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Abstract: Neurodegenerative diseases are a group of disorders characterised by progressive loss
of brain function. The most common of these is Alzheimer’s disease, a form of dementia. Intake
of macro- and micro-nutrients impacts brain function, including memory, learning, mood, and
behaviour. Lipids, particularly phospholipids and sphingolipids, are crucial structural components
of neural tissues and significantly affect cognitive function. The importance of functional foods
in preventing cardiovascular disease is well-documented in the current literature. However, the
significance of such foods for central nervous system health and neurodegenerative diseases is less
recognized. Gut microbiome composition affects cognitive health and function, and dietary lipids are
known to influence gut health. Thus, this review will discuss different sources of dietary lipids and
their effect on cognitive functioning and their interaction with the gut microbiome in the context of
neurodegenerative disease.
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1. Introduction

The prevalence of neurodegenerative diseases such as Alzheimer’s and Parkinson’s
disease is steadily increasing globally.

The term “neurodegenerative disease” (ND) refers to a group of disorders characterised
by progressive loss and degeneration of neurons and neuronal abnormalities. Many NDs can
be traced back to the accumulation of proteins such as amyloid-beta (Aβ) and tau in the brain
(proteotoxicity), which impair cellular function resulting in cell degeneration and death [1].
These are seen in Alzheimer’s disease (AD), the most common form of dementia [2].

ND are age-dependent, with incidence increasing sharply over 60–65 years. Clinical
symptoms of dementia include cognitive decline, long-term memory loss, and behavioural
abnormalities such as depression, agitation, aggression and sleep disturbances [3]. Among
the biological sexes, women are disproportionally affected and show higher rates of AD
and other forms of dementia, as well as differing cognitive symptoms [4,5].

Dementia is a major cause of mortality worldwide, with an estimated 1.62 million
deaths occurring due to dementia in 2019 [6]. Further, a 2013 investigation reported AD
as the sixth leading cause of death in the United States in persons over 65, with the actual
figure likely being much higher [4]. The economic and social cost of dementia is also
immense, with an estimated annual cost per person of over EUR 32,000 in Europe [7].
Direct costs of dementia include nursing care, drugs, diagnostics, social services, etc. The
indirect costs of dementia arise from loss in production due to illness, increased pension,
increased morbidity and mortality, impact on families, etc.; it is estimated that these indirect
costs of dementia are higher than the direct costs [8].
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AD is the most common form of dementia and is estimated to affect as many as
24 million worldwide [2], with the figure estimated to increase steadily with the rapidly
ageing population [2]. The prevalence is also much higher with age, with rates sharply
increasing over 65 years [2].

Currently, few treatment options exist for ND. For example, the drug Memantine
is an NMDA-receptor antagonist used to treat mild-to-moderate AD. However, there is
insufficient evidence for its efficacy in treating dementia, particularly in cases of moderate
AD [9,10]. In addition, the monoclonal antibody drug Aducanumab has recently been
developed to target Alzheimer’s disease by clearing the amyloid plaques in the patient’s
brain [11]. However, the clinical efficacy of this treatment is not fully confirmed, and its
high cost severely limits its accessibility to patients [12]. Thus, there is an urgent need to ex-
plore alternative treatment options and preventive strategies to combat neurodegenerative
disease. This narrative review will discuss the pathology of the neurodegenerative disorder
Alzheimer’s disease, focusing on the role of neuroinflammation and Aβ disease models
based on a critical evaluation of the current literature. The following section discusses the
role of the gut microbiome in NDs and the relationship between dietary lipids, gut bacteria,
and disease development. We then move on to the role of phospholipids in cognitive
health and discuss the current evidence for dietary lipids that promote cognitive health and
reduce disease pathology. Finally, we consider the further research required to advance
this field of study and fully understand the role of lipids in cognitive health.

2. The Pathology of Neurodegenerative Disease—Proteotoxic Insults and the Role of
Inflammation and Oxidative Stress

Many NDs are proteinopathies, meaning that the accumulation of specific proteins such as
Aβ or tau in the brain tissue is a major hallmark of these disorders. For example, the latter two
are typical biomarkers for Alzheimer’s disease (AD) [13]. Amyloid plaques or aggregates are
composed of Aβ peptide, which is derived from the abnormal processing of amyloid precursor
protein (APP) in the brain [14]. This abnormal processing often arises from mutations in the
APP or the enzymes presenilin 1 & 2, which cleave the Aβ peptide from the APP [15].

Parkinson’s disease is the second most common cause of dementia, and it is charac-
terised by the abnormal oligomerisation of alpha-synuclein in neuronal tissue [16]. These
aggregates form intraneural deposits known as Lewy bodies and are a characteristic patho-
logic feature of Parkinson’s disease. These deposits are primarily composed of misfolded
aggregates of the protein alpha-synuclein [17].

The presence of amyloid plaques can result in chronic inflammation due to persistent
activation of the microglia, a type of immune cells abundantly present in the brain. They
play a crucial part in clearing amyloid plaques in the brain, and this phagocytic activity is
impaired in AD pathology [18,19]. This leads to the inflammation hypothesis as a pathology
of Alzheimer’s disease, which centres on the role of neuroinflammation generated by
continuously activated immune cells and the release of neurotoxic substances. While initial
activation of immune cells is a beneficial, neuroprotective response, continuous microglial
activation can spiral out of control [20] and damage brain tissue by overproduction of pro-
inflammatory cytokines such as TNF-alpha, IL-6, and IL-10. Releasing these cytokines and
reactive oxygen and nitrogen species (ROS or RNS) causes neuronal damage and death [21].
Newer evidence has also emerged suggesting that soluble and oligomeric forms of Aβ can
trigger such activation and subsequent inflammatory response in the brain tissue [22].

An important pathological feature of Parkinson’s disease is the presence of intraneural
Lewy bodies. These inclusions have been linked with cytotoxic effects and mitochondrial
dysfunction in the brain, although the reports are conflicting [23]. Dementia associated with
Lewy bodies has also been linked with neuroinflammation, analogous to amyloid-triggered
microglial activation [24,25].

However, the precise mechanisms to explain the neuroinflammatory hypothesis have
not been fully elucidated, and information is lacking as to which cells and signalling
pathways are involved [26].
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Closely related to this disease model of AD is the two-hit vascular hypothesis. Ac-
cording to this, initial damage to the cerebrovascular system not only results in neurode-
generation and injury but causes accumulation of Aβ due to a compromised or “leaky”
blood-brain-barrier (BBB) [27]. The BBB is a vascular structure that guards against the entry
of potentially harmful molecules or pathogens from the bloodstream into the brain and
mediates the exchange of certain substances between them. Dysfunction of this barrier
can lead to the entry of immune cells and toxins into the central nervous system, which
is thus implicated in many pathologies of the CNS [28]. Breakdown of the BBB has been
detected in the hippocampi of AD patients and may contribute to cognitive impairment, as
found in a 2015 study [29]. An important route by which Aβ is cleared is via transvascular
clearance across the BBB. A disruption in this mode of clearance results in neurotoxic
accumulation of Aβ in the brain. Transport of Aβ across the BBB is mediated by the LRP1
receptor protein [30], and consequently, expression of LRP1 is altered in AD brains [31].
Peripheral inflammation has been shown to increase Aβ in the hippocampus and cause
cognitive impairment in mouse AD models [32]. In another study, inflammation induced
by lipopolysaccharide (LPS) in mouse models indirectly affected Aβ clearance and the
blood-to-brain influx of Aβ [33]. Deposits of Aβ have been shown to activate the surround-
ing microglia and cause the production of inflammatory cytokines such as IL6, TNF-α
and IL-1β, which play a part in the pathogenesis of AD [34]. Some studies have also
shown that metabolites produced by certain microbes can cause Aβ production and thus
induce neuroinflammation [35]. Indeed, an imbalance of gut bacteria has been observed in
dementia patients [20]. The mechanism of neurodegenerative disease pathology is thus
strongly influenced by gut microbiota, which in turn are influenced by the intake of certain
dietary lipids, as discussed in the following section.

3. Gut Microbiota and the Gut-Brain Axis in Neurodegenerative Disease

The link between the human microbiome and disease is a rapidly growing field of
research. There is increasing evidence for interaction between the gastrointestinal tract (GI)
and the central nervous system (CNS). The gut-brain axis can thus be defined as a two-way
communication system that functions through pathways such as neural pathways (enteric
and sympathetic nervous systems, etc.) and humoral (including cytokine signalling and
microbial signalling) [36]. Figure 1 provides a schematic representation of the gut-brain axis.
The gut microbiome is a richly diverse community of bacteria that initially colonise the gut
following birth and maintain a relatively stable composition throughout life. The human
GI tract is estimated to be home to around 200 to 1000 bacterial species [37], with a vast
collective genome of almost 200 million genes [38]. Factors such as maternal transmission,
host genotype, early-life stress, and diet influence the gut microbiome [39–42].

Many studies have demonstrated that alterations in the intestinal microbiota composi-
tion have important implications for brain function and, consequently, neurological disease.
Studies involving germ-free (GF) animal models have found that loss of microbiota impacts
cognitive behaviours, anxiety levels and stress response [43–45]. The gut microbiota can
significantly influence host immune function by modulating the development, proliferation
and function of microglia, a type of immune glial cell abundantly found in the brain [46].
For example, microglia from GF-mice display abnormal gene expression and functioning
compared to conventionally colonised control mice [47,48]. The gut microbiome is also able
to modulate inflammatory signalling pathways such as that of NF-κB ([49,50], TNF-α [51]
and interleukin-6 (IL-6) [52]. Imbalance in the gut microbiome has been linked with im-
paired cognition and abnormal behaviours [53,54]. One proposed mechanism by which
this may occur is the passage of neurotoxins through the compromised BBB and/or “leaky
gut” [55,56]. Pathogens may also disrupt the BBB and penetrate into the brain by several
different mechanisms, including increased production of pro-inflammatory molecules and
ROS, receptor-mediated adhesion of bacteria and disruption of endothelial junctions [57].
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Figure 1. Dietary lipids in the gut-brain axis. Dietary lipids intake can alter gut microbiome balance
by increasing the Gram-negative bacteria population [58]. Saturated fatty acid consumption and
metabolism affect gut health through reactive oxygen species generation [59]. Chronic gut inflamma-
tion can disrupt the intestinal tight junction and consequently lead to a “leaky gut”. Neurotoxins can
penetrate the intestinal epithelium and, through the bloodstream, reach the BBB. A compromised
BBB facilitates neurotoxins entering the brain and inducing inflammation [53,54]. Active microglia
cells and reactive astrocytes can harm neuron cells.

In one study, germ-free APP transgenic mice (APP PS1) exhibited a significantly
altered gut microbiome and APP amyloid pathology compared to the GF wildtype. Faecal
microbiota transplantation (FMT) of germ-free mice with bacteria from APP PS1 mice led
to increased cerebral Aβ pathology compared to colonization with bacteria from wild-type
control mice [58].

There is also evidence that molecules produced by gut microbes affect brain func-
tioning and contribute to the development of neurodegenerative disease. For example,
gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter that regu-
lates anxiety and depression-like behaviours in humans. Certain strains of bacteria, notably
Bifidobacterium, can stimulate the production of GABA and consequently influence cogni-
tive functioning [59]. Similarly, Gram-negative bacteria and alterations in their distribution
have been linked with AD pathology [60].

Imbalance in the gut microbiome is thus significant in the onset and progression of neu-
rodegenerative disease. The composition of the gut microbiome is shaped and altered by dietary
intake, and gut microbiota influence lipid metabolism. The dietary fat source also influences gut
health [61]. For example, supplementation n-6 and fish oil fatty acids reduced gut inflammation
and improved blood-brain-barrier function in mice fed high-fat diets, while supplementation
with saturated fats contributed to increased inflammation and insulin resistance [62]. The
diversity of beneficial bacteria is also reduced in mice fed a diet enriched with lard or sunflower
oils compared to those fed a diet supplemented with fish oil [63,64].

Thus, through interaction with host microbiota, dietary lipids may affect the physi-
ological function and brain health. Indeed, a recent investigation found that intake of a
multi-strain probiotic formulation significantly improved Aβ pathology and modulated
lipid metabolism through inhibited cholesterol biosynthesis and altered omega 6/omega 3
fatty acid ratio [65]. Furthermore, aged microbiota can also significantly alter phospholipid
metabolism and composition, with the cortical abundance of the phospholipid subclasses PE
and PE found to be changed in mice colonised with aged microbiota. Table 1 lists evidence
for the relationship between microbial composition, dietary lipids and cognitive health.
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Table 1. Study evidence for lipids and gut-brain signalling: Microbe-dietary lipid interaction.

Study Aim Lipid Type Microbes Study Type Study Result Study Reference

Understand the effect of fish oil
(FO) intervention on gut
dysbiosis and neuropsychiatric
behaviours in rat models of
human geriatric depression

FO containing n-4 PUFA
Bacteroidetes, Prevotellaceae,
Marinifilaceae, and
Bacteroides uniformis

In vivo study with Sprague
Dawley rats

FO intake in rats improved
emotional symptoms of depression
and a reduced load of certain
bacterial taxa

[66]

Assess the effect of long-term
supplementation of n-3 PUFA
on gut dysbiosis due to
early-life stress

n-3 PUFA mixture (80% DHA
and 20% EPA) Bacteroidetes and Firmicutes In vivo study with rat models

The abundance of the phyla
Bacteroidetes and Firmicutes was
altered in maternally separated (MS)
rats compared to non-separated rats,
and this dysbiosis is rescued upon
long-term EPA/DHA administration

[67]

Study of gut microbiota
composition in children with
neurodevelopmental disease
(NDD) and evaluation of
Short-chain fatty acids
(SCFA) levels

Short-chain fatty acids

Potentially harmful bacteria,
such as Desulfotomaculum
guttoideum and Intestinibacter
bartlettii, and benign bacteria,
including Enterococcus and
Lactobacillus

Ex vivo, placebo-controlled
study on preadolescent
children diagnosed
with NDDs.

Microbial diversity was decreased in
NDD patients compared to control.
Increased prevalence of harmful
bacteria, including Desulfotomaculum
guttoideumIntestinibacter bartlettii and
Romboutsia ilealis, and lower
prevalence of commensal
bacteria in the gut

[68]

Investigate the effect of long-term
adherence to a Mediterranean
diet (MD) on gut microbiome
and frailty in older adults

Mediterranean diet
(vegetables, legumes, fruits,
nuts, olive oil and fish and
low consumption of red meat
and dairy products and
saturated fat

Faecalibacterium prausnitzii,
Eubacterium and Roseburia,
Ruminococcus torques,
Collinsella aerofaciens,
Coprococcus comes, Dorea
formicigenerans, and
Clostridium ramosum.

Randomised single-blind
controlled dietary
intervention study

Gut microbial composition was
altered following intake of MD. A
lower frequency of bacterial taxa
associated with markers of ageing
and inflammation was observed, and
taxa associated with improved
cognitive function were
enriched in the gut

[69]

Abbreviations: DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic acid; FO, fish oil; MS, maternally separated; MD, Mediterranean diet; NDD, neurodevelopmental disorder;
PUFA, polyunsaturated fatty acids; SCFA, short-chain fatty acids.
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4. The Role of Phospholipid Subclasses and Their Biological Functions

The term lipid encompasses various biomolecules such as fats, waxes, glycerides and
phospholipids. Lipids can be hydrophobic or amphiphilic by nature, and they have many
critical physiological roles in living organisms, including as sources of energy storage,
in metabolism and as structural components of biological membranes, including neural
membranes [70]. These lipids possess a hydrophilic head and hydrophobic tail and are
ubiquitous in cell and organelle membranes as glycerophospholipids (GPLs) (Figure 2).
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Figure 2. Representation of common phospholipid structures: Glycerophospholipids (GPLs); an
example of sphingosine-backbone phospholipid (SPLs), Sphingomyelin; and Alkyl-GPLs, which
contain a fatty chain linked with an ether-bond at the sn-1 position of the glycerol backbone [71].

4.1. Sphingomyelin

Sphingomyelin (SM) lipids are a subclass of phospholipids abundant in biological
membranes and essential for the function and development of the nervous system [72]. It
is a major structural element of neural membranes and regulates cell growth and differenti-
ation. Infants fed a formula containing milk fat globule membrane (MFGM) enriched with
SM were reported with better cognitive development compared to infants fed a standard
formula [73,74]. Similarly, preschool children who regularly consumed a milk formula
enriched with MFGM polar lipids displayed a lower frequency of febrile episodes, hinting
that intake of these PL may improve behavioural regulation [75].

4.2. Phosphatidylserine

The acidic phospholipid class known as phosphatidylserine (PS) is enriched in the
cerebral cortex and plays a critical role in neural structure and function [76,77]. The distribu-
tion of phospholipids across the cell membrane is significant for correct cellular functioning
and health, and disruption of the normal asymmetric distribution of PS on the membrane
results in the initiation of apoptosis [78,79]. In this regard, levels of PS asymmetry were
significantly decreased in the brains of patients with AD and mild cognitive impairment
(MCI) [78]. Dietary supplementation with PS and docosahexaenoic acid (DHA) improved
oxidative parameters and spatial memory function in rat pups [80], confirming that supple-
mentation is beneficial for the functioning of the developing brain. Another study found
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that daily intake of soybean-derived PS over 12 weeks in elderly volunteers with impaired
memory function resulted in significantly improved outcomes of learning and memory [81].

4.3. Phosphatidylcholine

Phosphatidylcholine (PC) is an important dietary source of the B-group vitamin
choline, a precursor of the neurotransmitter acetylcholine [82]. An ex vivo investigation
showed that a higher intake of PC was associated with better cognitive function (as assessed
by improved performance on verbal and memory tests) and a lower risk of dementia in
middle-aged Finnish men [83]. Another study examined the effect of PC-containing diets
(including on the cognitive function of male BALB/c mice, with dementia-like charac-
teristics induced by injection with scopolamine [84]. It was found that PC intake could
effectively attenuate brain damage caused by treatment with scopolamine, as assessed by
cognitive tests such Morris water maze task [84].

Region-specific differences in the spatial localisation of lipid molecules, including
phosphatidylcholine, have been detected in AD mouse models compared to wild-type
control mice [85]. This indicates that alterations in the spatial localisation of lipids in the
brain play an important role in the pathology of neurodegenerative disease and lipid levels.
Further, metabolomics profiling identified significant changes in phosphatidylcholines in
the APOE E4 genotype in AD patients [86].

Ether lipids and phospholipids are of major physiological significance, forming a com-
ponent of the biological membrane and being involved in signalling pathways. Examples of
this class of lipids include platelet-activating factor (PAF), alkylglycerols and plasmalogens.
The levels of ether lipids have been linked with neurodegenerative disease. Analysis of
brain lipid content in human patients [87] and AD mouse models have found that levels
of certain plasmalogen species are significantly altered [88]. Aside from AD, Parkinson’s
disease has also been associated with altered lipid levels. A clinical investigation of Parkin-
son’s disease found that oral administration of purified ether phospholipids improved
clinical symptoms [89].

Consumption of fish-derived omega-3 polyunsaturated fatty acids (PUFAs) has been
linked with a lower incidence of subclinical brain abnormalities in older adults [90]. For
example, the autosomal dominant neurodegenerative disorder Huntington’s disease is char-
acterised by severe cognitive decline and dementia. In addition, a study has shown that the
administration of deuterium polyunsaturated fatty acids (D-PUFA) significantly improved
cognitive decline through antioxidant activity and reduction of lipid peroxidation [91].

A recent study using rat models showed that milk fat globule membrane supplemen-
tation during pregnancy promotes neurodevelopment in offspring by modulating the gut
microbiome and downregulating levels of pro-inflammatory cytokines and lipopolysaccha-
ride (LPS) in the circulation [92]. Similarly, oral supplementation of phosphatidylserine (PS)
improved learning and memory function in young rats and upregulated the production of
the neurotrophic factors BDNF and IGF-1 in the hippocampus [93]. Moreover, a 2022 study
demonstrated that the omega-6 PUFA linoleic acid is highly neuroprotective and reduces
inflammation in in vitro models of Parkinson’s disease [94].

Table 2 summarises these and other in vitro and in vivo investigations where lipids
improved cognitive health and function.
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Table 2. Dietary supplementation with functional lipids improves cognitive function (human trials and animal studies).

Study Aim Functional Lipid Source Study Type Study Result Study Reference

Assess the neuroprotective effects of linoleic
acid in the SH-SY5Y PD cell line and a PD
mouse model

Linoleic acid In vitro cell culture model and in vivo
mouse study

Administration of LA confers protection from
neuroinflammation and neurodegeneration in vivo.
LA also shows anti-inflammatory and antioxidant
properties in vitro.

[94]

Determine whether docosahexaenoic acid (DHA)
and phosphatidylserine (PS) supplementation
can improve the cognitive function of the
developing brain and reduce oxidative stress

Docosahexaenoic acid (DHA) and
phosphatidylserine (PS)

In vitro study with C6 glioma cells and
in vivo with rat pups

Supplementation with DHA and PS significantly
improved antioxidant activity in vitro and in vivo
and also improved learning and memory parameters
in rat models

[80]

Determine the effect of omega-3 supplementation
on 6-hydroxydopamine Parkinson’s
disease models

Fish oil containing omega-3 fatty acids In vivo study with rats
Omega-3 supplementation resulted in increased
dopaminergic neuron turnover and improved
performance in behavioural tests

[95]

Study the effect of dietary DHA supplementation
on APP/PS1 transgenic Alzheimer’s disease
rat models

DHA-supplemented diet In vivo study with rat models
Rats fed supplements exhibited a lower density of
amyloid plaques, improved behavioural performance,
and reduced Aβ aggregation.

[96]

Study the effect of fish oil (FO)and blueberry (BB)
supplementation in older adults with
self-reported cognitive decline

FO enriched with DHA + EPA and BB Dietary trial in older adults
After 24 weeks of supplementation with FO and BB,
subjects experienced impairment in memory and
daily functioning.

[97]

Investigate the impact of dietary intake of soy
lecithin supplement on AD symptoms in
elderly patients

Soy lecithin supplement containing PS
(300 mg/day) + PA (240 mg/day)

A double-blinded placebo-controlled
study with elderly patients with AD

Dietary supplement positively impacts memory,
cognitive function and mood in AD patients. [98]

Evaluate the effect of different dietary regimens
with EPA, DHA and combinations of these on
dementia symptoms

Dietary supplement of DHA/EPA and
combination of EPA + DHA

A randomized, double-blind,
placebo-controlled trial in elderly
patients with mild cognitive impairment
(MCI) or AD

EPA intake improved scores in spoken language tests,
although no statistical improvement in mood, cognitive
function and other parameters was observed. EPA
significantly reduced levels of CCL4, an inflammatory
biomarker for cognitive decline

[99]

Study the effect of combined supplementation
with three different nutrients proven to benefit
cognitive health (fish oil, carotenoids and
vitamin E)

1 g fish oil (containing 430 mg
docosahexaenoic acid, 90 mg
eicosapentaenoic acid), 22 mg
carotenoids and 15 mg vitamin E

Randomised, placebo-controlled human
trial in healthy older adults

After a 24-month supplementation period, subjects
showed significant improvement in working memory
performance compared to the placebo

[100]

Assess the effect of bovine milk-fat globule
membrane (bMFGM) intake on infant
neurodevelopment

Bovine milk-fat globule membrane Randomised double-blinded
placebo-controlled human trial

Infants who received formula supplemented with
bovine MGFM exhibited improved
neurodevelopmental profiles, including higher
language and motor scores, compared to infants fed a
skim milk-based control

[74]
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Table 2. Cont.

Study Aim Functional Lipid Source Study Type Study Result Study Reference

Assess the impact of dietary intake of Greek high
phenolic early harvest extra virgin olive oil on
cognitive performance in subjects having mild
cognitive impairment

Greek high phenolic early harvest extra
virgin olive oil Randomized clinical trial

Dietary intervention with high phenolic early harvest
extra virgin oil was associated with improved
performance in neuropsychological battery test
compared to volunteers fed only a Mediterranean diet,
independent of APOE E4.

Assess the effect of soybean-derived PS (SB-PS)
intake on cognitive performance in elderly

Soybean-derived phosphatidylserine
(SB-PS) (dosage: 300 mg/day)

Single-centre, open-label,
placebo-controlled human study

Supplementation with SB-PS significantly improved
cognitive parameters, including memory, learning and
executive function in volunteers compared to control

[81]

Determine the effect of intake of coconut
oil-enriched Mediterranean diet on cognitive
function in AD patients

Coconut oil-enriched Mediterranean
diet (MD)

A prospective qualitative study in
human patients

Consumption of coconut oil-enriched MD improved
cognitive function in AD patients compared to the
control group

[101]

Evaluate the effect of intake of a Mediterranean
diet enriched with olive oil and nuts on
cognitive performance

Mediterranean diet supplemented with
olive oil and mixed nuts Randomised controlled trial

Improved scores in tests of cognitive function were
observed in cohorts taking either MD plus olive oil or
MD plus nuts versus the control group

[102]

Investigate the relationship between dietary
intake of total fat and cognitive impairment in
older Chinese adults

Total fat intake classified into
plant-based fat and animal fat Ex vivo population-based cohort study

Higher dietary intake of total plant-based fat was
linked with decreased risk of cognitive impairment in
middle-aged Chinese adults

[103]

Determine the association between long-chain
fatty acid (particularly EPA and DHA) intake and
cognitive impairment as a 13-year dietary
intake study

Long-chain n-3 FA and fish Dietary assessment study

Low cognitive test scores were negatively associated
with a high long-chain FA, DHA and EPA intake. High
fish consumption was significantly linked with a lower
frequency of cognitive complaints after adjustment for
depressive symptoms

[104]

Evaluate the efficacy of fish oil omega-3 DHA
supplementation on mental performance in
schoolchildren using a series of cognitive tests

Fish oil DHA capsule supplement
(low dose 260 mg DHA and high dose
520 mg DHA)

Randomised double-blinded
placebo-controlled clinical trial

Regular intake of FO resulted in higher mental ability,
including better attention scores and cognitive
processing, compared to baseline

[105]

Abbreviations: AD, Alzheimer’s disease; BB, blueberry; bMFGM, bovine milk fat globule membrane; DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic acid; FO, fish oil; LA, Linoleic
acid; MD, Mediterranean diet;MCI, mild cognitive impairment; PS, phosphatidylserine.
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4.4. Current Knowledge: Types of Fatty Acids of Lipids and Their Role in Neuroprotection

Lipids are involved in several critical signalling pathways, acting as signalling activa-
tors, mediators and enzyme substrates. Membrane lipids are crucial components of signal
transduction pathways, which are often highly interconnected and interconvertible [106].
The phosphatases and lipid kinase molecules are some of the most important signalling
components. Phosphoinositide 3-kinase (PI3K) is a prominent example of a lipid phospho-
rylation pathway since mutations in this pathway have been associated with cancer [107].
Lipid molecules can also act as mediators and bind G-protein coupled receptors (GCPRs)
on the cell surface. These include phosphoglycerides, leukotrienes, lysophospholipids,
and the phospholipid platelet activating factor (PAF). PAF binds the PAF receptor and
triggers downstream activation, thereby regulating processes such as the immune response,
cell proliferation and apoptosis, making it an important mediator of these downstream
signalling events [108].

The sterol class of lipids, particularly cholesterol, are essential components of cellu-
lar membranes. Cholesterol is a major structural component of lipid rafts, and thus its
metabolism strongly influences membrane fluidity [109] and several membrane signalling
pathways [110,111]. Cholesterol has recently been shown to interact with scaffold proteins
such as NHERF1 and thus regulate cellular signalling and trafficking pathways [112].

Saturated fatty acids (SFA), such as palmitic acid and stearic acid, have significant
roles in cognitive function. Several studies have shown that palmitic acid can induce
neuroinflammation and microglial activation, thus promoting neurodegeneration [113–115].
On the other hand, stearic acid seems neuroprotective [116]. For example, a recent study
reported that hydroxy stearic acid (5-PAHSA) is neuroprotective in vitro and in vivo [117].
Thus, these SFA differentially impact neurological health and function.

Monounsaturated fatty acids (MUFA) also have a beneficial impact on brain health.
For example, oleic acid is an omega-6 MUFA enriched in oils such as olive oil. Intake of
this fatty acid has been shown to protect against oxidative stress in vivo [118] and reduce
Aβ secretion in APP-transgenic mice [119]. Similarly, a 2018 study reported that deuterium-
reinforced linoleic acid in the diet of Huntington’s disease model mice caused reduced lipid
peroxidation and improved performance in cognitive tests [91]. Another study in rat models
of multiple sclerosis reported improvement in oxidative stress parameters in the brain of
rats fed conjugated curcumin-linoleic acid, as well as improved memory scores [120].

Dietary lipids are hydrolysed by pancreatic lipases in the lumen of the intestine and
taken up through transporter proteins located in enterocytes, the absorptive cells of the
gut. Before this, however, the lipids are emulsified by bile salts to facilitate their hydrolysis
into products such as free fatty acids, glycerols and monoglycerides. Following uptake by
enterocytes, these hydrolysed products are transported to the endoplasmic reticulum (ER),
where they are resynthesized into lipids by processes such as esterification. These lipids
are subsequently either stored as lipid droplets in the cytosol or secreted out of the ER in
the form of lipoprotein particles known as chylomicrons [121].

Lipids are abundantly present in the nervous system, with hundreds of lipid species
present in the neural tissues. Polar lipids, notably phospholipids and sphingolipids, form
major structural components of cellular membranes, including neural tissues. Neural
membranes are rich in long-chain saturated fatty acids (LC-SFA) palmitic and stearic acids.
Many studies have confirmed the importance of polar lipids in early neurodevelopment
and cognitive function. In addition to acting as cell membrane components, polar lipids
have roles in vesicular trafficking, signalling transduction and synaptic plasticity [122,123].
Sphingolipids are particularly enriched in the brain, and studies have shown that the
profile of sphingomyelin in the brain shifts with factors such as ageing and dietary intake
of lipids [124–126].

It has been shown that PUFAs are relatively less abundant in brain tissue than in other
organs, with MUFAs significantly enriched in the brain [127]. Saturated fatty acids are
also abundant in the brain and play structural and metabolic roles in neural tissues; as lipid
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raft components in plasma membranes and cell signalling molecules in pathways such
as NF-κB [128].

The relationship between AD pathology and a high-fat diet (HFD) or obesity is not
fully clear, with some studies suggesting that obesity promotes Aβ pathology [129,130]. At
the same time, other evidence points towards an HFD as protecting the BBB and promoting
cognitive function [131–134].

It is established that systemic inflammation is linked to ageing and worsened cognitive
function. The inflammatory potential of diet is thus able to predict the risk of incident de-
mentia [135] and highlights the importance of preventive dietary interventions in reducing
the incidence of dementia and other chronic diseases. Indeed, numerous investigations
have shown that dietary intake of foods containing beneficial fats with antioxidant and
anti-inflammatory properties has a neuroprotective effect and promotes cognitive func-
tion (Table 2). It appears that dietary lipid source is a critically important factor in health
outcomes, with n-6 and n-3 long-chain polyunsaturated fatty acids (LC-PUFA) having
important neuroprotective properties [136,137], while saturated fats negatively impact
brain health and contribute to neuroinflammation [138]. An epidemiological study re-
ported that intake of n-3 PUFAs, especially α-linolenic acid, was inversely associated with
ND-related mortality [139]. Notbaly, studies have demonstrated the clinical significance of
phospholipid subclasses phosphatidylcholine and phosphatidylethanolamine levels in the
brain. Ageing has been linked with decreased levels these phospholipids in brain regions of
elderly subjects [140]. Moreover, it appears that phospholipid supplementation positively
affects memory and stress performance, as found in human studies [141,142].

Supplementation with the omega-3 PUFA docosahexaenoic acid (DHA) and eicosapen-
taenoic acid (EPA) is beneficial for mood disorders and neurodegenerative disease. EPA
and DHA are known to promote neurite outgrowth and affect synaptic plasticity in rat hip-
pocampal neurons [143,144]. Dietary supplementation with EPA and DHA has been shown
to improve age-related inflammatory signalling and cognitive function [80,145,146]. Many
studies have demonstrated the role of omega-6 PUFA, such as linoleic acid and arachidonic
acid, in neurodegeneration and neuroinflammation. It appears that the intake of linoleic
acid, a PUFA abundant in corn and soybean oils, is neuroprotective and anti-inflammatory
in models of Parkinson’s disease (PD) [94,147]. Arachidonic acid is an omega-6 PUFA
mainly found in animal sources, such as meats, poultry, eggs and seafood, and plays impor-
tant roles in membrane fluidity, neurodevelopment and neuronal signal transduction [148].
Similar to previously discussed lipids, arachidonic acid has neuroprotective properties. For
example, it inhibits cytotoxicity in vitro in cell models of PD [147]. Another study reported
that dietary supplementation with arachidonic acid added to DHA improves impairment
in social interactions in children with autism spectrum disorders [149].

The lipid class of sterols is abundantly present in the brain, and many sterols possess
neuroprotective properties. For example, cholesterol metabolism and homeostasis are
closely linked with brain health and function. Cholesterol levels in the brain affect crucial
processes such as neurodevelopment and neuronal signalling. Evidence also suggests that
dysregulated cholesterol homeostasis contributes to neurodegenerative disease pathol-
ogy [150,151]. The role of phytosterols such as stigmasterol, campesterol and β-sitosterol in
reducing ND pathology has been highlighted in recent investigations. This group of sterols
are naturally present in plants, which possess neuroprotective and cholesterol-lowering
properties and can cross the blood–brain barrier, thereby contributing to cognitive health. A
2013 study showed that consuming stigmasterol-enriched diets in mice leads to reduced Aβ

production, indicating that intake of this phytosterol protects against AD pathology [152].
Dietary intake of marine sterols such as fucosterol, a compound derived from brown algae,
is noted for its antioxidant [153] and anti-inflammatory properties [154]. Fucosterol has
also been shown to decrease Aβ oligomer aggregation and thus reduce Aβ pathology in
AD [155]. Another sterol compound derived from seaweed with similar neuroprotective
properties is saringosterol, derived from Sargassum fusiforme. In AD model mice, dietary
supplementation with 24(S) saringosterol prevented memory decline and reduced Aβ de-
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position [156]. Thus, phytosterols also represent an important source of anti-inflammatory
lipids that can be adopted as part of a dietary regimen to combat neuroinflammation.

Oxysterols are various oxidation products of sterols, a prominent example of which is
7-ketosterol (7-KC). 7-KC is a toxic compound that leads to deleterious processes, such as the
generation of reactive oxygen species (ROS) and cellular death and damage [157], and has been
found in arterial plaques and other disease tissues. There is evidence that 7-KC contributes
to AD pathology by causing microglial dysfunction and impaired clearance of amyloid
plaques [158,159]. 7β-hydroxycholesterol (7β-OHC) is another cholesterol oxidation product
like 7-KC, and similarly to 7-KC, is also implicated in age-related disease and inflammatory
processes. However, studies have shown that it is similar to counter the harmful effects of
these oxysterols, including cytotoxicity and mitochondrial stress, by consumption of nutrients
such as tocopherols [158,160,161]. Alpha and gamma-tocopherols can cross the blood–brain
barrier and counter the neurotoxic effect of oxysterols [162–164]. The impact of sterols on
brain health is thus quite significant, with beneficial phytosterols conferring neuroprotection,
although oxidation products like 7-KC are deleterious and neurotoxic.

4.5. Lipids and Human Disease

The current knowledge of dietary lipids and ND suggests a positive impact on disease
pathology. A study with AD mouse models found that maternal supplementation with
DHA-enriched fish oil improved cognitive function and prevented neuronal dysfunction
in the cortex [165]. Similarly, another study found that DHA supplementation reduces
AD pathology and Aβ oligomer aggregation [96]. An investigation of Parkinson’s rat
models found that pre-treatment with DHA protected against dopaminergic neuronal
death [166]. A similar study with PD mice showed that fish oil supplementation decreased
lipid peroxidation and improved dopaminergic neuronal turnover [95].

Oils containing tocopherols, such as alpha-tocopherol, are enriched in the Mediter-
ranean diet. These are rich in oleic acid and linoleic acid and have significant antioxidant
properties. There is ample evidence for many tocopherols, most notably olive oil, in pre-
venting Alzheimer’s disease. One population study [167] found that the consumption of
olive oil was linked with a lower risk of death and protection from cognitive decline and
stroke. This may be attributed to the highly bioactive phenolic compounds present in olive
oil, such as oleuropein aglycone and oleocanthal, which can reduce Aβ pathology and
decrease neuroinflammation and oxidative stress [168–170]. Indeed, the intake of extra
virgin olive oil has been proven to improve cognitive performance in subjects with mild
cognitive impairment [171].

Argan oil is another type of highly bioactive vegetable oil abundant in alpha-tocopherols.
Studies in rat models have demonstrated the potential of argan oil to protect against
certain neuropsychiatric disorders due to its ability to inhibit oxidative stress, improve
mitochondrial function and modulate inflammation [172]. One study using 158 N murine
oligodendrocytes as a neurodegeneration model reported that argan oil treatment reduced
7-KC-induced cytotoxicity [173]. Milk thistle oil is another primary source of alpha toco-
pherols, and it is similarly reported to ameliorate the oxidative stress effects of oxysterols
such as 7β-hydroxycholesterol [174], which are increased in patients with ageing-related
diseases [175].

A number of important studies highlighting the effect of lipid supplementation or
treatment in in vitro and ex vivo studies are detailed in Table 2.

There is also some evidence for supplementation with dietary lipids to improve the
pathology of Huntington’s disease (HD), a rare autosomal dominant disorder characterised
by progressive loss of nervous system function. Indeed, dysregulation in lipid metabolism
and increased insulin resistance have been linked to the disease [151,176]. In a mouse
model of HD, omega-3 fatty acids such as EPA have improved motor function (but not
neurodegeneration) [177]. However, the evidence so far is insufficient to draw a conclusion
about the role of dietary lipids in HD, and studies with greater sample sizes and more
robust designs are required to fill the research gap.
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5. Conclusions and Future Perspectives

Fats have been popularly regarded as mainly detrimental to health and contributing to
chronic disease. However, much evidence from dietary studies shows that many functional
foods are rich sources of beneficial lipids that support cognitive function. For example,
beneficial lipids such as those abundant in the Mediterranean diet (such as olive oil and
fish oils) can boost cognitive performance in AD models. The impact of dietary fat on
health and disease depends on factors such as lipid source and balance of omega-6 and
omega-3 fatty acids. These functional lipids, most prominently EPA and DHA, are present
in different sources such as dairy, fish and vegetable fats. Therefore, supplementation with
such functional foods should be considered an essential preventive measure to reduce
the incidence of cognitive impairment and improve mental performance. Furthermore, a
balanced intake of unsaturated lipids in the diet positively impacts the functioning of the
brain, gut microbiome, and cardiovascular system.

Further investigations are required, however, to clarify how lipid metabolism is
affected through gut-brain signalling. Future studies would also aim to understand the
specific mechanisms by which dietary lipids may prevent or improve ND pathology, for
example, by reducing neuroinflammation of the generation of reactive oxygen species (ROS)
in the brain. Following on from here, efficacious and highly targeted lipid formulations
must be developed through rigorous clinical testing and development to reduce cognitive
impairment. Finally, further understanding of the transport mechanisms of LC-FAs across
the blood-brain barrier is required to facilitate interventions to prevent the incidence of
neurodegenerative diseases.
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