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Abstract: Protein convertases (PCs) play a significant role in post-translational procedures by trans-
forming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular
homeostasis because they are involved in cell signaling. They have also been described in many
diseases such as Alzheimer’s and cancer. Cancer cells are secretory cells that send signals to the tumor
microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most
important components of the TME is the immune system of the tumor. In this review, we describe
recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have
determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune
evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves
the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is
implicated in the regulation of macrophage activity that contributes to the increased impairment of
DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic
cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is
impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells.
The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1
expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have
not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in
tumor immune escape is a promising topic for further consideration.

Keywords: proprotein convertases 1; PCs 2; Furin 3; PCSK9 4; tumor immune escape 5; TME 6;
cytokines 7; tumor hallmarks 8; immunoediting 9; cancer 10

1. Cancer Hallmarks and PC

The hallmarks of cancer include the complicated progression of tumors that advance
to control and stop the body’s normal responses and the existence of human cells that
have the capacity to move from a normal condition to a neoplastic state to form malignant
tumors [1,2]. The hallmark of cancer contains six distinct biological features identified in
the course of the multistep progression of human tumors, and this number has since been
expanded to eight [2]. This represents an organizing basis for rationalizing the complexities
of neoplastic diseases. These complexities consist of the following: sustaining proliferative
signaling, evading growth suppressors, resisting cell death, enabling replicative immor-
tality, inducing angiogenesis, and activating invasion and metastasis. The fundamental
reasons for these hallmarks are genome instability, which generates the genetic diversity
that expedites their acquisition, inflammation, and fosters multiple hallmark functions.
Scientific progress within the last decade has revealed two emerging hallmarks of potential
generality that can be added to the present list: the reprogramming of energy metabolism
and the evasion of immune destruction [3]. The variety of tumor hallmarks has been
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defined in different ways by various researchers. Here, we focus on immune evasion,
which is known to be an important hallmark in solid tumors [4]. Tumors are surrounded by
a tumor microenvironment (TME), which is an extremely complicated ecosystem. Tumor
cells interact with immune cells (including macrophages, poly-morphonuclear cells (PMN),
mast cells, natural killer (NK) cells, dendritic cells (DCs), and T and B lymphocytes), and
non-immune cells (which include endothelial cells and stromal cells) and demonstrate
sophisticated interactions with these that regulate the tumor’s natural behaviors. In par-
ticular, the immune cells’ components are essential in delineating the tumor’s destiny,
their invasive character, and their metastatic capacity. A wide range of different types of
immune cells may infiltrate into the tumor, and their formation and organization inside
the TME are closely related to the clinical results of patients who struggle with different
cancers [5]. The mission of these immune cell types in tumor growth and progression
is numerous and is closely related to their inherent functions and to the molecules they
express [6]. Moreover, TME includes non-malignant tumor cells such as cancer-associated
fibroblasts (CAFs), endothelial cells and pericytes composing tumor angiogenesis, immune
and inflammatory cells, bone marrow-derived cells, and the extracellular matrix (ECM)
organizing a sophisticated cross-talk with tumor cells [7].

In this review, we try to determine some proteins that have this capacity to change the
TME towards immune escape and describe the effects of PCs on these proteins. Immune
escape characterized by an incapacitated immune system for the eradication of transformed
cells is the hallmark of carcinogenesis [8,9]. There exist proteases such as PCs that in-
terfere in the activation of almost all proteins. Mutations in proteases and/or abnormal
protease activity are significantly correlated with several pathological problems such as
cancer, Alzheimer’s disease, cardiovascular disorders, and autoimmune diseases [10]. Post-
translational changes are paramount strategies that contribute to the biological functions
of proteins. One such modification is the endo-proteolysis of precursor proteins, resulting
in activation, inactivation, or functional changes [11]. This cleavage procedure can be
general or restricted to a few bonds through particular convertases and is followed by
amino-terminal, internal, and carboxy-terminal modifications into smaller biologically ac-
tive polypeptides [12,13]. Proprotein convertases (PCs) are a family of nine serine proteases
involved in the processing of cellular pro-proteins. They induce the activation, inactivation,
or functional changes in numerous proteins such as neuropeptides, hormones, receptors,
and growth factors. Therefore, these enzymes are fundamental for cellular balance in health
and disease. Nine PC subtilisin/kexin genes (PCSK1 to PCSK9) encoding for PC1/3, PC2,
Furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9 are known. The expression of
PC1/3, PC2, PC5/6, Furin, and PC7 in lymphoid organs such as lymph nodes, thymus, and
spleen has been found to play a role in these enzymes regarding immunity [14]. Proprotein
convertases are in the group of proteases that cleave proteins and turn them into their active
or inactive form. Several of their substrates are involved in tumorigenesis and immune
suppression [15].

2. The Role of the Immune System in the TME

The immune system is a complicated set of cells, tissues, and organs. They work
together to preserve organisms from dangerous substances, pathogens, and tissue damage
and to stop the event of diseases. The immune system has been categorized into innate
and adaptive immunity based on variations in the activation of immune responses to
many threats [16]. Immune cells are a part of the tumor microenvironment (TME) and the
communication between immune cells, other TME cells, and cancer cells plays a princi-
pal role in tumor development. Tumors exist in a complex microenvironment in which
several kinds of cells can be found [17]. All kinds of immune cells can be found in tumor
microenvironments including macrophages; dendritic cells (DCs); mast cells; natural killer
(NK) cells; naive and memory lymphocytes B cells; effector T helper (Th) cells including:
Th1 cells, Th2 cells, and Th17 cells; regulatory T (Treg) cells; T follicular helper (TFH) cells;
and T cytotoxic (TC) cells [18]. These immune cells may be located in the center of the
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tumor, in the invasive margin, or close to tertiary lymphoid structures (TLSs). Inflammatory
and immune cells liberate growth factors (GFs) such as epidermal growth factor (EGF),
vascular endothelial growth factor (VEGF-A/C), fibroblast growth factor (FGF2), as well
as different cytokines amplifying inflammatory conditions, and enzymes degrading the
extracellular matrix, which include MMPs (matrix metalloproteinases), cathepsin, and
heparinases [18]. In addition, these cells secrete TGF-B and IL-10, which are associated
with immunosuppression by activating and recruiting regulatory T cells (Treg) into the
tumor [19,20]. At first, TGF-B1 controls the Th1 and Th2 balance in favor of Th2 phenotypes
without cytotoxic activity against the tumor. TGF-B then constrains Th1 response and
M1-type macrophage activity; suppresses lymphocytes CD8+, natural killer (NK) cells,
and dendritic cell (DC) function; generates Treg with immunosuppressive function; and
promotes M2-type macrophages with pro-tumor activity [19,20]. Regulatory T cells are
one of the most striking immunosuppressive subsets of CD4+ (CD25+) T cells; they are
primarily regulated by master transcription factor 3 (FOXP3), and they account for ap-
proximately 5% of the total CD4+ T cell population under conventional circumstances [21].
Tregs, as a prominent mechanism for the controlling equilibrium of the immune system
and the immune tolerance of the body, play an essential role in regulating tumor immu-
nity, and they can hinder the activation and differentiation of CD4+ helper T cells and
CD8+ cytotoxic T cells to promote reactivity against autologous and tumor-expressed anti-
gens [22–24]. In the TME, Tregs can be stimulated and differentiated by conventional T cells,
which have a powerful immunosuppressive function, inhibit antitumor immunity, and
induce the incidence and development of tumors. Tregs can also suppress the mission of
immune effector cells through numerous mechanisms and are key factors in tumor immune
escape [25–28]. The TME provides a suppressive action on Tregs by the overexpression
of immune checkpoint (IC) molecules. Targeting IC molecules on Tregs may be effective
for cancer treatment. Some of the most important IC molecules are CTLA-4, TIGIT, PD-1,
and GITR [29]. Regulatory CD4+ T lymphocytes (Treg) directly secrete or facilitate the
formation of immunosuppressive molecules (e.g., IL-10 and adenosine), and modulate the
APC function (e.g., via CTLA-4–CD80/86 interactions) [30].

Regarding macrophages in the TME, they are in the group of myeloid cells that have
many type of phenotypes in which the M1 or M2 subclasses are the most important. The
function of M1 macrophages in immunity against tumors is that M1 cells are “classically
activated” by IFNγ, and annihilate tumor cells via their production of nitric oxide (NO) and
type 1 cytokines and chemokines. Moreover, M1 acts as an APC, activating cytotoxic CD8+
T cells in an antigen (Ag)-specific manner. Another subcategory is M2 macrophages. M2
cells are activated by “alternative” pathways through IL-4, IL- 13, and/or TGFβ. In tumor
immunity M2 has a different action in comparison with the M1 type. M2 releases type 2
chemokines and cytokines; as a result, they elevate the growth of tumors and progression. In
the TME, stromal and tumor-associated factors can shift macrophages to the M2 phenotype
that are known as polarization, particularly the type of tumor-associated macrophages
(TAMs) that promote tumor progression, angiogenesis, and metastasis [31]. Consequently,
some immune cells often illustrate flexibility in the TME, demonstrating both tumor-
promoting and tumor-hindering potential. For instance, while some macrophages (M1)
predominately generate pro-inflammatory cytokines that ensure the anti-tumor immune
response, others (M2) can induce the proliferation of fibroblasts, ECM degradation, and
immunosuppression [32]. Moreover, tumor-promoting M2 macrophages accompany other
cells to enhance tumor progression, such as immature granulocytic and monocytic cells
(myeloid-derived suppressor cells (MDSCs)) that can accelerate tumor progression via
elevating the proliferation of stromal cells, causing angiogenesis, deposition of extracellular
matrix (ECM), and cell migration [33–35].

The presence of cytotoxic CD8+ memory T cells in the TME, similar to other im-
mune system cells, destroys tumor cells by identifying neo-antigens (specific antigens on
the tumor cells) and provoke an immune response that follows a prototypical, tri-phasic
pathway(activation, proliferation, and differentiation of cells). CD8+ T cells in the TME
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are mainly assisted by CD4+ T helper 1 (TH1) cells that secrete interleukin-2 (IL-2) and
interferon-gamma (IFN-γ). Further subclasses of CD4+ cells, for example TH2 cells, col-
laborate in the B cell response by producing IL-4, IL-5, and IL-13. TH17 cell in the group
of the CD4+ subpopulation T cells, on the contrary, generate IL-17A, IL-17F, IL-21, and
IL-22, which induce tumor proliferation by favoring tissue inflammation [36]. The influence
of the TME on tumor expansion has also been considered according to the impact of B
lymphocytes in innate natural killer T (NKT) and natural killer (NK) cells. B lymphocytes
normally exist in the draining lymph nodes lymphoid structures neighboring the TME and
the invasive tumor margin. The B lymphocytes in the TME play crucial roles in both the
control of tumor cell maintenance and the increase in the occurrence of treatment resistance.
In brief, these cells have been identified as playing a role in the stimulation of immune
escape [36].

Another part of the immune system in the TME is cytokines. Accordingly, it was pre-
viously mentioned that these have a close relation with almost all cells as messengers. They
are released or membrane-bound proteins that carry out the proliferation, differentiation,
and initiation of immune cells. Therefore, uncontrolled cytokine generation is consid-
ered to be an important factor in the progression of disorders, for instance, autoimmune
diseases and cancer [6,37]. Cytokines can carry out various biological functions of cells,
including proliferation, differentiation, and migration. Cytokines that have a weight of up
to 70 kDa are identified as small proteins [38]. Based on their construction and mission,
they have been categorized into definite super-families, which include interferons (INFs),
interleukins (ILs), tumor necrosis factors (TNFs), transforming growth factors (TGFs),
chemotactic cytokines (chemokines), and colony-stimulating factors (CSFs) [39]. Within the
TME, cytokines can form a tumor-supportive immune microenvironment that suppresses
anti-tumor immunity and exerts direct tumor-promoting signals; in contrast, some of them
can promote immune escape [40]. In contrast to tumor immune escape (TIE), there is tumor
immune surveillance(TIS), in which the immune system recognizes precancerous or cancer-
ous cells and removes them before they can create harm [41]. Additionally, the importance
of immune surveillance has been demonstrated in some research. The major molecules
involved in tumor immune surveillance, as recognized in knockout mouse models, consist
of interferon-g (IFNg); perforin; tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL); IL12 and its contributing apoptosis-inducing receptors DR4 and DR5; the re-
combination activating genes RAG1 and RAG2, which are critical for T cell development;
the T cell receptor; and the activating NK cell receptor NKG2D [42]. A deficiency of any
of these proteins can lead to more frequent or faster tumor immune escape and more
tumorigenesis [43]. Table 1 indicates the effect of some important cytokines in TIS and TIE.
We discuss some of these in more detail in this review.

Table 1. The effects of some cytokines in tumor immune surveillance and tumor immune escape
[44,45]. TIS: tumor immuno-surveillance, TIE: tumor immuno-escape.

Cytokines Effect Released by

IL-10

This is related to immune suppression, tumors expansion,
and hindering of Th1 response by inhibiting the release of
pro-inflammatory cytokines. In addition, it augments the
migration capacity of cells and decreases the expression of

MHC class I (TIE).

TH cells, B lymphocytes, macrophages
and activated monocytes, thymocytes,

and tumor cells.

IFN-γ
Creates a response against tumors by regulating the innate

and adaptive immune system. Naturally preserves the
organs from the sudden development of tumors (TIS).

B cells, T cells, NK and natural killer T
(NKT) cells, mast cells, and macrophages.

IL-12

It has been investigated as an anti-tumor cytokine; it
interferes in the migration and metastasis of tumor cells; it is
executed through IFN-γ with anti-angiogenic potential; it
increases the expression MHC class I and II and increases

NK and T CD8+ cell activation. (TIS)

Antigen presenting cells (APCs):
macrophages, monocytes, and dendritic

cells (DCs).
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Table 1. Cont.

Cytokines Effect Released by

GM-CSF
It has anti-tumor features by increasing immune system

responses and stimulating specific cell-mediated
cytotoxicity against autologous tumor targets (TIS).

T cells, monocytes, and macrophages.

TNF-α

Related to tissue devastation, leading to tumor progression
and damage recovery, which has anti-tumor activity. May

stop DNA repair, acts as a growth factor (GF) for tumor cells,
and can induce angiogenesis. Destroy tumor vasculature

and has necrotic impacts on tumors at high doses (TIS/TIE).

Tumor cells, T cells, and
activated macrophages.

IL-6

It can lead to anti-tumor responses and to tumor
progression. It depends on the pathways of the cells that

would be activated; it can promote tumor growth,
metastasis, and resistance to chemotherapy in different

tumor cells (TIS/TIE).

Macrophages, B and T lymphocytes,
and keratinocytes.

IL-27

Contributes to apoptosis of cancer cells, increases cytotoxic
T cell and NK cell responses, antigen presentation, and Th1
response; decreases proliferation, migration, and invasion of
cancer cells; influences Treg development; increases PD-L1
expression levels and cancer cell proliferation (TIS/TIE).

Antigen presenting cells (APCs).

IL-30
Participates in decreasing Th1 cell differentiation, increases

cancer cell proliferation, and manipulates IL-27
signaling (TIS).

Activated DCs, NK cell, and T cell.

IL-35

It can interfere in increasing angiogenesis and metastasis,
immune suppression, and T cell exhaustion and the

proliferation of cancer cells; it decreases Th1 cell
differentiation and CTL responses. It can also participate in

decreasing migration and invasion of cancer (TIS/TIE).

Secreted primarily by Treg cells, B cells,
endothelial cells, smooth muscle cells,

DCs, and monocytes.

3. Tumor Immune Escape as a Part of Immunoediting

The importance of tumor immune escape has been clarified in various hypotheses. In
this section we focus on immunoediting as a fascinating area regarding different stages
of tumor progression. From approximately the late 19th century, the immune system was
considered with increasing interest as a field of study and a novel topic for cancer therapy; a
wide range of scientific findings during recent decades in particular determined the essential
capacity of the immune system in tumorigenesis. Hypotheses of immunoediting have
expressed this ability by delineating three steps of the tumor–immune system interaction:
the first step is known as elimination; the second is equilibrium; and the final step is escape,
where the progression of tumors moves from activating immunologic surveillance and
devastation through active immunologic balance to unrestricted growth. The fundamental
purposes of immunotherapy are to limit and decrease progression through these phases,
which leads to improvements in the immune system’s responses to modulating tumor
growth [46].

3.1. Elimination

The first phase of immunoediting is elimination. Immunologic elimination is described
in the following several steps: (1) initially, the recruitment of the innate immune system;
(2) the presence of cytokines restricting tumor proliferation and vascularization; and
(3) direct and indirect anti-tumor immune responses [47]. The goal of the immune system
in the elimination phase is to eradicate tumors by utilizing all of its capacity.

3.2. Equilibrium

The second phase of immunoediting is equilibrium. Cancer has an ability to grow in
spite of the collaboration of the adaptive and innate immune systems, which are initiated
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in the elimination phase. This equilibrium phase of immunoediting, as characterized by
Dunn et al., is a dynamic procedure expressing the immunologic reaction to the primary
signs of tumor escape, i.e., a balance between regulation of the immune system and
uncontrolled tumor proliferation [48,49].

3.3. Escape

The third phase of immunoediting is escape. Due to the continuous flow of immune
responses and the production of new indigenous tumor adaptations in the former step (equilib-
rium), some tumor cells are ultimately selected that have less immunogenicity. Accordingly,
tumor cells that emerge in the final phase of immunoediting, i.e., escape, clearly have lower
sensitivity to immunologic responses. Consequently, the escape step serves as “rightward push”
from the equilibrium phase with the expansion of tumor growth and the decline in immunologic
control [50]. There exists a wide range of processes by which tumors can increasingly escape
immunologic surveillance [51]. One of the eminent mechanisms that has been at the center
of attention during recent decades is the existence of an inhibitory regulatory CD4+FoxP3+ T
cell population in higher proportions that predisposes patients to various cancers, probably be-
cause regulatory T cells (Tregs) generate cytokines with immunosuppressive traits, for instance,
TGF-β and IL-10 that restrict CD8+ T cell activity and differentiation [52–54]. The presence
of tumor-associated macrophages 2 (TAM2) with CD4+ T lymphocytes releasing IL4 [55] and
myeloid-derived suppressor cells (MDSCs) [56,57] moves the TME in favor of tumor immune
scape. Furthermore, tumors have been identified as directly inhibiting the cytotoxicity of CD8+
T cells by the upregulation of PI-9, which results in the inactivation of granzyme B (GrB). GrB is
a serine protease usually found in the granules of cytotoxic T cells and NK cells that kills tumors
and virus-infected target cells [58]. Another important immune escape mechanism that has
been under consideration in recent years is when tumors downregulate or totally remove the
expression, processing, and presentation procedures of MHC class I; thus, this may contribute to
confining the immune system’s capacity to target tumor cells specifically [59,60]. Nevertheless,
the loss of MHC class I molecules can predispose tumors to eradication by NK cells. To solve
this problem, tumor cells have been shown to downregulate co-stimulatory proteins such as
MICA, MICB, and NKG2D (which are receptors for NK cells on tumor cells), supporting a
subtle means of escape from NK cells barriers [61,62]. The functions of the innate immune
system in suppressing tumor proliferation are via all the three stages of immunoediting, and
are often controlled through the Fas and TRAIL death receptor pathways that commence with
apoptotic caspase cascades [63].

In recent decades, growing breakthroughs in the molecular mechanisms pertaining
to triggering the immune system to defend against the demanding conditions that are
created by tumor cells have modified the areas of immunotherapy research. It has been
proven that any failure in the host’s immune system responses displays one of the essential
processes by which tumor cells evade immune surveillance [64]. These mechanisms related
to tumor immune escape have been explained, and the pro-tumor and anti-tumor factors
are displayed in a summary in Figure 1.

To become more acquainted with some of the mechanisms of immune surveillance
and tumor immune escape, we can study the influences of some molecules precisely.
Among these proteins, PC enzymes are principally regulators in host defense. Biochemical
analyses have determined that the PCs modulate proteolytic cascades that are crucial
in the functional maturation of various proteins critical for the host immune system to
defend against challenges, for example, matrix metalloproteinases (MMPs), integrin, and
cytokines [65,66]. In the following, the roles of several types of PCs in tumor immune
escape are discussed in detail.
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4. Furin and Tumor Immune Escape

Furin is a PCSK enzyme; it is termed Furin because it is in the upstream region of
an oncogene known as FES (the FES upstream region). Investigations have shown the
importance of this enzyme in a wide range of biological procedures. Furin has been
considered a master switch of tumor progression and proliferation [67,68].

Enhancing the activation of Furin can support cancer expansion by suppressing preser-
vative anti-tumor mechanisms. For instance, extending the activation of Furin-mediated
TGF-B lowers immune surveillance by stimulating the expansion of some suppressive
cells such as Treg cells and by inhibiting effector T-cell functions [69]. TGF-B1, as an
anti-inflammatory cytokine, also mediates in the support of peripheral tolerance and
preservation in autoimmune circumstances. Normally, TGF-B1 is synthesized as an inactive
form that is pro-TGF-B1 and should be degraded to produce the mature and biologically ac-
tive cytokine. Much research has proven that Furin is vital for the maturation of pro-TGF-B1
in Tregs [70,71]. Moreover, Ag presenting cells (APCs) are impeded by the activity of Tregs;
thus, Tregs repress the immune system via cytotoxicity and disruption of metabolic-related
pathways [72].

In several studies, knockout of the Furin gene in T cells was found to be related to
the release of a high number of pro-inflammatory cytokines (IL6, TNFα, and IL1 β) and
autoantibody products in mice. Therefore, this shows the pivotal role of this protein in
immune tolerance. Furthermore, Furin, via its proteolytic activity, manages the suppressive
functions of Tregs and thus prevents chronic inflammation and autoimmune diseases. In
other cells, such as macrophages, Furin mediates in the modulation of their inflammatory
phenotype (M1) and has an important role in the defense against tumors [14]. Subsequently,
Furin mediates in the activation control of macrophages. Indeed, deprivation of Furin in
macrophages indicates positive regulation of many genes implicated in their activation such
as Serpinb1a, Serpinb2, Ccl2, Ccl7, Il6, and Il1-b [73]. Deleting the Furin gene combined
with LPS or IFN-γ stimulation is linked with over expression of Nos2, a pro-inflammatory
phenotype marker of macrophages (M1). Contrary to this, the expression of the anti-
inflammatory and Arg1 phenotype marker was found to be decreased [73]. Thus, Furin
plays an anti-inflammatory role in these cells and changes the macrophage phenotypes in
TME from M1 towards M2. The mission of macrophage M2 cells is to influence immune
escape activity by reducing DC maturation and T cell effector function [74]. On the other
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hand, M1 macrophages increase the activation of T cells, suppress the recruitment of M2
cells, and regulate the normalization of tumor angiogenesis [75].

In one study, T cells that underwent the deletion of Furin did not promote any major
defects, and, consequently, although the mouse models were alive, these mice displayed
signs of inflammation and fibrosis. In T cells, the deletion of Furin did not interfere in
their development but did noticeably decrease their capacity to release anti-inflammatory
cytokines, IL10, and transforming growth factor beta 1 (TGF-B1) [70].

Transforming growth factor (TGF-B) is a fundamental regulator of immune tolerance
and balance, hindering the development and operation of many substrates of the immune
system. The signaling dysfunction in TGF-B is associated with the promotion of the
emergence of tumors and inflammatory diseases. Additionally, TGF-B plays an important
role in immune suppression inside the tumor microenvironment, and, in recent years,
research has revealed its function in tumor immune escape and imperfect responses to
cancer immunotherapy [76]. The knockout of Furin also contributes to increased production
of IL-6 and IFN-g as pro-inflammatory cytokines. On the whole, positive regulation of
some genes such as FOS, JUN, and IFN-G may lead to T cell activation [70].

According to these studies, it can be inferred that PCs interfere in tumor immune
evasion by activating or inactivating cytokines. These cytokines are released or bound on
the cell membrane and adjust the growth, differentiation, and activation of immune cells.
Thus, any perturbations in cytokine production can be linked to various diseases such as
cancer and autoimmune disorders [6,77].

5. Furin and MHC Class 1 Regulation

The complex of major histocompatibility class I (MHC I) and peptides derived from a
cell’s expressed genes that convey and present this antigenic information on the surface
of all nucleated cells is an important part of the immune system. This complex enables
CD8+ T lymphocytes to recognize pathological cells that generate aberrant proteins, for
instance, tumors that represent mutated peptides. In this condition, for tumors to retain
and continue their proliferation and progression, it is necessary to utilize mechanisms to
avoid elimination by CD8+ T lymphocytes. This is due to the fact that MHC I molecules are
not vital for cell survival; accordingly, one procedure by which tumors may escape immune
control is by eliminating the MHC I antigen presentation machinery (APM). Consequently,
this has two aspects: the first is to diminish the capability of natural immune responses to
control cancers, and the second is to inhibit immune therapies that work by re-stimulating
anti-tumor CD8+ T cytotoxic, such as checkpoint blockades [78]. MHC-I ligands are chiefly
generated by proteasomes; however, some MHC-I ligands are also produced in the trans-
Golgi network. Strikingly, it has been confirmed that, in this part, Furin interferes in
the proteolytic cleavage and the release of antigenic peptides [79,80]. Furin, a proprotein
convertase, is located mostly in the trans-Golgi network; it intervenes in the maturation
of numerous proproteins by cutting them at precisely three to four basic residues [81];
however, its exact role in increasing or decreasing the expression of MHC1 in normal,
tumor, and immune system cells such as lymphocytes and APCS is under investigation.

6. Furin and Checkpoints

In tumors, the response of T cells is interrupted through the identification of PD1
(programmed cell death protein 1), also known as the CD279 (cluster differentiation)
receptor, exhibited on the surface of T lymphocytes and B cells that has some roles in
immune system responses, mainly promoting suppression. The expression of its ligand,
termed PD-L1, is high on the surface of tumor cells and pro-tumor macrophages [82].
PD-1 is an important marker on exhausted T lymphocytes and acts as a co-inhibitory
checkpoint [83]. In an exhausted condition, T lymphocytes are terminally differentiated
and express a high and constant number of inhibitory receptors, such as PD-1 [84,85]. The
presence of PD-1 is enhanced exponentially with tumor proliferation exponentially [83].
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Inhibiting the expression of Furin is a useful means of accelerating an anti-tumor
response. Eliminating PCs can suppress PD-1 expression, thereby obstructing the cleav-
age and operation of the Notch–Delta signaling pathway and boosting the activation and
growth of T lymphocytes, their viability, and their cytotoxicity against both MSI (microsatel-
lite instability) and MSS (microsatellite stable) colon tumor cells. Likewise, the knockout of
PCs may enhance tumor-infiltrated CTLs, which increases immune response in the TME
against tumor cells and can also boost tumor regression [86]. After activating T cells, some
transcription factors, such as the nuclear factor of activated T cells (NFAT), T-bet, Blimp-1,
and FoxO1, induce and regulate the expression of PD1 [87]. Diverse intracellular signal
transduction pathways control the activation and expression of these factors. They consist
of anti-inflammatory signals, tyrosine kinases, and mitochondrial apoptosis pathways. Nu-
merous proteins are recruited in these intracellular signal pathways that need to undergo
proteolytic cleavage of their precursor forms through the proprotein convertases (PCs) to
make them biologically active [88].

The elimination of PCs suppresses PD-1 expression via obstructing proteolytic matura-
tion of the Notch precursor, blocking calcium/NFAT and NF-kB signaling, and increasing
the activation of the ERK protein. This information demonstrates the principal role of
PCs in controlling the expression of PD-1 and supports the idea of targeting PCs as a
contributing approach to tumor immunotherapy [86].

7. The Role of PC1/3 and PC7 in Immune Escape

Many findings have indicated the role of Furin as one of the protein convertases in
immune modulation, but there are some correlations with other PCs. According to de
Zoeten’s studies, it was noted that one of the key transcription factors in the regulation
of Treg functions is Foxp3 [89]. There are some potential cleavage sites for PCs that are
found on the protein sequence of Foxp3. In mice Tregs, these cleavage sites were detected
on Foxp3 transcription factors that can be proteolytically activated by PC1/3 and PC7.
In addition, the secretion of IL-10 was found to be increased in Tregs over expressing
the truncated Foxp3 form. These findings highlight that PC1/3 and PC7 regulate the
immunosuppressive functions of Tregs by Foxp3 cleavage [89].

8. PCSK9 and Immune Escape

The role of PCSK9 is mainly to control the levels of cholesterol in the body, and it is as-
sociated with its capability to downregulate LDLRs (low-density lipoprotein receptors) on
the cell surface by conducting LDLRs for degradation to the lysosome rather than redirect-
ing them back to the cell surface via both extracellular and intracellular pathways [90–94].
Therefore, PCSK9 leads to the lowering of the cholesterol metabolism [95]. In accordance
with some findings, it has been clarified that inhibiting PCSK9 may induce the infiltration
of T lymphocytes in to the TME, subsequently provoking tumor cells to respond to immune
checkpoint therapy [95]. Moreover, studies have determined that the number of active T
lymphocytes positively contributes to the success of immune checkpoint blockade therapy.
In one study, the flow cytometry method was applied, and the data indicated a noticeable
boost in numbers of infiltrating CD8+ cytotoxic T cells (CTLs), natural killer (NK) cells,
CD4+ T helper (TH) cells, and γδ T cells in tumors with a deficiency in PCSK9 genes.
Contrarily, a remarkable increase in the number of CD4+ Foxp3+ regulatory T (Treg) cells
was not observed. Additionally, there were no amplifications in the number of CD8+or
CD4+ T lymphocytes in the host mice’s spleens. The proportion of CTLs to Treg cells
notably increased in the tumors that underwent the elimination of PCSK9. Another finding
is that the number or proportion and percentage of interferon-γ+ (IFN-γ+) and granzyme
B+ (GZMB+) CTLs was also strikingly enhanced in PCSK9-absent tumors [95]. These
findings regarding the presence of INFG and GZMB in tumors without PCSK9 indicate the
paramount role of PCSK9 in immune suppression in tumors.
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9. PCSK9 and Expression of MHC1 on the Surface of Tumors

MHC class 1 is expressed on almost all nucleated cells [96]. In one study, it was
found that PCSK9 manages the expression of MHC I on the surface of nucleated cells. The
overexpression of PCSK9 in cells leads to more H2-K1 (major histocompatibility class 1 in
a murine model) being localized in the lysosome, instead of being located on the plasma
membrane and then degraded. On the contrary, with the knockout of PCSK9 in mouse cells,
staining methods showed increased localization of H2-K1 in the plasma membrane [95].
As a result, it can be inferred that PCSK9 has a crucial role in regulating MHC class 1 on
the cell surface and can thus influence immune infiltration in the TME [95]. To broaden
our understanding pertaining to PCSK9 as well as other PCs and the expression of MHC
class 1 on tumor cells, more research should be carried out to find key factors in presenting
antigens that are more influenced by PCs in tumor immune escape responses.

10. Conclusions

In recent years, the use of immunotherapy and its links with immunoediting in the
treatment of different kinds of cancers has been applied [97–99]; however, some patients
have shown resistance to this type of treatment and scientists have tried to find subtle
ways to alleviate the problems related to immunotherapy resistance and boost its efficiency.
For instance, individual tumor studies for the specific treatment of tumors are under ex-
ploration; thus, to achieve this purpose, tumor biology needs to be investigated to allow
the development of accurate molecular treatments. We reviewed data regarding different
protein convertases interfering in the immune aspects of the TME, and our findings indicate
the paramount role of these proteins. Recognizing the proteins that are relevant to the
immunoediting phases and that can push tumors from the immune escape phase to the
equilibrium or elimination phases would be a promising way to augment immunotherapy
efficacy since one purpose of immunotherapy is to maintain tumors in the equilibrium
or elimination phases and prevent further progression to the escape phase. We recom-
mend that more research should be carried out to further clarify the role of PCs in tumor
immune escape.
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