental and
neurocognitive deficit outcome [32].

Currently, the majority of investigations revolve around CNTNAP2 gene mutations
with large deletions, which likely lead to a nonfunctional protein product. However, our
results demonstrate that in our cohort of experienced breachers, who have repeated low-
level blast exposure, CNTNAP2 gene expression is downregulated. Interestingly, studies
have identified individuals with deletions predicted to not interfere with the protein prod-
uct, or with a deletion to an upstream promoter [33–35]. Unlike the majority of deletions
that result in a loss of function, these mutations resulted in decreased expression [36],
reduced protein function, and displayed more moderate phenotypes including epilepsy,
schizophrenia, obsessive compulsive disorder, Tourette syndrome, and attention deficit
hyperactivity disorder [33,35,37,38]. Furthermore, downregulation of CNTNAP2 has been
clinically implicated in neurodegeneration, and found significantly downregulated in a
cohort of Alzheimer’s patients [39]. Thus, our findings suggest that dysregulation of this
gene may be implicated in neurocognitive declines in repetitive low-level blast exposure.
Longitudinal follow-up and further analysis of our cohort’s psychiatric health could po-
tentially elucidate an association of blast-related CNTNAP2 downregulation with other
psychological disorders. Additionally, future investigations should examine if differential
CNTNAP2 expression is acutely impacted by blast exposures and possible roles in symptom
development in a more lasting manner.

In summary, this preliminary study suggests that occupational exposure to repetitive
low-level blasts is associated with dysregulation of gene expression in whole-blood samples.
The differentially expressed genes are largely associated with the chronic inflammation
process, and linked to various neurological disorders. A major strength of this study is that it
is the first to analyze differential gene expression in the whole blood of a unique population
with similar occupational factors between experienced breacher and unexposed control
groups. Although this is the first study to provide molecular insight into repetitive low
level blast exposure, it was constrained by a small sample size and only one timepoint. In
addition, the experienced breachers group had significantly higher PCL-M scores compared
to unexposed controls, indicating increased PTSD-related symptoms. Higher scores of
PTSD-related symptoms may have a significant role on these genes’ expression levels,
although these levels do not meet clinical criteria for PTSD diagnosis. Our findings suggest
that need for future studies to be undertaken in larger cohorts over time.

Despite these limitations, this is the first study to the best of our knowledge to quan-
tify microRNAs and mRNAs, and this provides initial insights into the pathophysiolog-
ical mechanism of repetitive low-level blast exposure. Replicating these findings in a
larger cohort may provide potential biomarkers and therapeutic targets for experienced
breacher populations.
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