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Abstract: Diagnostic support tools based on artificial intelligence (AI) have exhibited high perfor-
mance in various medical fields. However, their clinical application remains challenging because
of the lack of explanatory power in AI decisions (black box problem), making it difficult to build
trust with medical professionals. Nevertheless, visualizing the internal representation of deep neural
networks will increase explanatory power and improve the confidence of medical professionals
in AI decisions. We propose a novel deep learning-based explainable representation “graph chart
diagram” to support fetal cardiac ultrasound screening, which has low detection rates of congenital
heart diseases due to the difficulty in mastering the technique. Screening performance improves
using this representation from 0.966 to 0.975 for experts, 0.829 to 0.890 for fellows, and 0.616 to 0.748
for residents in the arithmetic mean of area under the curve of a receiver operating characteristic
curve. This is the first demonstration wherein examiners used deep learning-based explainable
representation to improve the performance of fetal cardiac ultrasound screening, highlighting the
potential of explainable AI to augment examiner capabilities.

Keywords: explainable artificial intelligence; deep learning; fetal cardiac ultrasound screening;
congenital heart disease; abnormality detection

1. Introduction

With the rapid development of tools to support medical diagnosis using artificial
intelligence (AI), expectations from AI have been increasing continuously [1–5]. However,
in reality, the application of AI in clinical practice remains challenging. One of the major
obstacles is regarded as the “black box problem” of AI [4,6–8]. The black box problem is
a problem in which the relationship between input and output obtained from data is so
complicated that any human, including the developer, cannot determine the rationale for
the AI decision [9]. There are three major approaches for achieving explainable AI using
a deep neural network (DNN), a machine learning technology typically used in medical

Biomedicines 2022, 10, 551. https://doi.org/10.3390/biomedicines10030551 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10030551
https://doi.org/10.3390/biomedicines10030551
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-3951-1089
https://orcid.org/0000-0003-0421-8085
https://orcid.org/0000-0003-0354-4145
https://orcid.org/0000-0002-6526-8812
https://orcid.org/0000-0001-6843-7696
https://orcid.org/0000-0003-0548-4449
https://orcid.org/0000-0003-4558-9800
https://orcid.org/0000-0003-2249-1333
https://doi.org/10.3390/biomedicines10030551
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10030551?type=check_update&version=2


Biomedicines 2022, 10, 551 2 of 21

imaging for diagnosis support. The first is a method for visualizing or analyzing the internal
behavior of existing high-performance DNNs [10–14]. The second is to add an explanatory
module to a DNN externally [12,15–19]. The third is to make DNNs perform decisions
via explainable representations, which is also called “interpretable models” [20–24]. Of
these, the third approach is the best in terms of achieving a high-level explanatory power.
However, the first and second approaches have traditionally been actively pursued in
explainable AI studies because interpretable models may cause performance degradation.

In the present study, we employ the third approach, i.e., interpretable models. One
reason for its choice is that the performance of conventional AI is already high, and we
can accept slight performance degradation. The second reason is that our purpose of
developing AI diagnostic imaging support technology is not to improve the performance of
the technology alone, rather to enhance the performance of medical professionals using this
technology. A more sophisticated explainable representation has the potential to enhance
the performance of medical professionals. Therefore, we propose a novel interpretable
model targeting videos of fetal cardiac ultrasound screening, one of the crucial obstetric
examinations; however, its detection rate of congenital heart diseases (CHDs) remains
low [25–27]. This interpretable model is an auto-encoder that includes two novel tech-
niques, cascade graph encoder and view-proxy loss, and generates a “graph chart diagram”
as an explainable representation. The graph chart diagram visualizes the detection of
substructures of the heart and vessels in the screening video on a two-dimensional trajec-
tory and, thereafter, calculates the abnormality score by measuring the deviation from the
normal. The examiner uses the graph chart diagram and abnormality score to perform fetal
cardiac ultrasound screening.

However, studies on the comparison or collaboration between AI and humans are
vital to obtain insight into the clinical implementation of AI, and many studies have
been conducted in this regard [12,28–33] with several of them on ultrasound [34–38].
Improvement in the performance of combining human and AI scores has also been studied
in the field of dermatology [39], breast oncology [40], and pathology [41–43]. A small
number of studies have reported the performance of examiners actually using AI [44].
Regarding the use of explainable AI, Yamamoto et al. used explainable AI to gain new
insights into pathology [42]. Tschandl et al. [44] educated medical students about insights
obtained from Grad-CAM [10]. However, to the best of our knowledge, there is no study in
which examiners directly utilized deep learning-based explainable representations (e.g.,
heatmap, compressed representation, and graph) in the field of medical AI. We believe the
reason for this is that the current mainstream techniques have low consistency between
decisions and explanations [4,20]. Because decisions (or AI score) and explanations are
generated from the same process in interpretable models, consistency between explanations
and decisions is high, and performance enhancement by adding explanations to decisions
is most expected [20].

In this study, we attempted to verify whether the deep learning-based explanatory
representation “graph chart diagram” could enhance the detection of CHD anomalies for
27 examiners (8 experts, 10 fellows, and 9 residents). Quantitative evaluation using the
arithmetic mean of the area under the curve (AUC) of the receiver operating characteristic
(ROC) curve showed that the screening performance was improved by utilizing the graph
chart diagram in all groups: expert, fellow, and resident groups. This is the first report
to demonstrate improved screening performance for CHD using explainable AI, and it
presents a new direction for the introduction of explainable AI into medical testing and
diagnosis.

2. Materials and Methods
2.1. Data Preparation

The total dataset used in this study consists of 160 cases and 344 videos (18–34 weeks
gestation). We used 13 CHD cases and 26 videos as the abnormal data, which has been con-
firmed by postnatal testing. We used only normal data from 134 normal cases (292 videos)
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to train DNNs explained in Section 2.2; 108 cases (247 videos) for object detection model
YOLOv2 [45]; 60 cases (151 videos) for training the proposed auto-encoders. Referring to
previous studies [46–48], the image number of our training data is in the same order of
data size as the MNIST dataset, which was sufficient to achieve enough performance in
this study. The validation set consisted of three normal cases and six videos for the normal
data and three CHD cases and six videos for the abnormal data. In contrast, 10 cases and
20 videos of the normal data and 10 CHD cases and 20 videos of the abnormal data were
used for the test dataset. Details of the CHD cases of the abnormal data are shown in
Supplementary Table S1. The splitting ratio of the data was standard for machine learn-
ing [47–49]. No cases in the validation and test set overlapped with the dataset for training
DNNs. All videos were taken by scanning the probe from the abdominal view to 3VTV
(three-vessel trachea view) via 4CV (four-chamber view). All data were acquired using
the Voluson® E8 or E10 ultrasound machine (GE Healthcare, Chicago, IL, USA) at the four
Showa University Hospitals (Tokyo and Yokohama, Japan) in an opt-out manner. The
probe was an abdominal 2–6 MHz transducer, and a cardiac preset was used.

2.2. Proposed Method

Figure 1 shows a schematic flow of the proposed method, which is explained below.
Firstly, we describe the proposed explainable representation, i.e., graph chart diagram.
Subsequently, we describe two techniques to obtain a better graph chart diagram. The
formula for graph chart diagram and two techniques is also provided in Appendix A.
Finally, we explain how to calculate the abnormality score.

2.2.1. Graph Chart Diagram

Komatsu et al. [46] showed that CHDs can be detected with high performance by
annotating the substructures of normal hearts and vessels and deeming them abnormal
if normal substructures are not found in the frame where they should be. They also
proposed a “ barcode-like timeline”, which is a table indicating the substructure detection
status for each frame of an ultrasound video scanned from the stomach to the heart. In
the barcode-like timeline, the substructure is on the vertical axis and the time is on the
horizontal axis. The substructures used in the barcode-like timeline are Rall = {crux,
ventricular septum, right atrium, tricuspid valve, right ventricle, left atrium, mitral valve,
left ventricle, pulmonary artery, ascending aorta, superior vena cava, descending aorta,
stomach, spine, umbilical vein, inferior vena cava, pulmonary vein, ductus arteriosus}. To
detect abnormalities, examiners must specify the location of the diagnostic plane; however,
fetal movement and inappropriate probe movement make it difficult.

We can address this problem of barcode-like timelines using graph chart diagrams. A
graph chart diagram represents the substructure detection status converted from a barcode-
like timeline into a trajectory of points in two dimensions using an auto-encoder with two
neurons in the intermediate layer (X and Y axes denote the outputs of neurons 1 and 2,
respectively). The trajectory on the graph chart diagram is expected to have a constant
shape regardless of the probe movement if it is not an abnormal video. The examiner can
determine whether the patient has CHD by assessing the deviation of the shape from the
normal one, without specifying the diagnostic plane. The computational time to create and
display a graph chart diagram is real time. For more details, Appendix A.1 elaborates on
the graph chart diagrams.



Biomedicines 2022, 10, 551 4 of 21

Main-

graph

chart

Vessels
substructures 

Heart
substructures

Vessels
substructures 

Heart
substructures

Substructure

detection


Barcode-like timeline

Screening

videos

Time

Su
bs

tr
uc

tu
re

s

Kernel

Main-graph chart Examiner

Vessels
substructures 

Heart
substructures

Others

 substructures 

Abnormality
score

Vessels
encoder

Main

encoder


Vessels
decoder

Heart
decoder

Main
decoder

Others

 substructures 

View-proxy loss

Cascade graph encoder

Heart

sub-


graph

chart

Vessels

sub-

graph

chart

Heart
encoder

Others
encoder

Abdomen 4CV 3VTV

Detected Undetected

Figure 1. Flow chart of the proposed method. The screening videos were scanned in one direction
from the stomach to the head. Therefore, a video contains diagnostic planes from the abdomen to the
four-chamber view (4CV) and three-vessel trachea view (3VTV). The barcode-like timeline represents
the detection of 18 substructures Rall for each frame of the screening video arranged in the time direction.
The kernel slices the barcode-like timeline and feeds it to the cascade graph encoder. The kernel moves in
the time direction (red open arrow). A sub-graph chart diagram was created for each of the four vessels
Rvessels and the eight-heart substructures Rheart. Information on the six other substructures Rothers (
= Rall \ (Rvessels ∪ Rheart) is appended to two sub-graph chart diagrams to obtain the main graph chart
diagrams. The view-proxy loss is applied to the main-graph chart diagram so that the main graph chart
diagram is generated stably. The gray circle dots in the main-graph chart correspond to the parts of
the barcode-like timeline that was sliced into the kernel at a certain time. In particular, the green dot
indicates the point corresponding to the green kernel and moves in the direction of the red arrow. An
abnormality score is calculated using the main-graph chart diagram and provided to the examiner.
Rall is the set of { crux, ventricular septum, right atrium, tricuspid valve, right ventricle, left atrium,
mitral valve, left ventricle, pulmonary artery, ascending aorta, superior vena cava, descending aorta,
stomach, spine, umbilical vein, inferior vena cava, pulmonary vein, ductus arteriosus}. Rvessels is the
set of the {pulmonary artery, ascending aorta, superior vena cava, ductus arteriosus} Rheart is the set
of {crux, ventricular septum, right atrium, tricuspid valve, right ventricle, left atrium, mitral valve,
left ventricle}. Rothers set of Rall \ (Rvessels ∪ Rheart).
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2.2.2. View-Proxy Loss and Cascade Graph Encoder

A simple auto-encoder can form graph chart diagrams by learning from the normal
data; however, we propose view-proxy loss and a cascade graph encoder to improve graph
chart diagrams for practical applications. The view-proxy loss prevents learning instability
due to the “entanglement” of graph chart diagrams. The cascade graph encoder improves
explainability by creating sub-graph chart diagrams for some group substructures and then
creating a main-graph chart diagram based on them.

Figure 2 illustrates a schematic diagram of the effect of the view-proxy loss. Graph
chart diagrams generated by a simple auto-encoder have no “guideline” for determining
the formation, and thus tend to form a tangled shape, as shown in Figure 2a. The purpose
of optimizing the view-proxy loss is to attract points on the graph chart diagram corre-
sponding to the typical diagnostic planes 3VTV and 4CV to the target coordinates (1, 0)
and (0, 1), respectively. We cannot directly attract the points on the graph chart diagram
corresponding to the diagnostic planes to the target coordinates because videos do not have
annotations of diagnostic planes. Therefore, the proposed method synthesizes the ideal
barcode-like timeline data corresponding to the normal diagnostic planes (i.e., 3VTV and
4CV) and takes the distance between the corresponding point and the target point, which
is the view-proxy loss (Figure 2b). By minimizing this loss, we can attract points on the
actual graph chart diagram as a collateral effect. For more details, Appendix A.2 elaborates
on the view-proxy loss.
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Ideal 3VTV

1
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2

Neuron 1
(a)

Ideal 4CV

Ideal 3VTV
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Figure 2. Schematic diagram of the effect of view-proxy loss. (a) Graph chart diagram without
view-proxy loss. The graph chart diagram (grey connected circles) without view-proxy loss is formed,
in which points corresponding to actual 4CV (surrounded by the blue line), actual 3VTV (surrounded
by the red line), and other planes are randomly mixed. (b) Graph chart diagram with view-proxy
loss. The stars denote the coordinates for the ideal 4CV (blue) and 3VTV (red). The squares denote
corresponding points to the synthesized barcode-like timelines for 4CV (blue) and 3VTV (red). The
view-proxy loss (orange bidirectional arrows) considers the loss between the stars and squares. As a
corollary of optimizing the view-proxy loss, the grey points surrounded by the blue or red lines are
attracted to their respective specified coordinates. As a result of optimizing the view-proxy loss, the
graph chart diagram is expected to be untangled.

The cascade graph encoder (Figure 1) constructs sub-graph chart diagrams as a further
source of explanatory information. Concretely, we creates a sub-graph chart diagram
for the vessels Rvessels = {pulmonary artery, ascending aorta, superior vena cava, ductus
arteriosus} and heart Rheart = {crux, ventricular septum, right atrium, tricuspid valve, right
ventricle, left atrium, mitral valve, left ventricle}. Thereafter, we combine the information
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for the remaining the substructures with the two sub-graph chart diagrams to create the
main-graph chart diagram, which is the most comprehensive representation. We apply the
view-proxy loss only to the main-graph chart diagram. Moreover, Appendix A.3 details
the cascade graph encoder.

2.2.3. Abnormality Score

We need further processing to quantitatively evaluate the degree of abnormalities
as a scalar number because the graph chart diagram is an explainable representation for
visual assessment. If the video contains an abnormality, the area of the region drawn by the
point on the graph chart diagram is smaller than that of the normal video. This is because
the normal barcode-like timeline patterns are absent if there are abnormal substructures.
Therefore, we can quantitatively evaluate the abnormality score of a graph chart diagram
by calculating the area of the figure drawn by the trajectory of a point. We used the Shapely
package in Python to create shapes from the trajectories of points and calculate their areas
in this study. Thereafter, we calculated the abnormality score by normalizing it such that
the score is 0 for the maximum area and 1 for zero area:

ΓAI(G) = 1− farea(G)

farea(Gmax)
. (1)

The target graph chart diagram is G, the function for calculating the area is farea, and the
graph chart diagram with the largest area in the test data is Gmax.

2.3. Evaluation of Medical Professional Enhancement

We conducted a comparative study to evaluate the improvement in the screening
performance of examiners resulting from the use of a graph chart diagram. There were
8 experts, 10 fellows, and 9 residents enrolled in this study. All the examiners belonged
to Showa University Hospitals (Tokyo and Yokohama, Japan). The procedure of this test
was based on a previous study [50]. The examiners rated each video of the test dataset
(20 videos of 10 normal cases and 20 videos of 10 CHD cases; types of CHDs are provided
in Supplementary Table S1), shown in the Methods section as normal or abnormal with
five confidence levels. We consider d (−1 for normal and 1 for abnormal) as the decision
and c (integer of 1–5) as the confidence level and calculate the abnormality score for each
video using the following formula.

Γhuman(G) =
dc + 5

10
. (2)

The test procedure comprised an instruction part and two main blocks.

• Instruction part · · · The examiners were instructed on how to perform the test, and
a graph chart diagram was explained. The examiners were given samples of the
main-graph chart diagrams of a pair of normal and abnormal videos. We used a
different model and different videos for testing to generate these main-graph chart
diagrams. The performance of AI was not explained to examiners. Regarding the
types of CHDs, the examiners were not informed what types of diseases would be
included. Considering the ratio of normal to abnormal cases, we did not inform the
examiners of the amounts of each.

• First block · · · The examiners were given 40 randomly numbered videos and an Excel
file to fill in the answers. They played the videos on a laptop computer and filled in
the Excel file with their decisions and confidence levels. No protocol was provided
on how to assess the videos in detail to allow the examiners to perform this test as
they usually would perform fetal cardiac ultrasound screening in a clinical setting.
Therefore, the first block was performed depending on each examiner’s education and
skill level.
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• Second block · · · The examiners evaluated the same dataset independently of the
first block, referring to graph chart diagrams G and abnormality scores ΓAI(G) for
each video. The graph chart diagrams were given as PNG files, and the anomaly
scores were given in an Excel sheet. The decisions of the AI between the normal and
abnormal cases were not presented. Shapes created by the Shapely package were also
not provided to the examiners. Considering the choice of graph chart diagrams G
and abnormality scores ΓAI(G), we adopted the results with the third-best AUC of the
ROC curve among the five trials.

The examiners had no time limit, and were allowed to change their decisions and
confidence levels once they had made it within each block. The examiners spent 20 to
40 min to complete this test, and were not informed of their own results until every test
was completed.

2.4. Statistical Analysis

All the numerical experiments were evaluated using the AUC of the ROC curve.
The numerical experiments were run five times with different random seeds, and the
mean, standard deviation, median, and maximum and minimum values of the AUC were
reported. Considering the experiments in which examiners were enrolled, we calculated
the accuracy, false-positive rate (FPR), precision, recall, and F1 scores for an abnormality
score of 0.5 in addition to the AUC of the ROC curve.

3. Results

Firstly, we show examples of graph chart diagrams, which are the representation
proposed in this study. Subsequently, we show the evaluation of abnormality detection
performance of AI only by abnormality scores calculated from graph chart diagrams.
Finally, we show the performance improvement when the examiners used the graph chart
diagrams. Details of the numerical experiments are explained in Appendix B.

3.1. Examples of Graph Chart Diagram

Figure 3 shows main-graph chart diagrams corresponding to a normal case and
abnormal case of tetralogy of Fallot (TOF), respectively. The video corresponding to the
normal case is provided in Supplementary Video S1, and that of the TOF case is provided
in Supplementary Video S2. Examples of the created shapes corresponding to Figure 3
are provided in Supplementary Figure S1. Considering the normal video, the points
are spread over the entire graph, and they are attracted to the (0, 1) coordinate for the
points corresponding to the heart-related planes and the (1, 0) coordinate for the points
corresponding to the large vessels-related planes. The attraction of these points to the
particular coordinates is the effect of the view-proxy loss (Figure 2 shows the concept, and
the mechanism is explained in Section 2.2.2). Regarding the TOF case, there is a large
shift, especially in the points corresponding to the three-vessel trachea views (3VTV). The
points do not pass through these areas because the auto-encoder does not recognize the
pulmonary artery and other large vessels as normal. The area of the region drawn by the
trajectory of the points becomes smaller in the graph chart diagram of the abnormal video.

The cascade graph encoder provides sub-graph chart diagrams as explained in
Section 2.2.2. Figure 4 shows the sub-graph chart diagrams of the normal video and
abnormal video of the TOF case. The sub-graph chart diagram of vessels compresses
the information of Rvessels and the sub-graph chart diagram of the heart compresses the
information of Rheart. The sub-graph chart diagram of the abnormal video shows a decrease
in the movement of points in both the vessels and heart. Particularly, the change in the
sub-graph chart diagram of the vessels is large, and it is confirmed that the density of
points in the region corresponding to 3VTV marked by red square decreased (Figure 4a,d).
These deviations in the graph chart diagrams are consistent with the disease characteristic
in TOF of abnormalities in the blood vessels of Rvessels.
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4CV 3VTV

(a) Normal

4CV 3VTV

(b) Tetralogy of Fallot

Figure 3. Main-graph chart diagrams. The main-graph chart diagrams were obtained from the fetal
cardiac ultrasound screening video of a normal case (a) and tetralogy of Fallot case (b). The dots
circled in gray correspond to each kernel, and these dots are connected as the kernel moves. Several
points correspond to the typical diagnostic planes. The four-chamber view (4CV) and three-vessel
trachea view (3VTV) are shown as blue diamond and red square points, respectively.
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Figure 4. Sub-graph chart diagrams. (a,b) show sub-graph chart diagrams of the vessels and heart in
the normal video, respectively. (d,e) show the sub-graph chart diagrams of the vessels and heart in
the TOF video, respectively. (c,f) are the same as (a,b) in Figure 3, and are presented for reference.
The blue diamond points correspond to the 4CV, and the red square points correspond to the 3VTV.
TOF, tetralogy of Fallot; 4CV, four-chamber view; 3VTV, three-vessel trachea view.
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3.2. Screening Performance Using Only AI

As explained in Section 2.2.2, the proposed method has two techniques: view-proxy
loss and a cascade graph encoder. We performed ablation tests on these two techniques
to verify the performance of the proposed method. Five trials were run in the numerical
experiments, and the initial values of network weights were initialized using random
numbers of different seeds. A total of 40 videos of the test dataset were used to evaluate the
performance, which consisted of 20 videos of 10 normal cases as normal data and 20 videos
of 10 CHD cases as abnormal data (types of CHDs are provided in Supplementary Table S1).
We evaluated the experiments using the mean AUC of the ROC curve.

Table 1 shows the results of the numerical experiments. The mean AUC of the ROC
curve using a simple auto-encoder was 0.798, the standard deviation was 0.007, and the
median was 0.803. The view-proxy loss increased the mean to 0.833 and decreased the
standard deviation to 0.002, and the median increased to 0.833. The view-proxy loss was
introduced to prevent the graph chart diagram from being different for each training by
attracting points corresponding to 4CV and 3VTV to particular fixed coordinates. It did
not only reduce the standard deviation but also contributed to the performance improve-
ment. The cascade graph encoder also improved the performance, with a mean, standard
deviation, and median of 0.819, 0.013, and 0.813, respectively. The idea of performing
a dimensional compression in advance for each relevant substructure was confirmed to
improve the performance. The combination of graph cascade encoder and view-proxy
loss improved the performance with a mean, standard deviation, and median of 0.861,
0.003, and 0.860, respectively. The combination of these two techniques was successful in
improving performance as well as stabilizing the training.

Table 1. Performance improvement by two techniques, cascade graph encoder and view-proxy loss.

Cascade Graph
Encoder View-Proxy Loss Mean (SD) Median (Min–Max)

X X 0.861 (0.003) 0.860 (0.858–0.865)

X 0.819 (0.013) 0.813 (0.803–0.835)

X 0.833 (0.002) 0.833 (0.830–0.835)

0.798 (0.007) 0.803 (0.790–0.805)
The experiment was conducted five times for each combination. The abnormality score was calculated, and the
AUC of the ROC curve was calculated for each trial. The table shows the mean (standard deviation) and median
(minimum-maximum) values for each combination. ROC, receiver operating characteristic; AUC, area under
curve; SD, standard deviation.

3.3. Screening Performance Enhancement Using the Examiner and AI Collaboration

Figure 5 shows the ROC curve using the abnormality score calculated by Γhuman(G).
Table 2 shows the AUC of the ROC curve. The performance of only AI showed that the
mean AUC of the ROC curve was 0.861, which was higher than 0.829 of the mean AUC of
the ROC curve for only the fellow. The performance of the experts was 0.966, which was
higher than that of the AI only. The performance of the residents only was 0.616, which was
lower than that of AI only. Regarding the examiner and AI collaboration, the AI assistance
increased the performance for experts, fellows, and residents. The residents recorded the
largest increase in performance with AI of 0.132, increasing from 0.616 to 0.748. We also
evaluated the performance using several metrics by setting the threshold. We adopted an
abnormality score of 0.5 as the threshold value, which is consistent with the actual decision
c made by the examiners (Equation (2)). The result is shown in Table 3. The AI assistance
improved the accuracy of all the examiners. The experts, fellows, and residents only had
mean accuracies of 0.928, 0.775, and 0.603, respectively. The experts + AI, fellows + AI,
and residents + AI had accuracies of 0.938, 0.823, and 0.731, respectively. The AI assistance
also improved the F1 score for all the examiners. The experts, fellows, and residents only
had F1 scores of 0.934, 0.774, and 0.589, respectively. In contrast, the expert + AI, fellow +
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AI, and resident + AI exhibited F1 scores of 0.943, 0.822, and 0.716, respectively. However,
the trends in precision and recall depended on the examiner’s experience. The experts
also increased their recall 0.007 (=0.963− 0.956) and precision 0.015 (=0.927− 0.912) using
AI. Moreover, the fellows increased their recall 0.045 (=0.825− 0.780) and precision 0.047
(=0.819− 0.772) using AI. The residents also increased their recall 0.122 (=0.694− 0.572)
and precision 0.130 (=0.746− 0.616) using AI. Therefore, experts tended to increase their
precision more than recall using the AI assistance; however, the fellows and residents
tended to increase both.
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(a) Experts (n = 8)
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Figure 5. Performance of the AI-assisted fetal cardiac ultrasound screening. The ROC curves show
the screening performance comparison of experts (a), fellows (b), and residents (c) with and without
AI assistance. The color of the solid lines represents the ROC curve for AI only (gray), examiner only
(green), and examiner with AI (red). Solid lines indicate mean values. Lighter semitransparent colors
surrounding the the solid lines indicate the standard deviation. The mean and standard deviation of
the AUC of the ROC curves are also reported in the legends. ROC, receiver operating characteristics;
AUC, area under the curve; TPR, true positive rate; FPR, false-positive rate.

Table 2. Improvement in examiner performance using AI.

Method Mean (SD) Median (Min–Max)

Expert (n = 8) 0.966 (0.017) 0.962 (0.950–0.993)

Expert + AI (n = 8) 0.975 (0.022) 0.981 (0.945–1.000)

Fellow (n = 10) 0.829 (0.084) 0.852 (0.675–0.928)

Fellow + AI (n = 10) 0.890 (0.037) 0.899 (0.834–0.950)

Resident (n = 9) 0.616 (0.128) 0.634 (0.369–0.773)

Resident + AI (n = 9) 0.748 (0.106) 0.746 (0.474–0.836)

Examiner (n = 27) 0.798 (0.167) 0.851 (0.369–0.993)

Examiner + AI (n = 27) 0.868 (0.113) 0.895 (0.474–1.000)
This table shows the mean (standard deviation) and median (minimum-maximum) of the AUC of the ROC curves.
Here, n denotes the number of cases. ROC, receiver operating characteristic; AUC, area under the curve; SD,
standard deviation.
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Table 3. Performance improvement in examiner decisions using AI.

Method Accuracy (SD) FPR (SD) Recall (SD) Precision (SD) F1 Score (SD)

Expert (n = 8) 0.928 (0.029) 0.100 (0.073) 0.956 (0.039) 0.912 (0.067) 0.934 (0.031)

Expert + AI (n = 8) 0.938 (0.022) 0.081 (0.066) 0.963 (0.033) 0.927 (0.056) 0.943 (0.022)

Fellow (n = 10) 0.775 (0.067) 0.230 (0.068) 0.780 (0.105) 0.772 (0.062) 0.774 (0.074)

Fellow + AI (n = 10) 0.823 (0.036) 0.180 (0.071) 0.825 (0.072) 0.819 (0.051) 0.822 (0.038)

Resident (n = 9) 0.603 (0.112) 0.356 (0.109) 0.572 (0.146) 0.616 (0.119) 0.589 (0.123)

Resident + AI (n = 9) 0.731 (0.114) 0.233 (0.103) 0.694 (0.154) 0.746 (0.120) 0.716 (0.129)

Examiners (n = 27) 0.763 (0.151) 0.233 (0.133) 0.763 (0.187) 0.761 (0.146) 0.760 (0.162)

Examiners + AI (n = 27) 0.826 (0.108) 0.169 (0.102) 0.822 (0.146) 0.827 (0.111) 0.822 (0.119)

This table shows the accuracy, FPR, recall, precision, and F1 score with standard deviation for a certain value
of the threshold. Here, n denotes the number of cases. We used 0.5 as a threshold. FPR, false positive rate; SD,
standard deviation.

4. Discussion

In this study, we proposed a deep learning-based explainable representation (graph
chart diagram) that compresses and represents the information in fetal cardiac ultrasound
screening videos and introduced two factors to realize the depiction of the graph chart,
including a cascade graph encoder and view-proxy loss. We also demonstrated that the
graph chart diagram and the abnormality score could improve the ability of examiners to
detect abnormalities.

Research on explainability in deep learning has concentrated on analyzing
models [10–14] or developing external modules [12,15–18] for explainability. Limited
research has been conducted on interpretable models that modify the structure of the
model. Some interpretable models improve the explanatory power by replacing mod-
ules [21,24]; however, domain-specific methods are also not much studied [19,22] because
of the need for domain-specific knowledge [20]. Furthermore, we discuss interpretable
models in a broader context. Studies have been extensively conducted to obtain human-
interpretable representations from highly complex data [51–54], and several of these have
been on compressing time-series information to a lower dimensionality [55]. Consider-
ing the deep learning field, TimeCluster was proposed to reduce the dimensionality of
time-series information with a kernel and to represent the time-series information with
a two-dimensional diagram [56]. TimeCluster targets single and very long time-series
information and finds anomalies in a part of it. Therefore, TimeCluster compresses the
dimensions using autoencoders and applies principal component analysis [51] or other
projection methods to the intermediate representation. TimeCluster learns the network
weights for each instance of the time-series information; therefore, different representations
can be obtained for the same data. This indicates that TimeCluster is not designed to
process the time-series information from several inspection videos of approximately 10 s
to identify anomalies in the entire video. Therefore, our proposed method for the graph
chart diagram learns many instances of normal videos. The intermediate layer learns a
two-dimensional representation directly and does not train any network weight on the test
videos.

Subsequently, we discuss the two proposed techniques, view-proxy loss and a cas-
cade graph encoder. The view-proxy loss improves performance (Table 1) and reduces
standard deviation by fixing the coordinates where the ideal 4CV and 3VTV appear on the
graph chart diagram (Figure 2). The view-proxy loss can be regarded as one of the proxy
losses [57–59]. A proxy loss creates a proxy from the data belonging to one class and
includes the loss between the proxy and other samples. The view-proxy loss assumes the
point corresponding to the ideal diagnostic plane as the proxy and considers the loss be-
tween the proxy and the synthesized barcode-like timeline corresponding to 4CV and 3VTV.
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The view-proxy loss is unique because the ideal diagnostic plane is known and is utilized
as a proxy, and it synthesizes barcode-like timelines to solve the problem that there is no
annotation of 4CV or 3VTV. The cascade graph encoder improves performance (Table 1)
and explainability by creating sub-graph chart diagrams of sets of substructures (Figure 4),
followed by a main-graph chart diagram of all the sets. Although the cascade graph en-
coder is similar to the hierarchical auto-encoder [60] or stacked auto-encoder [61], it is
unique because our graph chart diagrams comprise partial and comprehensive explanatory
representations.

We analyze the qualitative features of the graph chart diagrams. The graph chart
diagram discards unnecessary information in the ultrasound screening and emphasizes the
necessary information. The backward and forward movements of the probe, the speed of
the movement of the probe, and the movement of the fetus during video recording are not
necessary information for fetal cardiac ultrasound screening. The shape does not change
in the graph chart diagram, even if a phase similar to the one passed appears multiple
times. This reduces the noise caused by fetal movement and probe movement. The spacing
between the points also does not affect the shape. This reduces the effect of the speed at
which the probe is moved. Thus, the graph chart diagram is robust to the intrinsic noise
caused by probe movement. Furthermore, the graph chart diagram is helpful, considering
explainability. Regarding a graph chart diagram, the coordinates corresponding to the
plane of the normal structure are scattered over a two-dimensional diagram, which serves
as a checkpoint. If the checkpoints cannot be seen in the video, a part of the shape will
be missing. Therefore, the area of the shape functions as an indicator of the degree of
abnormality. Regarding the detection of shapes, recognizing a shape from the trajectory of a
point is an advanced technology. In Python, the Shapely package is a standard technology;
nonetheless, a more advanced algorithm may improve the performance of the abnormality
score ΓAI. Considering the experiment on collaboration between the examiners and AI,
we provided raw point trajectories as shown in Figure 3 instead of the shapes shown
in Supplementary Figure S1, because we expect the human shape recognition ability to
outperform the algorithm.

Deep learning-based methods for automatically detecting diagnostic
planes [62–67] and methods for detecting abnormalities using diagnostic planes have
been proposed [19,35]. However, these approaches require many images from hundreds
of CHD cases to develop a system to detect any CHDs, including rare CHDs. In addition,
there are different and diverse forms, even within a given type of CHD. In contrast, there
was no structural difference in the normal fetal heart; any deviation from the normal struc-
ture increases the possibility of CHD. Hence, to detect many types of abnormalities, our
proposed method employs abnormality detection technology to detect deviations from the
normal structure. In addition, the conventional screening procedure in the clinical field
requires the determination of the plane that contributes to the diagnosis and to record
images. However, this task is difficult to perform for unskilled examiners (especially in
CHD); therefore, identifying diagnostic planes requires a high level of skill, closely related
to that of diagnosis. To address this issue, we focused on the ultrasound video, which was
obtained by scanning the entire fetal heart containing diagnostic planes. Deep learning-
based abnormality detection methods for videos have been studied [68–70]; nonetheless,
these methods were designed for surveillance videos and exhibit poor performance for
videos with moving backgrounds [46]. Komatsu et al. proposed an abnormality detection
method for fetal cardiac ultrasound screening videos. They used the sequential 20 video
frames around diagnostic planes to calculate the abnormality scores [46]. Our proposed
method utilizes the entire video frames, and the calculation of the abnormality score does
not require any preprocessing, such as specifying the diagnostic planes. Therefore, the pro-
posed graph chart diagrams and abnormality scores are highly applicable to fetal cardiac
ultrasound screening. Moreover, we consider the potential for the further development of
AI technology in fetal cardiac ultrasound. The graph chart diagram and calculated abnor-
mality score can be used only for screening. They cannot be used for further diagnoses,
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such as identifying the type of CHD simultaneously. Analyses of various metrics must be
considered using image segmentation [71–73] and other methods to effectively support the
analysis of anomalies [35].

Our study demonstrates that graph chart diagrams improve abnormality detection
by examiners with a wide range of experience, from experts and residents. Consider-
ing the residents, the mean AUC of the ROC curve with AI assistance was 0.748, which
was not as high as 0.861 of AI. Detection via AI only may perform better than collabora-
tion with examiners with low experience. This result indicates that a lower experience
makes it more difficult to decide how to refer to AI information. Furthermore, consid-
ering the great performance improvement of residents using AI, the proposed methods
can be used as educational and training tools. Regarding the fellows, the mean AUC in-
creased from 0.829 to 0.890 when using AI. Their recall increased by 0.045 (=0.825− 0.780),
and their precision increased from 0.047 (=0.819− 0.772) as shown in Table 3. Consid-
ering all the examiners, recall and precision increased by 0.059 (=0.822 − 0.763) and
0.066 (=0.827− 0.761), respectively. Thus, fellows tended to place slightly more weightage
on recall than on precision. Because the purpose of fetal cardiac ultrasound screening is
not to miss CHDs, fellows, who are the main force in obstetrics, may place more impor-
tance on recall. Furthermore, AI usage improved the performance of experts from 0.966
to 0.975 in the mean AUC of the ROC curve. Regarding the experts, the increase in precision
0.015 (=0.927 − 0.912) was greater than the increase in recall, which was
0.007 (=0.963 − 0.956). This is probably because experts, who are estimated to be less
than 5% of fellows in Japan, are required to make secondary judgments on cases classified
by fellows. Therefore, they used AI to improve precision rather than recall. We found that
fellows and experts can make good use of AI based on their respective roles, with fellows
focusing on recall and experts on precision. For the residents, they achieved improvement
in their performances with AI assistance; however, they could not achieve the performance
obtained only by AI. This result implies that the examiners need experience in order to
understand the explanations of explainable AI.

There are several limitations to this study. First, our proposed graph chart diagram is
robust to probe movement; however, it has not been tested and evaluated for the influence
of acoustic shadows in ultrasound videos. We may have to consider preprocessing, such
as shadow detection [74]. Second, owing to the low incidence of CHD, we used a limited
number of abnormal cases to test our proposed method. Furthermore, we mainly targeted
severe CHDs and have not yet tested this method for the detection of mild abnormalities,
such as small ventricular septal defects. Multicenter joint research is considerable to
collect further CHD data for the validity and reliability evaluation of our explainable AI
technology in future studies. Third, although the method is robust to probe movement,
return, and speed, the robustness between devices has not been evaluated because of the
limited number of ultrasound devices used for training. Finally, all training, validation,
and test data in this study were acquired using the same type of ultrasound machine, and
we did not perform the experiments on other machines. The generalization performance of
the explainable AI that we have proposed is a subject for future studies.

5. Conclusions

We have proposed a graph chart diagram as an explainable AI technology for fe-
tal cardiac ultrasound screening videos. This graph chart diagram exhibited a massive
enhancement of screening performance in use by examiners of all experience levels. Further-
more, we showed that skilled examiners can improve their performance by appropriately
using explainable AI for their respective roles. We also showed that less skilled examiners
perform better with AI assistance than by themselves; however, they could not perform
better than using only AI. Our study suggests that an examiner’s expertise will still be a
key factor in medical examinations in the future with the widespread use of AI assistance.
To address this point, we should consider the educational process to maximize the benefit
of our technology. The progress of graphical user interface (GUI) technology has also the
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potential to improve AI assistance. We hope that explainable AI with these enhancements
will enable support examiners with a wide range of experience and augment their medical
professional capabilities towards the benefit of the patients.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
biomedicines10030551/s1, Figure S1: Shapes created from the main-graph chart diagrams, Table S1:
Cases of congenital heart disease and the gestational week at the time of acquisition, Video S1: A
normal case, Video S2: A TOF case.
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Appendix A. Formula of the Proposed Method

Appendix A.1. Simple Auto-Encoder for Graph Chart Diagram

In this section, we elaborate on how to construct a graph chart diagram from a barcode-
like timeline [46] using a simple auto-encoder. Barcode-like timelines are dependent on the
speed of probe movement and are not robust to the inappropriate probe movement [46] as
explained in Section 2.2.1. Considering a graph chart diagram, the simple auto-encoder
(Figure A1) compresses a barcode-like timeline to obtain a time-independent representation
that addresses the problem of barcode-like timelines; the fetal cardiac ultrasound videos
(e.g., videos that do not start at a correct plane and move back and forth) are converted to
this time independent expression. The one instance of a barcode-like timeline is denoted by
B(R) = {b(r,t)|b(r,t) ∈ {0, 1}, (r, t) ∈ R× TB}, where R is the set of substructures and TB is
the set of times for all the frames. If the substructure r is detected at frame t, b(r,t) becomes
one; otherwise, it becomes zero. We extract this barcode-like timeline with kernel size w and
stride s. K(i, B(R)) is the set of {k(r,t)|k(r,t) ∈ B(R), (i− 1)s < t ≤ (i− 1)s + w}, which is a
subset of the barcode-like timeline B(R). We also define K(0, B(R)) = B(R) for i = 0, which
is used in Equation (A8). Here, we denote the encoder of the auto-encoder as E, the decoder
as D, and the network weights of each as θE and θD, respectively. Each point gi in the graph
chart diagram is represented by gi(B(R); θE) = E(K(i, B(R)); θE). The reconstruction loss
for a simple auto-encoder is calculated for each kernel and is expressed as

lrec(i, B(R); θE, θD) = Loss(K(i, B(R)), D(E(K(i, B(R)); θE); θD). (A1)

In this study, we adopted the binary cross-entropy for each element as the loss function.

Reconstruction loss

Barcode-like timeline

Encoder

Decoder Substructures  Graph

chartEncoder  Substructures 
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TimeKernel

Figure A1. Process to compute a graph chart diagram with a simple auto-encoder. Kernel K slides
over the barcode-like timeline in the time direction (red open arrow) and slices the detection status
of the required substructure. The substructure detection status is input to the auto-encoder and
compressed into two dimensions.

The graph chart diagram is represented by G = (g1, g2, . . . , gI+1), where I is the largest
integer less than or equal to (Tmax(B)− w)/s; Tmax(B) is the max time of the barcode-like
timeline B.

Appendix A.2. View-Proxy Loss

We can use the view-proxy loss to stabilize training by preventing the generation
of “tangled” graph chart diagrams (Figure 2a). The view-proxy loss considers the ideal
diagnostic plane (generally a “diagnostic plane” is known as “view”) as the proxy data. The
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view-proxy loss measures the distance between the points corresponding to automatically
synthesized barcode-like timelines for the corresponding ideal diagnostic plane and the
proxy data. Optimizing this loss stabilizes the formation of graph chart diagrams (Figure 2).
We define a set of B̃x(Rall) = {b̃(r,t)|b̃(r,t) ∈ [0, 1], (r, t) ∈ Rall ×W}, which represents a
synthesized barcode-like timeline corresponding to the ideal diagnostic plane and fixes the
vector g̃x of a point on the graph chart diagram corresponding to B̃x, where W is the set of
the integer number from 1 to w, x denotes the diagnostic plane indicator. We also define
that R̃x is the set of substructures and y denotes another diagnostic plane indicator. The
view-proxy loss is expressed by the following equation.

lvpl(B̃x; θE) = Loss(g̃x, E(B̃x(Rall); θE)), b̃(r,t) ∈ B̃x(Rall), b̃(r,t) =

 1 (r ∈ R̃x)
0 (r ∈ R̃y, y 6= x)
Uniform random [0,1] (r /∈ (R̃x ∪ R̃y), y 6= x)

. (A2)

In this study, we used x, y ∈ {heart, vessels}, where R̃heart and R̃vessels denote substruc-
tures appearing especially in the ideal 4CV and 3VTV, respectively. For the loss function,
we adopted the mean squared loss in all experiments. Considering the substructures,
R̃heart is the substructure that appears in the normal 4CV, indicating that R̃heart = {crux,
ventricular septum, right atrium, tricuspid valve, right ventricle, left atrium, mitral valve,
left ventricle}. Thereafter, we applied g̃heart = (0, 1) as a corresponding vector on the
graph chart diagram. Regarding the large vessels, R̃vessels are the substructures that ap-
pear in the normal 3VTV, indicating that R̃vessels = {pulmonary artery, ascending aorta,
superior vena cava, ductus arteriosus}. Subsequently, we applied g̃vessels = (1, 0) as a
corresponding vector on the graph chart diagram.

Appendix A.3. Cascade Graph Encoder

The cascade graph encoder improves explainability by introducing prior knowledge
of fetal cardiac substructures to the neural architecture of the auto-encoder. The cascade
graph encoder achieves it by making a sub-graph chart diagram for each Rheart and Rvessels
and making the main-graph chart diagram (Figure 1). This neural architecture allows us to
see the contribution of each set of substructures to the main-graph chart diagram (Figure 4).
Sub-graph chart diagrams are likely useful for further exploration of the decision process
of the proposed method. The network weights of the encoder and decoder corresponding
to the heart Rheart and vessels Rvessels of the auto-encoder that makes the sub-graph chart
diagram are represented by θEheart , θEvessels , θDheart , and θDvessels , respectively. The network
weights of the auto-encoder in the main-graph chart diagram are denoted by θEmain and
θDmain . The networks for the sub-graph chart diagrams are denoted as Ex for the encoder
(x = {heart, vessels, others}) and Dx for the decoder (x = {heart, vessels}). The networks
for the main-graph chart diagram are denoted as Emain and Dmain. Considering the sub-
structures Rothers = Rall \ (Rheart ∪ Rvessels), we use only the encoder and its network
weights (θEothers). We also define θEsub = θEheart ∪ θEvessels ∪ θEothers , θDsub = θDheart ∪ θDvessels ,
θEall = θEsub ∪ θEmain , and θDall = θDsub ∪ θDmain . Each point in the main-graph chart diagram
gi

main is represented by the following equation.

gi
main(B; θEsub , θEmain) = Emain(v; θEmain), (A3)

where


v =

(
gi

heart(B(Rheart); θEheart), gi
vessels(B(Rvessels); θEvessels), Eothers(K(i, B(Rothers)); θEothers)

)
gi

heart(B(Rheart); θEheart) = Eheart(K(i, B(Rheart)); θEheart) (A4)

gi
vessels(B(Rvessels); θEvessels) = Evessels(K(i, B(Rvessels)); θEvessels).
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The loss function for the auto-encoder of main-graph chart diagram is

lmain(i, B; θEall , θDall) = Loss(Dmain(gi
main(B; θEsub , θEmain); θDmain), K(i, B(Rall))). (A5)

We optimize the following formula for the i-th slice of the barcode-like timeline B:

minimize
θEall

,θDall

lmain(i, B; θEall , θDall) + ∑
R,θ

lrec(i, B(R); θ), (A6)

where

∑
R,θ

lrec(i, B(R); θ) = lrec(i, B(Rheart); θEheart , θDheart)+lrec(i, B(Rvessels); θEvessels , θDvessels). (A7)

We denote one iteration of the optimization of Equation (A7) as the normal training step.
Moreover, we perform regularization training steps for heart and vessels by adding view-
proxy loss (Equations (A2)–(A7)):

minimize
θEall

,θDall

lmain(0, B̃x; θEall , θDall) + ∑
R,θ

lrec(0, B̃x(R); θ) + lvpl(B̃x; θEall), (A8)

where x ∈ {vessels, heart}. For lvpl(B̃x; θE), we substitute Equation (A3) to the formulation
of the view-proxy loss (Equation (A2)):

lvpl(B̃x; θEall) = Loss(g̃x, g0
main(B̃x; θEsub , θEmain)). (A9)

Considering the training process, three training steps (one for Equation (A7) and two for
Equation (A8)) are performed alternately. In this study, we employed AdaGrad as the
optimizer. For every ten normal training steps, we performed one regularization training
step for the vessels and one for the heart. For more details, Algorithm A1 shows the process
of generating graph chart diagrams, and we can see that a main-graph chart diagram is
created after creating sub-graph chart diagrams. Algorithm A2 shows the training process,
which consists of a normal training step, followed by regularization-training steps.

Algorithm A1 Inference algorithm of the cascade graph encoder.

1: Require: Barcode-Like Timelines B; Stride Size s; Kernel Size w; Network Weights θEall ;
Set of Substructures Rheart, Rvessels, Rothers

2: Ensure: Sub-graph Chart Diagrams Gheart, Gvessels; Main-graph Chart Diagram Gmain
3: i = 1
4: while (i− 1)s + w ≤ Tmax(B) do
5: gi

heart(B(Rheart); θEheart) = Eheart(K(i, B(Rheart)); θEheart)

6: gi
vessels(B(Rvessels); θEvessels) = Evessels(K(i, B(Rvessels)); θEvessels)

7: Gheart ←− add point gi
heart(B(Rheart); θEheart)

8: Gvessels ←− add point gi
vessels(B(Rvessels); θEvessels )

9: v =
(

gi
heart(B(Rheart); θEheart ), gi

vessels(B(Rvessels); θEvessels ), Eothers(K(i, B(Rothers)); θEothers )
)

10: gi
main(B; θEsub , θEmain ) = Emain(v; θEmain )

11: Gmain ←− add point gi
main(B; θEsub , θEmain )

12: end while
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Algorithm A2 Training algorithm of the cascade graph encoder.

1: Require: Set of Barcode-like Timelines {B}; Stride Size s; Kernel Size w; Max Iteration
nmax

2: Ensure: Network Weights θEall , θDall
3: Initialize network weights θEall , θDall
4: n = 0
5: while n < nmax do
6: B←− sample from {B}
7: i = 1
8: while (i− 1)s + w ≤ Tmax(B) do
9: NORMAL-TRAINING(i, B)

10: if n is a multiple of ten then
11: Synthesize B̃heart and B̃vessels
12: REGULARIZATION-TRAINING(B̃heart, B̃vessels)
13: end if
14: n = n + 1
15: i = i + 1
16: end while
17: end while
18: procedure NORMAL-TRAINING(i, B)
19: minimize

θEall
,θDall

lmain(i, B; θEall , θDall) + ∑R,θ lrec(i, B(R); θ)

20: end procedure
21: procedure REGULARIZATION-TRAINING(B̃heart, B̃vessels)
22: minimize

θEall
,θDall

lmain(0, B̃heart; θEall , θDall) + ∑R,θ lrec(0, B̃heart(R); θ) + lvpl(B̃heart; θEall)

23: minimize
θEall

,θDall

lmain(0, B̃vessels; θEall , θDall) + ∑R,θ lrec(0, B̃vessels(R); θ) + lvpl(B̃vessels; θEall)

24: end procedure

Appendix B. Experimental Details

Firstly, we explain the configuration of the networks. The encoder Ex flattens the input
to a one-dimensional vector, followed by a fully connected layer with input w|Rx| and
output of two, and a sigmoid activation layer (x = {heart, vessels, others}). The graph
chart diagram is a two-dimensional diagram drawn in [0, 1]2, so the activation function is
sigmoid, and the output of the encoder is set to two for every encoder. The decoder Dx has
a fully connected layer from two to w|Rx| dimensions, followed by a sigmoid activation
layer (x = {heart, vessels}). The main encoder Emain has a fully connected layer with
six to two dimensions, followed by a sigmoid activation layer. The main decoder Dmain
has a fully connected layer from two to the w|Rall| dimensions, followed by a sigmoid
activation layer. All the network weights were initialized with a Gaussian distribution,
and we used a different random seed for each trial. The kernel and stride sizes w and s
were set to ten and five frames, respectively. Frames in which the kernel’s range extended
beyond the barcode-like timeline were removed. Therefore, the last few frames of the video
were not used for training or inference. The iterations were set to 100, 000, which was
sufficient for the training to converge. Additional optimization iteration with view-proxy
loss was performed for every ten iterations as explained in Equation (A8)). Regarding the
optimization, we used the AdaGrad optimizer with an initial learning rate and accumulator
value of 0.7 and 0.1, respectively. Considering the optimization with view-proxy loss,
we used another AdaGrad optimizer with an initial learning rate and accumulator value
of 0.1 and 0.1, respectively. The mini-batch size was set to one for the limitation of our
implementation. The network weights and hyperparameters used to calculate the barcode-
like timeline are the same as those in Komatsu et al. [46] Window size w, stride size s,
learning rate, and accumulator value were determined using a validation set introduced
in the data preparation section. Considering the software version, Python version 3.7
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was used. Tensorflow 1.14.0, scikit-learn 0.24.2, OpenCV-Python 4.5.1, NumPy 1.20.3, and
Shapely 1.7.1 Python libraries were used. Regarding the hardware, we used a server with
an Intel(R) Xeon(R) CPU E5-2690 v4 at 2.60 GHz with a GeForce GTX 1080 Ti.

References
1. Hamamoto, R.; Suvarna, K.; Yamada, M.; Kobayashi, K.; Shinkai, N.; Miyake, M.; Takahashi, M.; Jinnai, S.; Shimoyama, R.; Sakai,

A.; et al. Application of artificial intelligence technology in oncology: Towards the establishment of precision medicine. Cancers
2020, 12, 3532. [CrossRef] [PubMed]

2. Komatsu, M.; Sakai, A.; Dozen, A.; Shozu, K.; Yasutomi, S.; Machino, H.; Asada, K.; Kaneko, S.; Hamamoto, R. Towards clinical
application of artificial intelligence in ultrasound imaging. Biomedicines 2021, 9, 720. [CrossRef] [PubMed]

3. Liao, Q.; Zhang, Q.; Feng, X.; Huang, H.; Xu, H.; Tian, B.; Liu, J.; Yu, Q.; Guo, N.; Liu, Q.; et al. Development of deep learning
algorithms for predicting blastocyst formation and quality by time-lapse monitoring. Commun. Biol. 2021, 4, 415. [CrossRef]
[PubMed]

4. Shad, R.; Cunningham, J.P.; Ashley, E.A.; Langlotz, C.P.; Hiesinger, W. Designing clinically translatable artificial intelligence
systems for high-dimensional medical imaging. Nat. Mach. Intell. 2021, 3, 929–935. [CrossRef]

5. Jain, P.K.; Gupta, S.; Bhavsar, A.; Nigam, A.; Sharma, N. Localization of common carotid artery transverse section in B-mode
ultrasound images using faster RCNN: A deep learning approach. Med. Biol. Eng. Comput. 2020, 58, 471–482. [CrossRef]

6. Ellahham, S.; Ellahham, N.; Simsekler, M.C.E. Application of artificial intelligence in the health care safety context: Opportunities
and challenges. Am. J. Med. Qual. 2019, 35, 341–348. [CrossRef]

7. Garcia-Canadilla, P.; Sanchez-Martinez, S.; Crispi, F.; Bijnens, B. Machine learning in fetal cardiology: What to expect. Fetal Diagn.
Ther. 2020, 47, 363–372. [CrossRef]

8. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019,
8, 832. [CrossRef]

9. Rudin, C.; Radin, J. Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI
Competition. Harvard Data Sci. Rev. 2019, 1. [CrossRef]

10. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 618–626. [CrossRef]

11. Fong, R.C.; Vedaldi, A. Interpretable explanations of black boxes by meaningful perturbation. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3449–3457. [CrossRef]

12. Lee, H.; Yune, S.; Mansouri, M.; Kim, M.; Tajmir, S.H.; Guerrier, C.E.; Ebert, S.A.; Pomerantz, S.R.; Romero, J.M.; Kamalian, S.;
et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat.
Biomed. Eng. 2019, 3, 173–182. [CrossRef]

13. Ahsan, M.M.; Nazim, R.; Siddique, Z.; Huebner, P. Detection of COVID-19 patients from CT scan and chest X-ray data using
modified MobileNetV2 and LIME. Healthcare 2021, 9, 1099. [CrossRef] [PubMed]

14. Muhammad, M.; Yeasin, M. Eigen-CAM: Visual explanations for deep convolutional neural networks. SN Comput. Sci. 2021,
2, 47. [CrossRef]

15. Montavon, G.; Lapuschkin, S.; Binder, A.; Samek, W.; Müller, K.R. Explaining nonlinear classification decisions with deep Taylor
decomposition. Pattern Recognit. 2017, 65, 211–222. [CrossRef]

16. Lauritsen, S.M.; Kristensen, M.; Olsen, M.V.; Larsen, M.S.; Lauritsen, K.M.; Jørgensen, M.J.; Lange, J.; Thiesson, B. Explainable
artificial intelligence model to predict acute critical illness from electronic health records. Nat. Commun. 2020, 11, 3852. [CrossRef]
[PubMed]

17. Han, S.H.; Kwon, M.S.; Choi, H.J. EXplainable AI (XAI) approach to image captioning. J. Eng. 2020, 2020, 589–594. [CrossRef]
18. Zeng, X.; Hu, Y.; Shu, L.; Li, J.; Duan, H.; Shu, Q.; Li, H. Explainable machine-learning predictions for complications after pediatric

congenital heart surgery. Sci. Rep. 2021, 11, 17244. [CrossRef] [PubMed]
19. Budd, S.; Sinclair, M.; Day, T.; Vlontzos, A.; Tan, J.; Liu, T.; Matthew, J.; Skelton, E.; Simpson, J.; Razavi, R.; et al. Detecting

hypo-plastic left heart syndrome in fetal ultrasound via disease-specific atlas maps. In Proceedings of the Medical Image
Computing and Computer Assisted Intervention (MICCAI), Strasbourg, France, 27 September–1 October 2021; pp. 207–217.
[CrossRef]

20. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef]

21. Chen, Z.; Bei, Y.; Rudin, C. Concept whitening for interpretable image recognition. Nat. Mach. Intell. 2020, 2, 772–782. [CrossRef]
22. Wu, R.; Fujita, Y.; Soga, K. Integrating domain knowledge with deep learning models: An interpretable AI system for automatic

work progress identification of NATM tunnels. Tunn. Undergr. Space Technol. 2020, 105, 103558. [CrossRef]
23. Blazek, P.J.; Lin, M.M. Explainable neural networks that simulate reasoning. Nat. Comput. Sci. 2021, 1, 607–618. [CrossRef]
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