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Abstract: Background: Methylenetetrahydrofolate reductase (MTHFR) is an enzyme responsible
for producing an active form of folate. The MTHFR T677T genotype may have adverse health
effects associated with weight gain and a reduction in folate availability. Aim: In this study, we
examined the influence of the MTHFR C677T variant on BMI and determined its role as a risk factor
for obesity. We also assessed the relationships between the MTHFR C677T genotype and folate and
vitamin B12 concentrations in subjects before and after radical weight loss. Methods: The study group
consisted of 1712 Caucasian adults of Polish nationality with a wide range of body mass indexes
(BMIs). DNA was extracted from the blood, and the C677T variant was tested with RFLP-PCR and
real-time-PCR. Results: There was no significant influence found for the MTHFR 677 TT genotype
on BMI or the obesity risk in codominant, dominant or recessive inheritance models. Individuals
with obesity and the TT genotype had significantly lower folate concentrations. After radical weight
reduction, the impact of the risk genotype, as well as homeostasis between folate and vitamin B12 in
TT homozygotes, seems to be attenuated. Conclusion: Although the MTHFR 677TT genotype is not
directly related to a higher BMI in Polish adults, it has a detrimental effect on folate concentrations in
individuals with high BMI values.

Keywords: BMI; methylenetetrahydrofolate reductase; folate; MTHFR C677T

1. Introduction

Methylenetetrahydrofolate reductase (MTHFR) plays a pivotal role in folate, homo-
cysteine (Hcy) and methionine metabolism. This enzyme catalyzes the conversion of
5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate (5-MTHF, 5-methyl-THF),
which is an active folate form and a methyl donor for DNA methylation or for the con-
version of Hcy into methionine. An MTHFR polymorphism leads to enzyme dysfunction,
possibly resulting in higher Hcy levels and disturbances in one-carbon metabolism. Thus,
MTHFR gene variants have been linked to many metabolic pathologies, including gesta-
tional weight gain [1]. The MTHFR gene has 12 exons and is located on chromosome 1
(1p36.22). The promoter region of this gene does not have a TATA box [2,3]. The MTHFR
enzyme is composed of catalytic and regulatory domains and is inhibited by binding to S-
adenozylomethionine (SAM), dihydrofolate (DHF) and its polyglutamate analogs. MTHFR
is also regulated by multisite phosphorylation in its serine-rich region, which decreases
enzyme activity [2–4].

There are numerous genetic variants that can affect folate metabolism. The most
investigated variant of the MTHFR gene is the C677T polymorphism (rs1801133). In 1988,
Kang et al. showed the decreased activity and higher thermolability of the MTHFR enzyme
in the lymphocytes of patients with ischemic heart disease [5]. Patients with up to a
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75% decrease in the activity of the enzyme had increased concentrations of total Hcy [6].
Subsequently, Frosst et al. (1995) noted that cytosine (C) is replaced by thymine (T), which
leads to the substitution of alanine with valine at position 222 in the catalytic domain of
methylenetetrahydrofolate reductase. This change influences how it binds to flavin adenine
dinucleotide (FAD), which acts as a cofactor of the enzyme [7]. It was shown that, compared
to those with the 677CC genotype, MTHFR 677TT homozygotes have only about 30% of
the normal enzyme activity, while heterozygotes (CT) have about 65–70% [7,8].

Folates are biologically active, water-soluble compounds found in leafy greens and
as synthetic folic acid. They are very important cofactors, taking part in many essen-
tial biochemical processes. Chemically, the structure of folates is based on a pterin (2-
amino-4-hydroxy-pteridine) heterocyclic ring, a p-aminobenzoyl group and a glutamate
residue [9,10]. There are about 40 natural folate compounds. They differ from each other
in the degree of oxidation of mono-carbon groups, such as methyl (-CH3), methylene
(-CH2-), methenyl (-CH=), formyl (-CH=O) and formimino (-CH=NH), as well as in the
number of glutamic acid residues attached [11]. Folates supplied by the diet are metab-
olized to 5-MTHF in several steps. 5-MTHF is the most active derivative and has the
highest concentration in plasma. Due to its participation in one-carbon metabolism, a
complex interrelationship occurs between folate and vitamin B12 (Scheme 1). Briefly, folates
occurring in food and in supplemented folic acid are absorbed through the mucosa in the
small intestine by a transporter that carries both oxidized and reduced folates as monoglu-
tamates [12]; i.e., before their absorption, polyglutamate forms are hydrolyzed by specific
enzymes. Conversion to polyglutamate is required for folate to be biologically active. In
the cytosol, the first reaction is the reduction to dihydrofolate (DHF) and subsequently to
tetrahydrofolate (THF) [13]. The conversion of 10-formyl-THF and 5,10-methenyl-THF is
catalyzed by methylenetetrahydrofolate dehydrogenase (MTHFD). THF can also be directly
converted into 5,10-methylene-THF by SHMT (serine hydroxymethyltransferase) through
the vitamin-B6-dependent pathway. Then, 5,10-methylene-THF is converted into 5-MTHF
by MTHFR. The irreversible reaction catalyzed by the MTHFR enzyme has a crucial role
in folate metabolism, as it regulates the bioavailability of 5-MTHF, which is necessary for
methionine synthesis. Methionine is transformed into SAM, which is the main methyl
donor for a variety of processes. Vitamin B12 is converted to methylcobalamin, which
serves as a cofactor for methionine synthase (MS). Both 5-MTHF and methylcobalamin
are crucial for the synthesis of methionine from Hcy. The methyl group is donated by
5-MTHF. If the vitamin B12 concentration is too low, MS is inactivated, and functional folate
deficiency occurs. This is because folates become increasingly “stuck” as 5-MTHF and
cannot be utilized for regeneration [14,15].

Disturbances in Hcy metabolism have more often been recognized in people with
obesity [16,17]. Previous studies have assessed the relationship between the MTHFR C677T
polymorphism and metabolic syndrome. Most of them have shown a significant positive
association in people in China [18], but evidence from other populations is conflicting [19].
Thus, in the present study, we examined the influence of the MTHFR C677T variant on BMI
and determined its role as an obesity risk factor in a group consisting of 1712 individuals
from a Caucasian population. The C677T variant results in lower MTHFR enzyme activity,
which leads to a low serum folate status. Clinical evidence indicated that serum folate
levels were significantly lower among those with the 677 TT genotype than among C
allele carriers [20]. However, there is a lack of data describing any potential associations
between radical weight loss, folate status, the balance of folate and vitamin B12, and the
methylenetetrahydrofolate reductase gene polymorphism. Thus, the second aim of this
study was to assess any relationships between the MTHFR C677T variant and the serum
folate and vitamin B12 levels in a group of individuals before and after radical weight loss.
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Scheme 1. The balance between the folate cycle and methionine cycle is affected by vitamin B12.
DHF, dihydrofolate; THF, tetrahydrofolate; MTHFD, methylenetetrahydrofolate dehydrogenase;
SHMT, serine hydroxymethyltransferase; DHFR, dihydrofolate reductase; MTHFR, methylenete-
trahydrofolate reductase; MS, methionine synthase; MAT, methionine adenosyltransferase; SAM,
S-adenosylmethionine; SAH, S-adenosylhomocysteine; SAHH, S-adenosylhomocysteine hydrolase;
NADPH, nicotinamide adenine dinucleotide phosphate; FADH2, dihydroflavine-adenine dinucleotide.

2. Materials and Methods
2.1. Study Population

For this study, 1712 unrelated adults of Polish nationality, with a mean age of
44.8 ± 12.6 years, were recruited between September 2012 and September 2018, as reported
elsewhere [21,22]. The study population consisted of 518 non-obese individuals (healthy
controls) and 1194 patients with a BMI above 30 kg/m2. The patients and the controls
were frequency-matched according to age and gender. A group of participants with class
II/III obesity was assigned to bariatric surgery, as reported elsewhere [22], and follow-up
examinations were performed one year after the operation in 354 of these participants.
The study was approved by the Institutional Bioethics Committees (KB/127/2012 and
KB/67/2017 at the Medical University of Warsaw, Warsaw, Poland). Written informed
consent was obtained from each participant after a full explanation of the study. The
study was carried out in accordance with the principles of the Declaration of Helsinki. A
detailed clinical history was obtained and a full physical examination was performed for
each patient. Anthropometric measurements were taken, and body mass index (BMI) was
calculated for all subjects. Obesity was diagnosed when BMI ≥ 30 kg/m2. Participants
were classified as hypertensive if their average blood pressure measured ≥140/90 mm Hg
or if they were on hypertensive medication at the time of the interview due to a previous
diagnosis of hypertension [21]. A review of medical records was performed, and if a
physician had diagnosed diabetes, glucose-lowering medications had been prescribed,
and diabetes was confirmed by current medical examination, the patient was classified
as diabetic [23]. If participants had been diagnosed according to the National Cholesterol
Education Program-Adult Treatment Panel III (ATP III) guidelines [24] and/or reported
using lipid-lowering medication, they were classified as having dyslipidemia.

2.2. Measurements of Biomarkers

Overnight peripheral fasting blood samples were taken from all subjects. The sera
were isolated, used for analyses or stored at−80 ◦C. All samples were analyzed by specialist
clinical laboratory personnel. The biochemical analyses included measurements of glucose,
HbA1c (%), folate, vitamin B12, total cholesterol, high-density lipoprotein cholesterol (HDL-
C), low-density lipoprotein cholesterol (LDL-C), triglycerides, creatinine (CRE), C-reactive
protein (CRP), 25(OH)D, aspartate aminotransferase (ASP), alanine aminotransferase (ALT)
and erythrocyte sedimentation rate (ESR). Serum levels of interleukin 6 (IL-6) were deter-
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mined with an enzyme-linked immunosorbent assay (ELISA), using the Diaclone Human
IL-6 High Sensitivity ELISA kit (Diaclone SAS, Besancon Cedex, France). The laboratory
staff was kept unaware of the genotypes of the subjects.

2.3. Genotyping of the MTHFR C677T Polymorphism

Genomic DNA from patients and controls was extracted and purified from peripheral
blood samples collected in EDTA tubes using the Blood Mini genomic DNA kit (A&A
Biotechnology, Gdynia, Poland) according to the manufacturer’s instructions and quantified
by a UV-Vis spectrophotometer (Quawell Q3000, Quawell Technology Inc., San Jose, CA,
USA). Analysis of the MTHFR C677T polymorphism was performed by polymerase chain
reaction (PCR) followed by restriction digestion analysis. Amplification was performed
using the forward primer, 5′-TGA AGG AGA AGG TGT CTG CGG GA-3′, and the reverse
primer, 5′-AGG ACG GTG CGG TGA GAG TG-3′, which generate a fragment of 198 bp.
Each PCR reaction of 25 µL involves 1U BIOTAQ™ polymerase (Bioline, Luckenwalde,
Germany), 1× PCR buffer (10×NH4 Reaction Buffer), 1.5 mM magnesium chloride solution
(50 mM MgCl2), 400 µM dNTP (Thermo Scientific™, Waltham, MA, USA) and 0.4 pmol of
each primer. Samples were amplified using the following PCR conditions: 5 min of initial
denaturation at 94 ◦C, followed by 35 cycles of 94 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for
30 s, with a final extension at 72 ◦C for 3 min. The amplified PCR product was digested
with HinfI restriction enzymes (Thermo Scientific™, Waltham, MA, USA). The digestion
reactions contained 20 µL of PCR product, 2.5 µL of R buffer (supplied with enzyme), 0.5 µL
of restriction enzyme, and 2 µL of nuclease-free water. Restriction analysis was performed
for 4 h at 37 ◦C. The digestion products were analyzed by electrophoresis on ethidium
bromide-stained 2.5% agarose gel and visualized under UV light (ChemiDoc MP, Bio-Rad,
Hercules, CA, USA). The digestion fragment sizes were a single 198 bp band for the 677 CC
genotype; 198 bp, 175 bp and 23 bp for 677 CT; and 175 bp and 23 bp for 677 TT. The
genotypes were tested twice, and genotyping was 100% concordant. A second genotyping
was performed using a pre-validated TaqMan Assay designed by Life Technologies (Assay
ID:C___1202883_20; SNP ID:rs1801133). The experimental schemes are shown in Figure 1.
Probes were labeled with VIC and FAM fluorochromes to identify the homozygotes and
heterozygotes. Reactions were conducted in 96-well plates with a total volume of 12 µL. We
used 2 ng of genomic DNA, TaqMan Genotyping Master Mix 1× (Life Technologies) and
TaqMan Genotyping Assay 1×. PCR cycling conditions were 95 ◦C for 10 min, 40 cycles of
95 ◦C for 15 s, and 60 ◦C for 1 min. After amplification, the fluorescence data were captured
using a ViiA7 Real-Time PCR System (Applied Biosystems, Life Technologies, Waltham,
MA, USA).
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2.4. Statistical Analyses

Categorical variables are reported as frequencies and percentages. The parameters
measured as continuous variables were compared by ANOVA, Student’s, Kruskal–Wallis
or Mann–Whitney test according to the distribution. Continuous variables are presented
as means with standard deviations to allow better comparison with other publications.
Categorical variables were compared using the Chi-square test. The distributions of MTHFR
C677T genotypes were analyzed for deviations from Hardy–Weinberg equilibrium using
Chi-square analysis. Unconditional logistic regression analysis was used to evaluate the
associations of the studied MTHFR C677T variant with obesity risk. Odds ratios (ORs)
and 95% confidence intervals (CIs) were calculated in both univariable and multivariable
codominant, dominant and recessive models. The ability to recognize the lower folate
status by the MTHFR 677 TT genotype was assessed by receiver operating characteristic
(ROC) curves and the associated area under the curve (AUC). The optimal cut-off point
was calculated as the value whose sensitivity and specificity were the greatest. A linear
association between serum folate and B12 levels was investigated using Spearman’s rank
correlation coefficient.

3. Results

A total of 1712 individuals (1164 women and 548 men) with a mean age of
44.8 ± 12.6 years and an average BMI of 34.1 ± 10.1 kg/m2 were enrolled in the study. The
study population consisted of 518 non-obese individuals (healthy controls) and 1194 pa-
tients with obesity. As expected, the subjects with obesity manifested significantly higher
body mass indexes, fasting glucose, total cholesterol, low-density lipoprotein cholesterol
(LDL-cholesterol), triglycerides (TG), systolic blood pressure and diastolic blood pressure
(DBP) but lower high-density lipoprotein cholesterol (HDL-cholesterol) (Table 1).

Table 1. Clinical and biochemical characteristics of the study subjects.

Characteristics BMI < 30 BMI ≥ 30 p

Number of subjects 518 1194 -
Gender (male/female) 167/351 381/813 0.893

Age (years) 45.3 ± 15.0 44.6 ± 11.4 0.271
Height (cm) 167.9 ± 9.3 168.8 ± 9.0 0.086
Weight (kg) 68.9 ± 12.9 117.6 ± 24.1 <0.001

BMI (kg/m2) 24.3 ± 3.3 41.2 ± 7.2 <0.001
Glucose (mg/dL) 87.5 ± 19.5 105.8 ± 32.5 <0.001

Total cholesterol (mg/dL) 177.1 ± 37.2 188.2 ± 40.20 <0.001
HDL-cholesterol (mg/dL) 57.4 ± 14.9 45.0 ± 11.9 0.007
LDL-cholesterol (mg/dL) 107.6 ± 34.5 112.2 ± 35.2 <0.001

Triglycerides (mg/dL) 118.3 ± 136.5 157.6 ± 88.1 <0.001
Systolic blood pressure (mm Hg) 122.1 ± 15.6 134.9 ± 18.0 <0.001
Diastolic blood pressure (mm Hg) 76.4 ± 10.3 79.3 ± 10.6 <0.001

Data are presented as means ± standard deviations (SD); BMI: body mass index, HDL, high-density lipoprotein;
LDL, low-density lipoprotein cholesterol. Chi-square, Student’s and Mann–Whitney tests were performed where
appropriate.

A BMI < 30 was found in 518 subjects, 257 were categorized as having class I obesity
(BMI: 30.0–34.9 kg/m2), 298 had a BMI in the range of 35–39.9, and 640 had a BMI above
40 kg/m2. The results of the genotype distribution in the populations of these four groups
(BMI < 30, obesity classes I, II and III) are shown in Table 2. The MTHFR 677 TT genotype
was not associated with higher BMI levels across the four strata of BMI (Table 2). The
distribution of the MTHFR C677T genotypes across the subject groups did not deviate from
the Hardy-Weinberg equilibrium (p > 0.05).
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Table 2. Distribution of BMI (body mass index) in studied adults, n = 1712, stratified by MTHFR
C677T genotype.

Genotypes
MTHFR C677T

Cohort n
(%) HWE BMI (kg/m2)

Mean ± SD
95% CI Statistics

p-Value *

Total n = 1712

TT 148 (8.6) 35.3 ± 9.8 33.7–36.9
CT 752 (44.0) 0.159 35.6 ± 9.8 34.8–36.2 0.06
CC 812 (47.4) 36.7 ± 10.2 35.9–37.4

BMI < 30 n = 518

TT 51 (10) 25.2 ± 3.50 24.3–26.2
CT 235 (45) 0.531 24.1 ± 3.28 23.6–24.5 0.07
CC 232 (45) 24.4 ± 3.33 24.0–25.0

Class I obesity (BMI: 30–34.99) n = 257

TT 27 (11.0) 32.6 ± 1.7 31.9–33.3
CT 112 (44) 0.980 32.2 ± 1.8 32.3–32.8 0.59
CC 117 (46.0) 32.1 ± 1.4 32.1–32.6

Class II obesity (BMI: 35–39.99) n = 298

TT 24 (8) 37.6 ± 1.5 36.9–38.2
CT 137 (46) 0.202 37.5 ± 1.5 37.3–37.8 0.189
CC 137 (46) 37.2 ± 1.4 37.0–37.5

Class III obesity (BMI: ≥40) n = 640

TT 46 (7) 46.9 ± 6.0 45.2–48.7
CT 268 (42) 0.366 45.9 ± 5.0 45.3–46.5 0.162
CC 326 (51) 46.7 ± 5.9 46.1–47.4

* ANOVA; BMI: body mass index; CI: confidence interval; HWE—Hardy–Weinberg equilibrium.

The minor allele frequency (MAF) for the 677 T variant in the whole group was 0.31,
where the genotype frequencies of CC, CT and TT accounted for 47.4%, 44.0% and 8.6%,
respectively, and these are consistent with those previously reported for Polish [25], UK [26]
and Bosnia and Herzegovina populations [27]. Next, we examined the genetic associations
between the MTHFR C677T variant and obesity risk in both univariable and multivariable
dominant, recessive and codominant models. A BMI above 30 kg/m2 was not associated
with the MTHFR C677T polymorphism in the univariable model, nor was it associated after
adjustments for hypertension, diabetes and dyslipidemia (Table 3).

Table 3. Association of the MTHFR C677T polymorphism with obesity risk.

MTHFR C677T
BMI ≥ 30
(n = 1194)

n (%)

BMI < 30
(n = 518)

n (%)

Crude OR
(95% CI) p-Value Adjusted OR

# (95% CI) p-Value

Codominant
model

CC 580 (49) 232 (45) 1.00 - - -

CT 517 (43) 235 (45) 0.88
[0.71–1.09] 0.248 0.88

[0.71–1.09] 0.251

TT 97 (8) 51 (10) 0.76
[0.52–1.03] 0.149 0.83

[0.55–1.26] 0.340

Dominant
model

CC 580 232 1.00 - - -

TT + CT vs. CC 614 286 0.86
[0.70–1.06] 0.149 0.94

[0.74–1.18] 0.579
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Table 3. Cont.

MTHFR C677T
BMI ≥ 30
(n = 1194)

n (%)

BMI < 30
(n = 518)

n (%)

Crude OR
(95% CI) p-Value Adjusted OR

# (95% CI) p-Value

Recessive model

CC + CT 1097 467 1.00 - -

TT 97 51 0.81
[0.57–1.16] 0.249 0.86

[0.57–1.28] 0.453

Allelic model
(T/C) 0.30/0.70 0.25/0.75 0.88

[0.75–1.03] 0.103 0.96
[0.75–1.23] 0.725

Abbreviations: BMI, body mass index; MTHFR, methylenetetrahydrofolate reductase; OR, odds ratio; CI, confi-
dence intervals; # adjusted for potential confounders, including hypertension, diabetes dyslipidemia.

As the MTHFR C677T polymorphism affects folate status, a relation between serum
folate concentrations and the studied variant was also examined in 908 of the patients
with high BMI values and excess adiposity, who were assigned to bariatric surgery and
underwent serum B12 and folate concentration testing (Table 4). Based on their MTHFR
C677T genotype, we divided patients into three groups, TT vs. CT vs. CC, and the
characteristics of the subjects are presented in Table 4. The individuals carrying the MTHFR
677 TT genotype had significantly lower concentrations of serum folate (6.6 ± 2.9 ng/mL)
compared to the subjects with the CT genotype (8.0 ± 3.7 ng/mL) and the CC genotype
(8.2 ± 3.7 ng/mL) (Table 4). Receiver operating characteristic (ROC) curves were used
to evaluate the 677 TT genotype as a marker of lower folate levels in individuals with
high BMI values (class II/III obesity). Folate concentrations <6.72 ng/mL (according to the
Youden index), with a sensitivity of 67% and a specificity of 61%, were found to significantly
discriminate between patients with the TT and CC genotypes. The AUC for ROC was 0.64
(95% CI 0.57–0.71, p = 0.0001).

Table 4. The characteristics of patients with BMI ≥ 35 kg/m2 according to MTHFR C677T genotype
and folate status.

MTHFR C677T Polymorphism

TT n = 69 CT n = 392 CC n = 447 ANOVA/Kruskal–Wallis
Tests pVariables Mean ± SD Mean ± SD Mean ± SD

Age in years 43.7 ± 11.7 44.6 ± 11.7 43.8 ± 10.4 0.561
Weight (kg) 123.7 ± 24.4 122.0 ± 22.3 124.6 ± 23.6 0.276

BMI 43.3 ± 7.2 42.7 ± 6.2 43.6 ± 7.0 0.139
Fat % 43.7 ± 6.1 44.0 ± 6.6 44.2 ± 6.2 0.845

Fat mass (kg) 50.3 ± 12.3 52.0 ± 35.3 52.8 ± 25.7 0.821
Systolic blood pressure (mm Hg) 140.1 ± 22.8 135.7 ± 18.6 135.8 ± 18.3 0.236
Diastolic blood pressure (mm Hg) 79.5 ± 11.5 77.6 ± 10.1 77.4 ± 10.1 0.361

Fasting glucose (mg/dL) 108.1 ± 29.5 107.5 ± 33.5 108.4 ± 35.8 0.931
HbA1c (%) 6.1 ± 1.2 6.1 ± 1.3 6.2 ± 1.6 0.601

Total cholesterol (mg/dL) 183.6 ± 38.1 184.9 ± 39.8 188.8 ± 39.5 0.754
LDL-cholesterol (mg/dL) 107.3 ± 34.8 108.9 ± 35.4 110.8 ± 34.1 0.602
HDL-cholesterol (mg/dL) 45.1 ± 12.6 44.6 ± 12.3 44.1 ± 10.8 0.709

Triglycerides (mg/dL) 156.3 ± 72.8 156.9 ± 87.6 156.1 ± 75.3 0.988
Alanine aminotransferase (U/L) 45.13 ± 23.2 48.5 ± 28.4 47.5 ± 47.4 0.785

Aspartate aminotransferase (U/L) 27.5 ± 19.2 29.5 ± 18.7 28.5 ± 29.6 0.766
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Table 4. Cont.

MTHFR C677T Polymorphism

TT n = 69 CT n = 392 CC n = 447 ANOVA/Kruskal–Wallis
Tests pVariables Mean ± SD Mean ± SD Mean ± SD

B12 (pg/mL) 320.6 ± 147.1 338.4 ± 149.3 329.9 ± 129.4 0.526
Folate (ng/mL) 6.6 ± 2.9 8.0 ± 3.7 8.2 ± 3.7 0.002
IL-6 (pg/mL) 3.1 ± 2.2 3.6 ± 5.1 3.3 ± 3.4 0.590

ESR 16.5 ± 12.1 16.7 ± 12.4 16.3 ± 13.4 0.919
CRP (g/L) 9.0 ± 8.1 9.4 ± 14.1 9.0 ± 7.9 0.875

CRE (mg/dL) 0.81 ±0.13 0.86 ±0.2 0.85 ±0.2 0.196
25(OH)D (ng/mL) 19.51 ± 7.9 19.3 ± 10.8 18.8 ± 9.7 0.750

The values are given as the means ± standard deviations (SD). Abbreviations: BMI, body mass index; HbA1c,
glycosylated hemoglobin; LDL-cholesterol, low-density lipoprotein cholesterol; HDL-cholesterol, high-density
lipoprotein cholesterol; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; CRE, creatinine. p-values
were considered significant when p < 0.05.

Follow-up examinations were performed one year after bariatric surgery for 354 of
the participants (279 women and 75 men). Individuals who missed the follow-up visit
were excluded from the final analyses. Changes in anthropometric parameters and folate
and B12 levels following radical weight loss according to the MTHFR C677T genotype
are shown in Table 5. In the MTHFR 677 TT genotype group, it was found that patients’
body weight (BW) had decreased by −36.5 ± 14.4 kg, and their BMI had decreased by
−12.9 ± 4.4 (kg/m2); similar changes were found in C allele carriers (Table 5). The mean
percentage of weight loss (WL %) and the percentage of excess weight loss (ExWL %) for
the whole group were 31.0 ± 8.1% and 74.3 ± 23.3%, respectively, and we did not find an
influence of the MTHFR C677T genotype on weight reduction (Table 5). Changes in folate
levels (∆ folate) and B12 levels (∆ B12) after weight loss were calculated by subtracting final
concentrations from baseline values. The levels of B12 in subjects carrying the TT genotype
decreased by −52.7 ± 165.6 (pg/mL), but the amount of change varied insubstantially
among MTHFR C677T genotypes. However, after radical weight loss, the increase in mean
serum folate levels was the highest in individuals carrying the TT genotype (Table 5).

Table 5. Changes in anthropometric and biochemical parameters following radical weight reduction
according to MTHFR C677T genotype.

MTHFR C677T Polymorphism

Variables TT n = 27 CT n = 154 CC n = 173 (ANOVA Tests) p

∆BMI (kg/m2) −12.9 ± 4.4 −12.8 ± 4.1 −13.8 ± 4.2 0.063
∆BW (kg) −36.5 ± 14.4 −36.4 ± 12.2 −39.2 ± 12.1 0.107
WL (%) −30.7 ± 9.4 −30.5 ± 8.6 −31.6 ± 7.4 0.435
ExWL % 75.4 ± 23.8 75.2 ± 24.3 73.2 ± 22.3 0.708

∆ B12 (pg/mL) −52.7 ± 165.6 −26.3 ± 186.9 −20.19 ± 132.1 0.617
∆ Folate (ng/mL) 3.03 ± 5.4 0.14 ± 5.18 0.66 ± 5.61 0.043

∆, change (final–baseline); BW, body weight; WL %, weight loss percentage defined as 100 × (final-
baseline)/baseline; ExWL %, excess weight loss percentage, defined as preoperative weight minus follow-up
weight, divided by the excess weight and multiplied by 100; BMI, body mass index. Data expressed as mean ± SD.

Most interestingly, the effect of the MTHFR C677T genotype on serum folate levels
was dependent on weight. Individuals with obesity with the MTHFR 677 TT genotype had
the lowest serum folate concentrations (Table 4). After significant weight reduction, the
impact of the risk genotype seems to be attenuated (Figure 2).
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Figure 2. The serum folate concentrations at baseline (A) and after body-weight reduction (B) ac-
cording to MTHFR C677T genotype. The boxplots show the mean, SE (standard error) and 1.96 × SE.
ANOVA with Tukey’s multiple comparisons test was performed.

Both folates and vitamin B12 have a crucial role in the maintenance of one-carbon
metabolism and are responsible for many of the reactions and processes in the human
body. Vitamin B12 enables proper and effective folate utilization. A statistically significant
positive correlation between the folate and vitamin B12 concentrations was seen in patients
with the MTHFR CC and CT genotypes (p < 0.05). This was true for both the baseline visit
(Figure 3A) and the visit after body-weight reduction (Figure 3B) and can be explained by
the mutual participation of folate and vitamin B12 in metabolic pathways.
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Figure 3. The relationships between serum vitamin B12 concentrations and folate levels according to
the methylenetetrahydrofolate reductase (MTHFR) C677T genotype. Smoothing curves were drawn
between B12 levels and folate levels at baseline (A) and after body-weight reduction (B).

In patients with the MTHFR 677 TT genotype, Spearman’s correlations did not reach
significance (p > 0.05, Figure 3B) after body-weight reduction. Thus, in individuals with the
risk-associated TT genotype, the homeostasis between serum folate and B12 levels may be
disturbed in comparison to those with the other MTHFR 677 genotypes.
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4. Discussion

About 10% of Caucasians have the MTHFR 677 TT genotype, which is responsible
for a less-active thermolabile variant of 5, 10-methylenetetrahydrofolate reductase [7]
and associated with lower folate levels [28]. In this study, patients with a BMI above
35 kg/m2 and with the risk-associated MTHFR 677 TT genotype had significantly lower
concentrations of serum folate than C allele carriers. Our results are in line with the
study by Bueno et al. [29], where folate serum levels were lower in 781 adults from a
Spanish population with the MTHFR 677 TT genotype compared to the wild-type genotype.
However, it cannot be excluded that the risk of low-folate status associated with the MTHFR
677 TT genotype may depend on a combination with other polymorphisms, as previously
reported [29,30]. Folate consumption also influences folate status. Previously, serum folate
concentrations were measured in young Japanese women. The intake of dietary folates
was calculated based on dietary records. Even if taking in the same amounts of folates,
patients with the TT genotype had lower folate concentrations. The authors suggested
that people with the TT genotype consume more folates in their diet [31]. On this basis, it
can be concluded that the MTHFR C677T variant contributes to disturbances in the folate
cycle, as folate cannot be sufficiently converted into a biologically active form. Additionally,
although the MTHFR 677 TT genotype was not directly related to BMI among the studied
Polish adults, it does have a detrimental effect on folate concentrations in individuals with
high BMI values. An important strength of our study is that it is the first to consider the
influence of radical weight reduction on folate status according to the MTHFR genotype.
Our data showed that the folate-lowering effect of the TT genotype was pronounced
among participants with excess body weight and low baseline folate. Radical weight
loss significantly modified this interaction. The mechanisms linking fat accumulation
and folate deficiency remain unknown. It has previously been reported that the folate
serum concentration was lower in overweight/obese people and that it was independent
of the total folate intake [32,33]. Similarly, in an earlier Polish study, participants with high
BMI values (n = 213) had 8.5% lower serum folate concentrations than the controls [25].
An analysis carried out by Kim et al. is in line with the findings mentioned above. The
authors found a significant negative correlation between serum folate concentrations and
BMI values in a group of 1462 pregnant Korean women [33]. The folate deficiency and
altered folate metabolism in individuals with high body fat can be explained by the fact
that adiposity is associated with systemic oxidative stress. Fat mass expansion impairs the
synthesis of adipocyte-derived mediators and causes inflammation, which is commonly
associated with increased ROS generation [34,35], resulting in an increased need for folates.
The beneficial effect of folate is partially attributed to its maintenance of the cellular
redox status by decreasing oxidative stress [36]. In our study, positive relationships were
noted between levels of folate and vitamin B12 in patients with MTHFR 677 CC and CT
genotypes. The metabolism of folate is associated with the action of vitamins B6 and B12.
Insufficient concentrations of these or an ineffective MTHFR enzyme can result in a decrease
in methylation and in the higher production of toxic metabolites. For instance, vitamin
B12 and folate are involved in the metabolic pathways of asymmetric dimethylarginine
(ADMA) and symmetric dimethylarginine (SDMA), which are toxic amino acids that inhibit
nitric oxide (NO) production. Thus, it can be hypothesized that folate and vitamin B12
deficiency results in high ADMA or SDMA levels and in the development of ADMA-related
pathologies in individuals with obesity [22]. This can, at least in part, be explained by
altered patterns of epigenetic modifications, together with the expansion of fat mass related
to a greater concentration of serum lipid peroxides [37].

Variants of MTHFR can increase the genetic risk of obesity [38]. The functional
integrity of the enzymes involved in folate/methionine cycles is necessary for the synthesis
of the methyl-donor groups that are responsible for proper DNA methylation. DNA
methylation is involved in regulating gene expression, including the leptin gene, which
increases the risk of developing obesity [39]. However, the results of this study showed no
statistical differences between obese and non-obese individuals in terms of the prevalence



Biomedicines 2022, 10, 3140 11 of 13

of the MTHFR C677T polymorphism, which is consistent with results obtained in a young
population in Mexico [40], in 421 patients of Polish origin [41] and in a population of
Brazilian patients [19]. The advantage of this study is that it involved patients with a wide
range of BMIs, which allowed a comparison to be made of the distribution of genotypes
of MTHFR C677T across four large groups categorized according to BMI (BMI < 30; BMI:
30–34.99; BMI: 35–39.99; and BMI: ≥40). Our results suggest that the 677 TT genotype
is not a risk factor for a higher BMI. However, there are a number of studies that show
contradictory results [18,42,43]. Further studies on a larger number of patients are still
necessary to clarify the role of the MTHFR C677T genotype in the development of obesity.

This study had some limitations. We have not considered other possible genetic and
metabolic factors which are known to affect the balance between the folate cycle and the
methionine cycle. Homocysteine concentrations were not measured, data on which could
provide additional insight into 5-MTHF synthesis or bioavailability.

In conclusion, the MTHFR 677 TT genotype was not found to have a significant
influence on BMI or the obesity risk in codominant, dominant or recessive inheritance
models. Patients with obesity and with the MTHFR TT genotype had significantly lower
folate concentrations. A disturbed balance between folate and vitamin B12 concentrations
after significant weight loss in individuals with the MTHFR T677T genotype is suggested
by the data. Further large-scale studies are still needed to confirm our results.
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