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Abstract: Systemic sclerosis (SSc) is a rare systemic autoimmune disorder marked by high morbidity
and increased risk of mortality. Our study aimed to analyze metabolomic profiles of plasma from
SSc patients by using targeted and untargeted metabolomics approaches. Furthermore, we aimed to
detect biochemical mechanisms relevant to the pathophysiology of SSc. Experiments were performed
using high-performance liquid chromatography coupled to mass spectrometry technology. The
investigation of plasma samples from SSc patients (n = 52) compared to a control group (n = 48)
allowed us to identify four different dysfunctional metabolic mechanisms, which can be assigned to
the kynurenine pathway, the urea cycle, lipid metabolism, and the gut microbiome. These significantly
altered metabolic pathways are associated with inflammation, vascular damage, fibrosis, and gut
dysbiosis and might be relevant for the pathophysiology of SSc. Further studies are needed to explore
the role of these metabolomic networks as possible therapeutic targets of SSc.

Keywords: systemic sclerosis; metabolomics; LC-MS/MS; ion mobility; kynurenine pathway; urea
cycle; lipids; gut dysbiosis

1. Introduction

Systemic sclerosis (SSc) is a rare autoimmune disease, which is characterized by the
production of autoantibodies, vasculopathy, and fibrosis [1,2]. The high morbidity and
increased mortality make it a disease of great concern. Patients most commonly suffer
skin thickening, digital ulcers, lung fibrosis, pulmonary arterial hypertension, Raynaud’s
phenomena, esophageal dysmotility or gut dysbiosis, and produce SSc-related autoantibod-
ies [3–5]. The primary cause of death in SSc patients is lung fibrosis followed by pulmonary
arterial hypertension or sepsis. The most prominent clinical feature is the fibrosis of the skin
and/or internal organs, and skin involvement is a crucial sign for the early diagnosis [4,5].
The modified Rodnan Skin Score (mRSS) was introduced to evaluate skin involvement in
SSc patients in clinical trials [6]. Depending on the skin and organ involvement, one can
distinguish between limited cutaneous SSc (lcSSc), which manifests in only partial skin
(sclerosis of face and distal extremities) and minor systemic involvement, diffuse cutaneous
SSc (dcSSc), which includes extensive skin and systemic involvement, and non-cutaneous
SSc (ncSSc), with no evident skin involvement [4].

No curative therapy for SSc exists, and in recent years, the vast majority of studies
have been published on investigations of new therapeutic strategies [7–10]. Most of the
therapeutic strategies are directed towards inflammatory and vascular pathways, and
recently the antifibrotic drug nintedanib has been proven efficient for the therapy of lung

Biomedicines 2022, 10, 607. https://doi.org/10.3390/biomedicines10030607 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10030607
https://doi.org/10.3390/biomedicines10030607
https://doi.org/10.3390/biomedicines10030607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-8245-5209
https://orcid.org/0000-0001-6982-0558
https://doi.org/10.3390/biomedicines10030607
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10030607?type=check_update&version=1


Biomedicines 2022, 10, 607 2 of 15

fibrosis in SSc [11]. Due to numerous challenges with therapies (efficacy, side effects, multi-
morbidity, long-term survival) there is an urgent need to improve existing treatments and
detect new possible therapeutic targets for SSc in the future.

Exploring the pathophysiology of SSc is crucial for the improvement of therapy
and long-term survival of SSc patients. Metabolites are the final products of the patho-
physiologic processes and may play a key role in establishing personalized treatment or
biomarkers of drug response in SSc. Metabolomics is a method for describing metabolism
by different technologies as published for autoimmune diseases like systemic lupus erythe-
matosus, rheumatoid arthritis, and multiple sclerosis [12]. Mass spectrometry technology
holds great potential for a metabolic investigation in a variety of clinical applications as
well as different bio-samples [13,14].

Very little is known about the role of metabolites in the pathophysiology of SSc.
Over the last five years, several studies were published discovering single metabolites
possibly relevant for SSc, and rarely a study would define whole metabolomic pathways
involved in the pathophysiology of SSc. In addition, metabolomic studies can sometimes
be limited due to the applicability of statistics, which might be problematic due to the rare
occurrence of SSc and small study cohorts. Recent data indicated significantly changed
metabolites in serum of SSc patients involved in glycolysis, gluconeogenesis, glutamate,
and pyruvate metabolism [15]. Analyses of plasma metabolites and fecal microbiota
showed glycerophospholipids and benzene derivates to interact with certain fecal bacteria
(Desulfovibrio), which may influence gut dysbiosis and inflammation in SSc [16]. Moreover,
metabolic profiling of urine from SSc patients revealed deregulated fatty acid oxidation,
which might be relevant for inflammation in SSc [17]. A recent study reported dysregulated
carnitine in plasma and dendritic cells of SSc patients, and carnitines were suggested
to increase inflammation in SSc [18]. Furthermore, altered amino acid metabolism (e.g.,
betaine, tryptophan, proline, glutamine) was detected in the plasma of SSc patients and has
been attributed to changes in vascular endothelial dysfunction and inflammation during
SSc [19]. Finally, data have been recently published on characteristic metabolomic changes
for certain organ involvement during SSc, like pulmonary arterial hypertension [20] and
lung fibrosis [21].

The aim of our study was to analyze metabolomic profiles of plasma from SSc patients
by using targeted, and untargeted metabolomics approaches enabled by high-performance
liquid chromatography coupled to mass spectrometry technology. Furthermore, we aimed
to detect metabolomic networks relevant to the pathophysiology of SSc and generate
hypotheses about new therapeutic targets for SSc.

2. Materials and Methods
2.1. Study Group and Sample Collection

The patients with SSc (n = 52) and control group (n = 48) were recruited consecutively
at the Department of Dermatology, Ordensklinikum Linz in Austria. This study was ap-
proved by the Ethics Committee of the Johannes Kepler University Linz in Austria (study
protocol number 1265/2019). Diagnosis of the SSc was made according to the criteria of
the American College of Rheumatology (ACR) and the European League Against Rheuma-
tism (EULAR) [4]. The inclusion criteria for patients were diagnosis of SSc according to
ACR/EULAR criteria and age 18–90. Exclusion criteria for control group were acute infec-
tions, liver and/or kidney diseases and diabetes mellitus. Peripheral blood was collected in
compliance with the Declaration of Helsinki (1975/83) by using BD-K2-Edta tubes (Fischer
Scientific, Schwerte, Germany). After centrifugation of the blood, the resulting plasma was
deep-frozen and stored at −80 ◦C until further treatment.

2.2. Sample Preparation

For protein precipitation 50 µL plasma sample is mixed with 150 µL of cooled 5%
sulfosalicylic acid followed by 20 min equilibration on a thermo-shaker (4 ◦C, VWR, Vienna,
Austria). Afterwards, samples are centrifuged (8 min, 4 ◦C, 4200 g, VWR, Vienna, Austria),
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and 30 µL of the supernatant is transferred to a HPLC vial with a 200 µL glass inlet that
also contains 150 µL of acetonitrile as well as 20 µL of an internal standard (Sigma Aldrich,
Vienna, Austria, Cell Free Amino Acid Mixture—13C,15N) and is rigorously mixed. The
prepared sample is stored at −80 ◦C until analysis.

2.3. HPLC-MS Analysis

High-performance liquid chromatography (HPLC) was performed in a hydrophilic
interaction chromatography (HILIC) mode using an XBridge BEH Amide column
(2.1 mm × 150 mm, 2.5 µm, Waters, Vienna, Austria) connected to an XBridge Glycan
BEH Amide pre-column (130 A. 2.5 µm, 2.1 mm × 5 mm, Waters, Vienna, Austria). HPLC
separation was performed by using a gradient of 10 mM ammonium formate and 0.2%
formic acid in 18 MΩ-water (solvent A), 0.2% formic acid in acetonitrile (solvent B) and
100 mM ammonium formate with 0.2% formic acid in 18 MΩ-water (solvent C). After
injecting 5 µL sample the composition of the gradient was kept constant for 4 min at 4% A
and 96% B. Subsequently, solvent A was increased to 18% within 12 min. Then, the gradient
was changed within 6 min to a final composition of 40 % A, 40% B and 20% C, which
was kept constant for 5 min, followed by switching back to the starting conditions and
reconditioning the column for 10 min. These settings were found suitable for measuring
polar metabolites such as amino acids and other small molecules.

The targeted method utilized a 1260 Infinity HPLC coupled to a 6460 triple quadrupole
mass spectrometer (QQQ-MS) from Agilent Technologies (Waldbronn, Germany). Source
parameters for this approach were as follows: gas temperature was set to 325 ◦C with a
flow of 12 L min−1, the nebulizer was set to 40 psig, sheath gas was set to 350 ◦C with a
flow of 11 L min−1, and the capillary voltage was set to 3500 V.

For untargeted metabolomics a 1290 Infinity HPLC coupled to a 6560 ion mobility
quadrupole time-of-flight mass spectrometer (IMS-QTOF-MS) from Agilent Technologies
(Waldbronn, Germany) was used. MS/MS experiments for untargeted metabolomics were
performed on IMS-QTOF-MS. The IMS was performed by using 4 bit multiplexing with
a trap fill time of 3900 µs and a trap release time of 250 µs, and used N2 as drift gas.
The measurement was done in positive mode in a range of 50 to 1000 m/z. The source
settings have been as follows: gas temperature was set to 320 ◦C with a flow of 10 L min−1,
nebulizer was set to 45 psig, sheath gas was set to 320 ◦C with a flow of 10 L min−1, and
the capillary voltage was set to 4000 V.

2.4. Data Pre-Processing

Result files from targeted metabolomics were integrated and processed including an
intensity correction with internal standards within the Mass Hunter Quantitative Anal-
ysis (Version B.09.00) for QQQ Software (Agilent Technologies, Waldbronn, Germany).
Subsequently, results were exported for statistical analysis.

Data obtained by the untargeted approach were initially processed by PNNL Pre-
Processor (v2019.08.17, Pacific Northwest National Laboratory, Richland, WA, USA). IM
Reprocessor (Version 10.00) and IM-MS Browser (Version 10.00) (both Agilent Technologies,
Waldbronn, Germany) were used for determining collision cross section DTCCSN2 values
and applying mass correction. Feature extraction was based on the Mass Profiler Software al-
gorithm (Version B.08.01, Agilent Technologies, Waldbronn, Germany). In the first approach
no annotation was performed. After the first statistical analysis, the identification was
completed by several steps. First, the exact mass was searched in the Human Metabolome
Database (HMDB, accessed on 30 March 2021) [14]. Afterward, matches from HMDB
were checked by a comparison of predicted CCSpred values with experimental DTCCSN2
values [22]. In this manner, possible matches for each feature were reduced drastically.
Subsequently, significant features were identified by matching MS2 spectra with entries in
the MassBank of North America (MoNA) (http://mona.fiehnlab.ucdavis.edu/, accessed
on 30 March 2021) as well as matching calculated CCSpred (http://allccs.zhulab.cn/ [22],
accessed on 30 March 2021) values using AllCCS with experimental DTCCSN2 values.

http://mona.fiehnlab.ucdavis.edu/
http://allccs.zhulab.cn/
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2.5. Statistical Analysis

Merged results from targeted and untargeted analysis were finally analyzed by the
online statistical analysis tool of MetaboAnalyst 4.0. (https/www.metaboanalyst.ca [23],
accessed on 5 April 2021). Data were imported into the online platform using missing value
estimation, sample normalization by median, data transformation by log transformation,
and Pareto scaling. Retrieved p-values from univariate analysis were seen as significant if
they were below the threshold of 0.05. Additionally, fold changes were seen as significant
for up- or downregulation by surpassing an overall increment of 2, respectively. Outcome of
these two tests is summarized in a volcano plot. For multi-group comparison, an ANOVA,
with associated post hoc analysis, by using Fisher LSD test, was applied. Most noteworthy,
dysregulated features are additionally visualized by boxplots. As a further visualization
method, a heatmap with an agglomerative hierarchical cluster was chosen. This enables
us to present samples or features with similarities close to each other and consequently,
to visually recognize clusters. For visualization, Jupyter-Lab 3.2.4 and Python 3.9 were
utilized. The following libraries were used: pandas 1.3.4, matplotlib 3.4.3, and seaborn
0.11.2.

3. Results
3.1. Study Group and Sample Analysis

The cohort of the collected plasma sample included SSc patients (n = 52) and the
control group (n = 48). Females were more dominant in both groups, and the group ratio
between females and males was consistent. Most of the SSc patients suffered from lcSSc
(n = 39) followed by dcSSc (n = 11), while the number of ncSSc (n =2) was too small for
intergroup comparisons. Further clinical information can be retrieved from Supplementary
Table S1.

The data from the targeted and untargeted approaches were analyzed separately
in the first evaluation. The employed method enabled a large spectrum of interesting
pathophysiological molecules to be measured. Metabolites selected by the targeted method
mainly consisted of physiologically important small polar molecules, which might need a
higher sensitivity for a proper measurement. The targeted and the identified untargeted
metabolites were combined for a final statistic. This was performed to generate a list with
the most promising molecules for differentiation of the investigated groups.

3.2. Targeted Metabolomics

The results of the targeted approach are summarized in Table 1 and Supplementary
Table S2. Listed metabolites are significantly up-/or down-regulated in terms of their
p-values and fold change. Tryptophan was found to be significantly down-regulated, while
kynurenine, which is also closely related to tryptophan through the kynurenine pathway
(KP), was significantly up-regulated. Alanine, which also can be associated with the KP,
was significantly reduced.

Table 1. Significantly changed metabolites identified by targeted metabolomics. Mass to charge ratio
(m/z), retention time (RT), p-value (determined by a two-tailed Student’s t-test), and fold change
(ratio of SSc to control).

Exact Mass
(m/z)

RT/
(min) Name p-Value Fold Change

(SSc/Control)

205.0971 14.7 Tryptophan <0.0001 0.3117
90.0549 18.2 Alanine <0.0001 0.3444
203.1503 23.2 Dimethylarginine <0.0001 2.6918
209.0921 14.5 Kynurenine 0.0004 2.1049
176.1030 22.1 Citrulline 0.0016 2.3760
133.0972 23.9 Ornithine 0.0026 2.3604

https/www.metaboanalyst.ca
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In the case of dimethylarginine, which can influence the urea cycle, two forms are
known, namely symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine
(ADMA). In our approach, both forms could not be separated chromatographically, and
therefore, they are presented as the sum parameter “dimethylarginine”, which was sig-
nificantly up-regulated. Moreover, citrulline and ornithine, both main mediators in the
urea cycle, were significantly up-regulated (see Table 1). Additional statistically significant
metabolites are given in Supplementary Table S2.

3.3. Untargeted Metabolomics

Untargeted metabolomics analyses led to further relevant metabolites from the plasma
of SSc patients. All the metabolites from Table 1 from the targeted approach were excluded,
and only previously unrecognized features are shown in Table 2. Metabolites found to be
regulated were lipids, especially lysophosphatidylcholines (LPCs), sphingomyelins (SMs),
metabolites phenylacetylglutamine (PAG), and OH-tryptophan as well as acyl-carnitines
(OH-butyrylcarnitine and OH-decanoylcarnitine) (see Table 2). Additionally, observed
features with a p-value < 0.05 are given in Supplementary Table S3.

Table 2. Dysregulated metabolites were identified by the untargeted metabolomics approach. A
feature consists of retention time (RT), measured mass to charge ratio (m/z), and the measured
cross collision section (DTCCSN2). LPC = lysophosphatidylcholine, PAG = phenylacetylglutamine,
Cer = ceramide, SM = sphingomyeline, CCSpred was retrieved from AllCCS [22] predictor. p-value
was determined by a two-tailed Student’s t-test. Fold change was calculated from the ratio of SSc to
control group.

Feature
(RT_mz_DTCCSN2) Metabolite ID Name CCSpred m/zcalc p-Value

Fold
Change

(SSc/Control)

13.89_572.3679_236.76 HMDB0010401 LPC a 22:4 a (+H) 243.3 572.3711 <0.0001 0.4771
4.283_265.1168_160.02 HMDB06344 PAG (+H) 159.3 265.1183 <0.0001 2.1906

13.511_572.3676_238.65 HMDB0010401 LPC a 22:4 b (+H) 243.3 572.3711 0.0002 0.4958
13.619_673.5254_274.79 HMDB0240612 SM 32:2 (+H) 273.9 673.5279 0.0020 0.7053
15.977_221.0915_150.56 HMDB0000472 OH-tryptophan (+H) 149.7 221.0926 0.0055 0.6392
13.987_548.3692_234.01 HMDB0010392 LPC a 20:2 (+H) 240.7 548.3711 0.0079 0.5156
13.472_685.5613_286.32 HMDB0013464 SM 34:1 (−H2O +H) 283.5 685.5649 0.0101 0.9840
13.203_783.6341_296.53 HMDB0240670 SM 40:3 (+H) 291.2 783.6375 0.0152 0.7605
12.479_248.1485_156.00 HMDB0013127 OH-butyrylcarnitine (+H) 158.4 248.1498 0.0219 1.2434
7.364_332.2419_193.87 HMDB0061636 OH-decanoylcarnitine (+H) 189.3 332.2437 0.0396 1.6815

3.4. Metabolomic Patterns Altered in SSc Patients

After separate evaluations of targeted and untargeted approaches, the results were
combined to gain an insight into the overall data. For a first overview, a heatmap for all
identified features was generated based on selecting the 30 best molecules due to t-tests,
where minor clustering of the SSc samples could be shown (Figure 1A).

p-values and fold change were used for creating a two-dimensional volcano plot
(Figure 1B). With the applied thresholds, the significantly down-regulated features are
depicted on the top-left, and the significantly up-regulated features are depicted on the
top-right side. Closely related metabolites can be identified. First, a prominent imbalance
of kynurenine and tryptophan was noticed, whereby down-regulation of tryptophan and
up-regulation of kynurenine can be observed. Secondly, metabolites of the urea cycle
were significantly up-regulated (ornithine, citrulline, and dimethylarginine). Additionally,
dysregulation of the lipidome also seems to be present, along with significantly down-
regulated LPC species. Another metabolite, phenylacetylglutamine (PAG), was significantly
higher in plasma of patients with SSc than controls. Within Figure 1C, the statistically
significant differences between metabolites in the plasma of SSc-patients and the control
group were emphasized for tryptophan, ornithine, LPCs, and PAG molecules.
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Figure 1. (A) Heatmap for all identified features from plasma of SSc patients (n = 52) and controls
(n = 48) was generated based on a selection of the best 30 molecules due to t-tests using clustering
method (Distance measure: Euclidean, Algorithm: Ward). (B) p-values and fold change were used
for creating a two-dimensional volcano plot of summarized metabolites identified in metabolomics
approaches. (C) Box Plots (Box = IQR, whiskers = 1.5 × IQR, horizontal bars = median) of significantly
dysregulated metabolites. LPC = lysophosphatidylcholine, PAG = phenylacetylglutamine. p-values
were determined using a two-tailed Student’s t-test; p < 0.05 was considered significant (** p < 0.01,
*** p < 0.001).

3.5. Altered Metabolism in lcSSc and dcSSc Patients

In a further approach, we compared the control group with lcSSc and dcSSc. We
excluded ncSSc because a group with only two samples was not suitable for gaining a
proper statistical distribution. A comparison of subgroups lcSSc and dcSSc with controls
suggested that dysregulations in the observed metabolism were associated with worsening
of the disease. This association becomes evident in Figure 2A,B: the metabolites kynurenine,
citrulline, ornithine, and PAG are regulated the highest in dcSSc, while the lowest observed
concentration is in the control samples.

3.6. Cross-Correlation between Lipids and Carnitines

Based on the earlier finding of highly influenced LPC species and carnitine species,
a cross-correlation matrix was established to investigate the possibility of statistically
insignificant enrichments. Lipid species marked on the x-axis in Figure 3 show a correlation
to the acyl-carnitine species marked on the y-axis (marked with red squares within the
matrix).



Biomedicines 2022, 10, 607 7 of 15Biomedicines 2022, 10, x FOR PEER REVIEW 7 of 16 
 

 

 
 

Figure 2. (A) Hierarchical heatmap showing a gradient of metabolites from plasma of control group, 
patients with limited cutaneous SSc and patients with diffuse cutaneous SSc. Distance measure: Eu-
clidean, Clustering-Algorithm: Ward. (B) Box Plots (Box = IQR, whiskers = 1.5 × IQR, horizontal bars 
= median) of significantly changed metabolites: tryptophan, ornithine, LPC = lysophosphatidylcho-
line, and PAG = phenylacetylglutamine. p-values were determined using a two-tailed Student’s t-
test; p < 0.05 was considered significant (* p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant,). 

3.6. Cross-Correlation between Lipids and Carnitines 
Based on the earlier finding of highly influenced LPC species and carnitine species, 

a cross-correlation matrix was established to investigate the possibility of statistically in-
significant enrichments. Lipid species marked on the x-axis in Figure 3 show a correlation 
to the acyl-carnitine species marked on the y-axis (marked with red squares within the 
matrix). 

(A) (B) 

Figure 2. (A) Hierarchical heatmap showing a gradient of metabolites from plasma of control group,
patients with limited cutaneous SSc and patients with diffuse cutaneous SSc. Distance measure:
Euclidean, Clustering-Algorithm: Ward. (B) Box Plots (Box = IQR, whiskers = 1.5 × IQR, horizontal
bars = median) of significantly changed metabolites: tryptophan, ornithine, LPC = lysophosphatidyl-
choline, and PAG = phenylacetylglutamine. p-values were determined using a two-tailed Student’s
t-test; p < 0.05 was considered significant (* p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant).
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4. Discussion

In this study, we explored metabolites from the plasma of SSc patients and a control
group by using targeted, and untargeted metabolomics approaches. The main results of
our research indicate four possibly disrupted metabolic mechanisms in patients with SSc,
namely an enhanced kynurenine pathway, a dysregulated urea cycle, a disrupted lipid
metabolism, and a disturbed gut microbiome, which could be involved in the pathophysi-
ology of SSc and might serve as potential targets of treatment for SSc in the future.

We found a statistically significant down-regulation of tryptophan and a statistically
significant up-regulation of kynurenine, leading to the conclusion of a dysregulation of the
kynurenine pathway in SSc patients compared to controls. Furthermore, OH-tryptophan
was also found to be down-regulated within SSc patients. These results implied a depletion
of tryptophan towards the kynurenine route, which could result in inflammatory processes
(Figure 4).
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Previous studies have identified single metabolites of the kynurenine pathway as
relevant for SSc [18,19,21,24]. Our data showed these findings combined and identified a
dysregulation of the kynurenine pathway in SSc for the first time within one study.

The kynurenine pathway plays an essential role in various diseases such as allergies,
autoimmune disorders, or neurodegeneration [25]. Tryptophan catabolism to kynurenine
was shown to be regulated by the immune regulatory enzyme indolamine-2,3-dioxygenase
(IDO1) [26]. Metabolites of the kynurenine pathway, especially kynurenine, were described
to block T-cell proliferation and induce T-cell apoptosis [27–29]. It has been shown for
several autoimmune diseases that overexpression of kynurenines leads to a dysregulation
of regulatory T-cells mediated by pro-inflammatory cytokine cascades [25,30]. Furthermore,
local depletion of tryptophan also leads to endothelial cell apoptosis [27,31]. Moreover, tryp-
tophan metabolism is also closely connected to a dysfunctional microbiome in SSc [32–34].

As T-cell-mediated inflammation, endothelial cell dysfunction, and gut dysbiosis are
essential mechanisms of SSc, the kynurenine pathway might play a crucial role in the
pathogenesis of SSc and should further be explored as a possible therapeutic target for the
therapy of SSc.

Our data showed up-regulated metabolites ornithine, citrulline in plasma of SSc
patients, which are central protagonists in the urea cycle. Ornithine is responsible for the
intra-mitochondrial binding of ammonia, whereby it is transformed to citrulline. Citrulline
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can then pass the mitochondrial membrane through the ornithine translocase (ORNT1)
and will again be metabolized to ornithine, which can circulate back into the mitochondria.
This metabolization aims to reduce ammonia levels in body fluids by producing urea
and arginine. The responsible enzyme is arginase (ARG). ARG catabolizes arginine to
ornithine and urea and, in a further stage, to polyamines. Furthermore, NO and citrulline
can originate from arginine through NO-synthase (NOS) [35,36].

The overexpression of citrulline was described to indicate the availability of pro-
inflammatory stimuli. ARG has been reported to be associated with inflammatory disorders.
In psoriasis, an overexpression of ARG leads to decreasing nitric oxide (NO) levels, which
modulate the immune responses in tissues [37]. NO dysregulation was identified as having
a high impact on the modulation of T-cell responses, with local effects in a tissue due
to its short lifetime [35]. Polyamines activity was increased in autoimmune disorders
as a pro-inflammatory mediator due to its competition with the cellular methylation for
S-adenosylmethionine [38,39].

Furthermore, we found up-regulation of dimethylarginine (DMA) in the plasma of
SSc patients. Two different DMAs have been described: symmetric dimethylarginine
(SDMA) and asymmetric dimethylarginine (ADMA). In our approach, no separation was
achieved. Studies previously showed that ADMA is significantly increased in dcSSc [40,41].
Moreover, it has been shown that ADMA potentially inhibits the degradation of arginine
by hindering the catalytic center of NOS [42]. Thus, the up-regulation of DMA might lead
to the disruption of the urea cycle (based on an increase in ornithine and citrulline) and
subsequently to the downstream production of pro-inflammatory molecules in SSc.

Fibrosis is a common signature of SSc. In this context, generated collagen is dominated
by a high content of proline, which is in equilibrium with pyrroline-5-carboxylate (P5C).
P5C can be further processed by ornithine aminotransferase (OAT) to ornithine. An
association of collagen metabolism with the urea cycle was suggested in metastatic tumor
disease [43].

We hypothesized that the urea cycle, particularly up-regulated ornithine and citrulline
metabolites, could play an important role in inflammation during SSc. Furthermore, we sug-
gest that in SSc, the urea cycle is fuelled in connection with collagen metabolism, whereby
citrulline and ornithine concentrations are increased and further stimulate inflammation in
SSc patients (Figure 5). Future studies are needed to test the possibility of influencing the
urea cycle pathway to block fibrosis and inflammation in SSc.
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We detected significant down-regulation of three lysophosphatidylcholines (such
as LPC 22:4 a, LPC 22:4 b, and LPC 20:2) in patients with SSc compared to controls.
LPCs are part of low-density lipoproteins (LDLs) and are involved in the physiological
immune response due to their interaction with Toll-like receptors. It has been shown that
LPCs affect oxidative stress, endothelial cells, and lymphocytes and can stimulate pro-
inflammatory cytokines. [44] LPCs are chemo-attractants for macrophages and defective
clearance through phagocytic cells has been reported to play an important role in systemic
lupus erythematosus [45,46]. Our data on LPCs differ from the literature, by showing three
down-regulated LPCs molecules indicating that the role of LPCs in SSs might be different
for specific LPCs-species. Thus, LPCs might be involved in inflammation and endothelial
damage during SSc disease, and further studies are needed to elucidate the role of different
LPCs species in SSc and to investigate if LPCs might serve as potential therapeutic targets
for SSc in the future.

Our metabolomics study further showed significant down-regulation of sphingomyelins
(SM 34:1 and SM 40:3) in the plasma of SSc patients compared to the control group. Previous
studies described SMs to be involved in controlling of fibrosis in the skin, lungs, and
kidneys [47,48]. Furthermore, our previously published lipidomics study demonstrated
significantly decreased SMs in the plasma of SSc patients with more intensive skin sclerosis
(dcSSc or mRSS > 14; SM 30:1, SM 32:2, and SM 40:4) [49]. Therefore, it can be suggested
that certain species of SMs might affect skin sclerosis of SSc patients. Further studies are
needed to determine the possibility of targeting SMs as a new therapeutic strategy for
organ fibrosis during SSc.

Our metabolomic analyses showed correlations of lipids such as SMs and LPCs
with acyl-carnitines in the plasma of SSc patients. Even though acyl-carnitines are not
regulated in a statistically significant manner, the correlation with lipids could indicate
their involvement in the pathogenesis of SSc. Acyl-carnitines and lipid metabolism have
been reported as dysregulated in autoimmune disorders, especially in combination with
disrupted gut microbiome [50].

Acyl-carnitines function as a transporter of fatty acid chains from the cytosol to the in-
ner mitochondria, where fatty acids are further processed by beta-oxidation. Beta-oxidation
or fatty acid oxidation (FAO) is a well-known source of energy and, in combination with
high glycolysis, FAO is directly linked to collagen production in fibrotic tissue [51,52].
Furthermore, perturbation of FAO has also been reported to be closely related to fibro-
sis [52–54]. Additionally, FAO can also enhance the release of pro-inflammatory cytokines
from macrophages. Thus, in addition to LPCs and SMs, the correlation of lipid metabolism
with acyl-carnitines, FAO, and the gut microbiome might be relevant for fibrosis and
inflammation in patients with SSc and should further be explored in the future.

We identified phenylacetylglutamine (PAG) by the untargeted approach to be sig-
nificantly up-regulated in patients with SSc compared with the control group. PAG is
associated with changes in the gut microbiome, especially in combination with kynurenine
pathway metabolites, as presented in our study [55,56]. Kynurenine pathway metabo-
lites can increase due to the synthesis in bacteria, which might enhance cytokine pro-
duction [30,50,56–58]. It has been proposed that fibrosis results in gastrointestinal tract
dysmotility, and therefore can have a significant impact on the gut microbiome. Gut dys-
biosis is a known feature of SSc [34] and PAG could be an indicator of gastrointestinal
involvement [59]. Further studies are needed to explore the role of PAG as a therapeutic
target of gastrointestinal symptoms in SSc.

Several clinical trials explored drugs that target metabolites that we found possibly
disrupted in our SSc patients, underlining the importance of our data [12,60,61]. Regarding
the kynurenine pathway, the quinoline-3-carboxamides like laquinimod and paquinimod,
which are structurally similar to kynurenines, have been proven in clinical trials to have pos-
itive effects in patients with multiple sclerosis, systemic lupus erythematosus, or SSc [62,63].
Moreover, drugs that influence IDO1 have been shown to have a high potential in treating
autoimmune diseases [64]. For example, tocilizumab, which indirectly affects IDO1, has
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shown positive effects on lung and skin fibrosis in SSc [65]. Regarding the urea cycle,
pirfenidone, an ARG1 inhibitor, has shown positive results in patients with idiopathic
pulmonary fibrosis, and therefore inhibition of ARG1 might be a valuable therapeutic aim
in SSc [66]. On the other side, inhibition of ARG1 can also increase NO, which stimulates
inflammation and fibrosis in the lung [67]. Thus, the equilibrium of metabolites is essential
for biological effects of metabolic pathways. Further studies, including multi-centre -omics
studies, animal models, and in vitro studies, are needed to explore relevant metabolites,
their interactions, and their role as possible therapeutic targets in SSc.

5. Conclusions

In summary, our data showed four possibly dysregulated metabolic mechanisms in
plasma from patients with SSc, namely a dysregulated kynurenine pathway, a dysregulated
urea cycle, disrupted lipid metabolism, and a disturbed gut microbiome. An acceler-
ated kynurenine metabolism could induce production of pro-inflammatory cytokines,
T-cell-mediated inflammation, endothelial cell dysfunction, and gut dysbiosis in SSc. A
dysregulated urea cycle could be involved in inflammation and fibrosis during SSc and
might be stimulated due to excessive collagen metabolism, where proline, one of the
main constituents of collagen, can increase the production of ornithine and citrulline. A
disrupted lipid metabolism, with down-regulated LPCs and SMs in SSc patients, was
correlated with acyl-carnitines and FAO, which might stimulate fibrosis and macrophage-
mediated inflammation in SSc, especially in combination with a disrupted gut microbiome.
Finally, up-regulated PAG could be involved in gut dysbiosis in patients with SSc-related
gastrointestinal symptoms.

A limitation of our study is the fact that blood sampling was not done at the same
time point during the day and we have no data regarding fasting before blood sampling.
Furthermore, due to small numbers of patients in the clinical subgroups, we could not
correlate metabolites to single organ involvement or medication in SSc patients. Moreover,
our results showed possible changes in metabolic pathways in SSc patients from single
cohort study. In the future, multi-centre studies including higher numbers of patients as
well as animal-models and in vitro studies are needed to further explore these metabolic
pathways and their role as possible therapeutic targets for SSc.

In conclusion, our study of plasma metabolites in patients with SSc identified four
possibly disrupted metabolite mechanisms, which are associated with autoimmune inflam-
mation, vascular damage, fibrosis, and gastrointestinal dysbiosis and might be relevant
for the pathophysiology of SSc. Further studies are needed to evaluate the role of these
metabolomic networks as potential treatment targets for SSc or as personalized biomarkers
of drug response in SSc in the future.
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