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Abstract: Angiogenesis is an essential process by which new blood vessels develop from existing
ones. While adequate angiogenesis is a physiological process during, for example, tissue repair,
insufficient and excessive angiogenesis stands on the pathological side. Fine balance between pro-
and anti-angiogenic factors in the tissue environment regulates angiogenesis. Identification of these
factors and how they function is a pressing topic to develop angiogenesis-targeted therapeutics.
During the last decade, exciting data highlighted non-metabolic functions of intermediates of the
mitochondrial Krebs cycle including succinate. Among these functions is the contribution of succinate
to angiogenesis in various contexts and through different mechanisms. As the concept of targeting
metabolism to treat a wide range of diseases is rising, in this review we summarize the mechanisms by
which succinate regulates angiogenesis in normal and pathological settings. Gaining a comprehensive
insight into how this metabolite functions as an angiogenic signal will provide a useful approach to
understand diseases with aberrant or excessive angiogenic background, and may provide strategies
to tackle them.

Keywords: succinate; succinate dehydrogenase (SDH); succinate receptor-1 (SUCNR1); hypoxia-inducible
factor 1-alpha (HIF1α); angiogenesis

1. Introduction

Sprouting of new blood vessels from pre-existing ones is termed angiogenesis [1]. The
importance of this process extends from fetal development to reproduction and wound
repair [2]. However, in pathologies such as cancer, rheumatoid arthritis and diabetic
retinopathy angiogenesis is rather a villain [1]. Angiogenesis is a complex process in-
cluding vessel destabilization, endothelial cell proliferation, migration and differentiation,
and eventually maturation of newly formed vessels [3]. The process is tightly regulated,
and imbalance between pro- and anti-angiogenic factors can result in excessive or inad-
equate angiogenesis [1]. Hence, deciphering the cellular and molecular mechanisms of
angiogenesis is mandatory for the development of targeted therapeutics.

Angiogenesis is an energy-requiring process. Even though endothelial cells prefer
glycolysis for their energy needs, recent findings suggest that endothelial mitochondrial
function is vital for vasodilatory and oxidative stress responses [4–6]. Perinuclear clustering
of mitochondria in pulmonary arterial endothelial cells during hypoxia results in accumu-
lation of reactive oxygen species (ROS) and subsequent vascular endothelial growth factor
(VEGF) expression [7]. There is also evidence that proliferating endothelial cells increas-
ingly depend on mitochondrial oxidative phosphorylation for their energy supply and,
under growth, endothelial cells consume three times more oxygen than quiescent cells [8].
Recently, it has been demonstrated that both glycolysis and oxidative phosphorylation are
crucial for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial
cells [9].
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Over the last few years, an enormous expansion in the knowledge and understanding
of metabolic reprogramming has occurred as metabolic shifts accompanying pathologies
are not just explained in the context of energy production and biosynthesis. An important
role of metabolites in regulating cell behavior and fate has become a key focus of research.
One major mitochondrial metabolite, succinate, has long been identified as an essential
intermediate in the Krebs cycle, where succinate oxidation to fumarate occurs via the
enzyme complex succinate dehydrogenase (SDH), providing electrons to the respiratory
chain. SDH consists of four protein subunits encoded by SDHA, SDHB, SDHC and SDHD,
all of which are encoded by nuclear genome. The enzyme complex is present in the
inner mitochondrial membrane and has a matrix-facing domain, where the enzymatic
activity of the complex takes place, and a hydrophobic membrane-anchoring domain [10,11].
Recently, numerous studies have provided strong evidence supporting roles of succinate
outside metabolism, particularly in signal transduction and pseudohypoxia, and have been
reviewed elsewhere [12].

Lately, the challenges that have imposed antiangiogenic, growth-factor-directed ther-
apies have raised the need for a novel approach. Hence, targeting metabolism might be
vital to arrest vessel growth in diseases with altered angiogenesis, specifically since the
concept that endothelial cells adapt their metabolism in response to angiogenic signals has
been established [13], and metabolic maladaptation of endothelial cells in diseases with
endothelial dysfunction is now evident [14,15]. In this review, we aim to highlight the key
mechanisms by which the metabolite succinate regulates angiogenesis as potential targets
to manipulate vessel growth in these pathologies. We discuss the fundamental principles
and shed light on understudied areas that require further investigation. Revealing how
metabolites drive endothelial cell behavior is not only an exciting research topic but is also
a therapeutically relevant one.

2. Angiogenesis

Angiogenesis is a complex biological process. It occurs not only under physiological
conditions, but also in numerous diseases such as cancer and chronic inflammatory diseases,
e.g., rheumatoid arthritis [1]. Under normal conditions, angiogenesis is a tightly regulated
process that creates a network of vessels which remodel into arteries and veins [16]. While
vessels are quiescent in an adult, endothelial cells lining the vessels retain a high ability
to sense and respond to angiogenic stimuli in the environment [17]. Indeed, endothelial
cells, in response to angiogenic signals, become motile and tip cells protrude filopodia and
lead following endothelial cells [18]. Stalk cells subsequently develop fewer filopodia and
retain a proliferative phenotype supporting sprout elongation. As vessel loops develop, the
establishment of a basement membrane and the recruitment of mural cells stabilize newly
formed vessels [17]. In addition to sprouting, angiogenesis can occur through splitting of
pre-existing vessels via intussusception. In this process, transluminal pillar formation and
subsequent vascular splitting occur [19]. Furthermore, induction of blood vessel growth by
blood-circulating precursor cells has been proposed [20].

Several biochemical and biophysical cues in the environment regulate angiogenesis.
For instance, a plethora of growth factors including VEGF, angiogenin and transforming
growth factor-β act as signals inducing angiogenesis [21]. In cancer, VEGF can be released
by cancer cells, driven by hypoxia, and induces tumor angiogenesis by engaging VEGF
receptor 2 on endothelial cells [22]. Importantly, tumor-associated macrophages (TAMs)
act as a crucial source of angiogenic factors such as VEGF [23]. In addition to soluble
mediators, members of membrane-bound integrins, ephrins and cadherins affect blood
vessel formation together with metalloproteinases and the plasminogen activator/plasmin
system [1]. In parallel, mechanical cues such as extracellular matrix stiffness, shear stress
and tension regulate angiogenesis. However, they are less studied and require more
investigation [24]. Figure 1 summarizes types of angiogenesis and key regulatory factors.
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3. Metabolic Regulation of Angiogenesis

In diseases such as cancer, processes like metabolism and angiogenesis are critical for
tumor progression. Increased resistance of certain tumors to antiangiogenic therapies has
been linked to metabolic symbiosis in cancer cells denoting that metabolic adaptations have
a significant impact on cellular response to antiangiogenic therapies [25]. Additionally,
recent data demonstrated that growth factors induce metabolic changes in endothelial
cells that drive their phenotype during angiogenesis [26]. Indeed, distinct metabolic signa-
tures have been noted among tip cells, stalk cells and quiescent endothelial cells during
angiogenesis [27]. For instance, administration of etomoxir, a drug targeting carnitine
palmitoyl transferase in mitochondria, to juvenile mice with retinopathy of prematurity
ameliorated retinal neovascularization [28]. These studies highlight the important link
between metabolic rewiring and angiogenesis. In the next sections, we will focus on a
mitochondrial metabolite, succinate, and provide an overview of the different mechanisms
by which accumulation of this metabolite might regulate angiogenesis. Adding the con-
tribution of metabolites such as succinate as an extra dimension to our understanding
of angiogenesis will provide new opportunities to develop therapeutics that target this
critical process.

4. Succinate in Biological Fluids and Tissues between Health and Disease

Succinate is generated in the mitochondria, but it is exported to the cytosol by dicar-
boxylate carrier localized in the inner mitochondrial membrane [29], and voltage-dependent
anion channel (VDAC/porin) in the mitochondrial outer membrane [30]. Succinate can be
measured in blood at concentrations of 2–20 µM [31,32]. However, succinate concentration
can rise up to mM range under pathological conditions such as ischemia [33]. Detailed
tracing of the mechanisms of succinate accumulation and the patho/physiological conse-
quences of its accumulation is beyond the focus of this review. Accordingly, in this section
we will only highlight selected examples.

In the serum of patients with myocardial infarction plus coronary artery disease,
elevated succinate concentrations in the mM range were found in contrast to undetectable
levels in age-matched controls [33]. Likewise, circulating levels of succinate were higher
in patients with head and neck squamous cell carcinoma [34], and in Cowden Syndrome
patients with germline mutations of phosphatase and tensin homolog (PTEN), SDHB
or SDHD [35], than in the healthy controls. A recent publication highlighted a positive
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association between plasma succinate levels, visceral adipose tissue mass, triglycerides and
pro-inflammatory omega-6 oxylipins levels. Hence, succinate levels in plasma might reflect
cardiovascular status in young adults [36]. Furthermore, Zhu et al. unraveled a panel of
five serum metabolites, including succinate, which could be used for monitoring colorectal
cancer progression by sequential metabolite ratio analysis of serial serum samples of
patients [37]. Likewise, Gong et al. identified a panel of biomarkers, including significantly
elevated serum level of succinate, which could distinguish hepatocellular carcinoma from
healthy controls and patients with HBV-cirrhosis [38].

Succinate accumulation was also reported in brown adipose tissue upon exposure to
cold and activated thermogenic respiration in brown adipocytes [39]. Furthermore, serum
and intestinal levels of succinate were elevated in patients with Crohn’s disease, demon-
strating a role of this metabolite in intestinal inflammation [40]. In hemorrhagic shock,
succinate accumulated in plasma and lung tissue driven mainly by glutaminolysis [41].
Furthermore, we recently demonstrated increased succinate concentrations in gestational
diabetic term placentas relative to matched controls, denoting that succinate accumulation
is a hallmark of this pregnancy pathology [42]. Similarly, increased succinate levels in
prostatic cancer tissue accompanied with reduced SDHD expression were described as an
important metabolic feature in a cohort of prostate cancer patients. Notably, this study
applied a strategy to avoid systematic bias due to tissue heterogeneity by matching the
average stroma tissue content in all samples [43]. A further study using benign and prostate
cancer cells demonstrated that loss of PTEN was associated with increased succinate levels
and enhanced succinate-driven mitochondrial respiration [44]. Collectively, these studies
support the idea that monitoring succinate levels in the circulation or in the tissue could
provide a new tool for diagnosis or therapeutic intervention of pathologies accompanied
with metabolic aberrations.

In addition to plasma and tissues, succinate can also be found in other biological
fluids such as urine. Succinate was among 16 metabolites that were distinctly detected in
urine samples of patients with gastric cancer [45], colorectal cancer [46] and esophageal
cancer [47,48]. In bladder cancer, mass-spectrometry-based metabolomics of urine samples
suggested succinate and other compounds such as palmitoyl-sphingomyelin, lactate and
adenosine as the most putative markers differentiating cancer from non-cancer samples [49].
Cala et al. used metabolomics and lipid fingerprinting to investigate urinary metabolite
alterations of breast cancer in Hispanic women. Overall reduction in the expression of Krebs
cycle metabolites was observed and a combination of succinate and dimethyl-heptanoyl-
carnitine was found as a potential urinary biomarker for breast cancer [50].

Additionally, in human subjects with proliferative diabetic retinopathy, vitreous succi-
nate and VEGF were increased. In this study, the authors suggested a positive feedback
mechanism between VEGF and succinate since VEGF inhibition decreased succinate [51].
Moreover, in early-stage oral squamous cell carcinoma, succinic acid content, among var-
ious metabolites, in saliva was increased compared to healthy people [52]. Higher fecal
succinate levels were measured in colorectal cancer patients compared to the healthy con-
trols and this altered metabolic profile was proposed to distinguish colorectal cancer even
at early stages [53].

Similar findings were described in rodent models of hypertension and metabolic
disease, where circulating succinate concentration was increased [31]. Elevated succinate
levels were also described in diabetic mice kidney and urine [54], as well as diabetic rat
retinas [55]. In kidneys of diabetic mice, succinate acted as a suppressor for mitochondrial
β-oxidation via elevation of the mitochondrial NADH/NAD+ ratio. Hence, accumulation
of succinate caused lipid accumulation in diabetic kidneys [56]. In the rat liver, non-
enzymatic formation of succinate via α-ketoglutarate decarboxylation in mitochondria
under oxidative stress was unraveled and resulted in decreased ROS levels [57], while
increased levels of succinate due to inverse catalysis of SDH and increased oxidative stress
and neuronal damage were demonstrated in a rat model of status epilepticus induced by
kainic acid [58].
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At the cellular level, succinate accumulation has been reported in immune cells sub-
jected to inflammatory stimuli. For instance, in LPS-stimulated macrophages, succinate
concentration was increased and glutamine-dependent anaplerosis was the main source
of succinate in addition to GABA shunt [12,59]. Similarly, elevated succinate occurred in
synovial macrophages and fibroblasts subjected to LPS stimulation and low oxygen, re-
spectively. These findings corroborated a role of succinate in modulating the inflammatory
response in rheumatoid arthritis [60].

Another critical source of succinate in the body is the microbiome, particularly gut
microbiota, which serves as a great contributor of succinate in the body [61]. In the mam-
malian gut, bacteria belonging to the Bacteroidetes phylum produce major amounts of
succinate as a byproduct of anaerobic fermentation [62]. Indeed, the succinate pathway
is the major route for the formation of propionate from dietary carbohydrates, and is
found mainly in Bacteroides spp. and Prevotella spp. [63]. Interestingly, both spp. were
prevalent in fecal samples of type 2 diabetes patients [64]. Hence, it is arguable that al-
tered microbiota could be a potential source of increased levels of succinate in obese and
diabetic individuals [65]. Furthermore, Rosenberg et al., using metabolic profiling and
dual RNA sequencing, demonstrated that succinate accumulation in macrophages was
sensed by intracellular Salmonella Typhimurium to promote its virulence [66]. Likewise,
Mycoplasma arginini infection of VM-M3 cancer cells enhanced the Warburg effect and suc-
cinate production in mitochondria, and release into the extracellular milieu in a mechanism
that was independent of the cytosolic glucose-driven lactate production [67].

In summary, under physiologically normal circumstances no accumulation of succinate
occurs. However, in metabolic stress conditions and/or hypoxia or altered microbiome
composition succinate concentrations rise sharply. This increase could be measured in
biological specimens like plasma as well as tissues or using isolated cells challenged with
pro-inflammatory stimuli. This was evident using human material and in animal studies.
Figure 2 demonstrates the Krebs cycle where succinate is produced and the key concept of
succinate elevation under stress conditions.
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Figure 2. Succinate accumulation occurs in metabolic stress conditions. Succinate is an intermediate
metabolite in the Krebs cycle. In conditions of metabolic stress/hypoxia/microbiome alterations,
succinate concentrations rise beyond physiological values. Succinate can be measured in biological
fluids or tissues, or in isolated cells exposed to stress. Red arrow denotes increased succinate levels.

5. SDH Alterations as a Cause of Succinate Accumulation

Mitochondrial SDH oxidizes succinate to fumarate and provides electrons to the elec-
tron transport chain. However, in many pathologies alterations in SDH occur leading to
increased succinate concentrations. For instance, in different cancer types such as paragan-
glioma/pheochromocytoma (PGL/PCC), renal carcinoma, ovarian cancer, neuroblastoma
and gastrointestinal stromal tumor, succinate accumulation in the local environment occurs
due to mutations in SDH [68]. Mutations of the B and D subunits of SDH are commonly
reported, whereas mutations of the A and C subunits occur to a lesser extent [69,70]. SDH
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mutations lead to enzymatic inhibition of multiple α-ketoglutartate-dependent dioxyge-
nases such as histone demethylases, prolyl hydroxylases, collagen prolyl-4-hydroxylases
and the TET (ten-eleven translocation) family of 5-methylcytosine (5 mC) hydroxylases.
Consequently, alterations of genome-wide histone and DNA methylation occur and con-
tribute to tumorigenesis [71].

In addition to mutations, processes such as methylation of SDH gene promoter and
expression of specific miRNAs can affect the stability and activity of SDH [72–74]. Increased
expression of miRNA-210, -31 and -378, which specifically target SDH mRNA, was reported
in cancer cells after radiotherapy [75]; miR-210 was also highly expressed at a late stage of
lung cancer, and targeted SDHD resulting in significant alterations in cell metabolism and
survival in addition to increased hypoxia-inducible factor1 (HIF1) activity [76]. Another
study by Merlo et al. identified a signaling axis of HIF1α/miRNA-210/iron–sulfur cluster
scaffold protein (ISCU) in a subset of head and neck paragangliomas that might have an
impact on SDHB protein stability by a mechanism independent of SDH mutations [77].
While miRNA-31 targeted SDHA mRNA in induced pluripotent stem cells altering ROS
generation, mitochondrial membrane potential and mitochondrial mass [78], miRNA-378
in breast cancer cells regulated SDHB mRNA resulting in a metabolic shift away from
oxidative metabolism and cell proliferation [79]. Furthermore, non-sense mutations dur-
ing RNA editing led to decreased mRNA expression of the SDH gene as an adaptation
mechanism to hypoxia in monocytes [80].

Phosphorylation and acetylation post-translational modifications can also regulate the
activity of SDH. In conditions of oxidative stress, SDHA phosphorylation was increased
and subsequently induced complex-II-dependent respiration [81]. In contrast, dephospho-
rylation of SDH by PTEN-like mitochondrial phosphatase-1 (PTPMT1) limited SDH activity
and was proposed to play a role in glucose homeostasis [82]. Furthermore, loss of sirtuin 3,
a NAD-dependent deacetylase, hampered the enzymatic activity of SDH, implying a role
of sirtuin 3 as a regulator of SDH activity [83]. Oncogenic transcription factors such as Myc
induced acetylation-dependent deactivation of SDHA, which resulted in cellular succinate
accumulation and consequently trimethylated histone H3 Lys 4 (H3K4me3) activation and
expression of tumor-specific genes [84]. Another post-translational modification that is
influenced by succinate itself is lysine succinylation, which extensively regulates metabolic
enzyme activities in mitochondria [85]. Notably, SDH lysine succinylation increased its
activity and hence was proposed as an auto-regulatory mechanism of succinate levels in
mitochondria [86,87].

Another mechanism of SDH regulation is through tumor-necrosis-factor-receptor-
associated protein 1 (TRAP1), a mitochondrial molecular chaperone also identified as heat
shock protein 75. TRAP1 can bind to and inhibit SDH and subsequently induces succinate
accumulation [88]. Similarly, itaconate inhibits SDH resulting in succinate accumulation.
In vivo treatment with exogenous itaconate increased succinate levels, thus inhibiting
mitochondrial respiration, and exerting anti-inflammatory effects during macrophage acti-
vation [89,90]. Figure 3 illustrates the localization of SDH enzyme complex and summarizes
key factors regulating its expression and/or activity.

In conditions of ischemia/hypoxia, SDH acts in reverse mode to reduce fumarate
to succinate where fumarate is derived mainly from malate/aspartate shuttle and AMP-
dependent activation of the purine nucleotide cycle. Upon reperfusion after ischemia, rapid
oxidation of accumulated succinate by SDH prompted extensive ROS generation by reverse
electron transport at mitochondrial complex I [91]. Indeed, succinate accumulation was
a common feature of mouse, pig and human ischemic hearts. In this study, the authors
suggested that cooling the tissue before transplant slowed succinate generation, thereby
reducing tissue damage upon reperfusion caused by the production of mitochondrial
ROS [92]. Interestingly, ischemic preconditioning had no effect on succinate accumulation
or oxidation during murine cardiac ischemia/reperfusion injury [93]. Notably, canonical
Krebs cycle activity, partly supported by aminotransferase anaplerosis and glycolysis from
glycogen, was proposed as a primary mechanism for succinate accumulation in ischemic
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hearts in addition to the reverse action of SDH [94]. In cardiomyocytes, a lipid insult
resulted in intra- and extracellular succinate accumulation, which consequently inhib-
ited pyruvate dehydrogenase activity and aggravated ischemia/reperfusion injury [95].
Similarly, in ischemia/reperfusion-affected rat kidneys, accumulation of succinate in the
cytosolic fraction occurred and was associated with increased H2O2 generation mediated by
complex II [96]. In another study, treatment with melatonin prevented SDHB-induced suc-
cinate accumulation and reduced succinate-mediated growth of uterine endometrial cancer
cells in vitro and in vivo. Hence, targeting SDH could ameliorate succinate-mediated can-
cer progression especially in patients who express abnormally reduced levels of SDHB [97].
In contrast to these observations, a study by Wijermars et al. demonstrated that no ac-
cumulation of succinate occurred during human renal graft procurement. Surprisingly,
tissue succinate content progressively decreased with increasing graft ischemia time. These
findings highlighted the challenge of the translation potential of data generated in rodent
models of ischemia/reperfusion to humans [98].
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Figure 3. SDH is a key enzyme metabolizing succinate in the mitochondria. (A) SDH complex
is composed of 4 subunits and is part of the electron transport chain in the inner mitochondrial
membrane. (B) SDH expression and/or activity can be regulated by different effectors. Red arrows
indicate that these regulators reduce SDH expression and/or activity, while the split red and green
arrow indicates possible upregulation or downregulation of SDH activity. PTMs: post-translational
modifications, TRAP1: tumor-necrosis-factor-receptor-associated protein 1.

Collectively, SDH enzyme complex is responsible for the metabolism of succinate into
fumarate in the Krebs cycle. Alterations in SDH expression and/or activity due to mutations
or expression of miRNAs that target SDH subunits, or post-translational modifications or
the presence of enzyme inhibitors like TRAP1 result in succinate accumulation. Hence,
SDH is an essential regulator of succinate concentrations.

In Sections 6 and 7, we summarize two critical consequences of succinate accumulation,
which include the induction of pseudohypoxic responses due to HIF1α stabilization and
signaling via a metabolite sensor named accordingly SUCNR1. Both pathways can result
in excessive angiogenesis as discussed in Section 8.

6. Succinate Accumulation and Induction of Pseudohypoxia

An important consequence of succinate accumulation in the cytosol is the inhibition
of prolyl hydroxylase (PHD) [30]. This induces HIF1α activation and stabilization, and
subsequent upregulation of target genes containing hypoxia response elements (HRE),
including angiogenic genes like VEGF [70]. This state is referred to as pseudohypoxia



Biomedicines 2022, 10, 3089 8 of 20

since hypoxic responses are initiated under normal oxygen levels through transcription
factors such as HIF1α [99]. The process of inhibition of PHD by succinate could be reversed
in vitro by the addition of α-ketoglutarate [30,100]. Figure 4 demonstrates this pathway.
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Figure 4. Succinate stabilizes HIF1α by inhibiting its degradation. Succinate inhibits PHD leading to
HIF1α stabilization and translocation to the nucleus. Subsequently, assembly of the HIF1 complex
occurs and induction of hypoxic responses takes place. Red arrow denotes increased succinate
concentration. HIF: hypoxia-inducible factor, PHD: prolyl hydroxylase, VHL: von Hippel–Lindau
protein, Ub: ubiquitin protein, HRE: hypoxia response element.

Another mechanism by which succinate can stabilize HIF1α is through ROS induc-
tion [12]. Indeed, pharmacological inhibition of SDH, as well as RNA interference of SDHB,
increased ROS production and subsequently resulted in HIF1α stabilization [101,102].
Furthermore, Guzy et al. showed that antioxidants abolished the effects of succinate
on HIF1 activation [101]. ROS stabilizes HIF1α via oxidation of Fe2+ (an essential PHD
cofactor) to Fe3+ thus limiting its activity [103]. However, contradicting results demon-
strated that alterations in SDHA, SDHB and SDHD genes did not increase ROS production,
and attributed HIF1α accumulation and activation to succinate-mediated PHD inhibi-
tion [30,104]. Supporting these observations, Tseng et al. described reduced ROS levels in
cells with SDHB-knockdown and elevated ROS in SDHB-overexpression cells compared to
the parental human hepatocellular carcinoma cell line [105].

In endothelial cells, HIF1α regulates the transcription of numerous growth factors and
hence plays a crucial role in angiogenesis. Overexpression of HIF1α in endothelial cells
in vitro, under non-hypoxic conditions, induced morphological changes that were compa-
rable to those induced by hypoxia, such as invasion and capillary-like tube formation [106].
Furthermore, conditional deletion of HIF1α in endothelial cells in vivo profoundly hin-
dered blood vessel growth in solid tumors corroborating the crucial role of HIF1α in
endothelial cell function [107].

In addition to induction of angiogenic genes, the implications of HIF1α activation have
been extensively studied in immune contexts. For instance, HIF1α in LPS/IFNγ-stimulated
macrophages induced a shift of the mitochondrial function from ATP production to ROS
production, making the cells more vulnerable to DNA damage and necroptosis [108],
while myeloid-specific HIF1α overexpression in a mouse model induced M1 polariza-
tion in macrophages via promoting glycolytic metabolism [109]. In rheumatoid arthritis
macrophages, HIF1α expression was increased and was a prerequisite for IL-1β produc-
tion [110]. In T cells, HIF1 enhanced TH17 development and attenuated Treg development
suggesting a role of metabolic modulation, possibly via succinate, in T-cell-based dis-
eases [111]. In mouse dendritic cells, LPS induced HIF1α gene and protein expression
as well as HIF1α target genes such as VEGF. Additionally, HIF1α played a major role in
interferon-α and -β production in dendritic cells and HIF1α-deficient cells showed hindered
ability to activate T cells [112]. These findings extend the implications of HIF1α activation
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to include both innate and adaptive immune responses, and suggest that succinate is vital
for both through its effect on HIF1α stabilization.

In summary, elevated succinate concentrations in cells result in stabilization of HIF1α
and thus induction of genes with HRE takes place. This can occur under normal oxy-
gen conditions. Accordingly, this phenomenon is called pseudohypoxia. In addition
to angiogenesis, the implications of HIF1α stabilization include immune response and
ROS production.

7. Succinate Signaling via SUCNR1

SUCNR1 is a member of the superfamily of G-protein coupled receptors (GPCRs).
This class of receptors is currently the target of around 60% of marketed therapies [113].
Upon ligand binding to GPCR, conformational changes and recruitment of their G-protein
partners occur inducing diverse biological responses that include migration, growth and cell
division [114]. It was previously thought that SUCNR1 belonged to the purinergic receptors
and was predicted to bind to purinergic ligands due to its high sequence homology to
P2Y receptors [115]. However, SUCNR1 was linked to succinate in a milestone study that
demonstrated that intravenous succinate infusion induced an increase in blood pressure, a
response that was abrogated in SUCNR1-deficient animals [116].

The half-maximal response concentration of human SUCNR1 is about 56 ± 8 µM [116],
proposing that only a small increase in circulating succinate levels could result in full
receptor activation. Recently, Geubelle et al. identified cis-epoxysuccinic acid and cis-1,2-
cyclopropanedicarboxylic acid as SUCNR1 agonists with similar efficacy to succinic acid.
Surprisingly, cis-epoxysuccinic acid had 10- to 20-fold higher potency than succinic acid
on SUCNR1 [117]. To date, only few SUCNR1 antagonists have been developed [118,119],
among which a high-affinity SUCNR1 antagonist is denoted NF-56-EJ40 [119]. It signifi-
cantly inhibited succinate/IL-1β signaling in HUVECs and macrophages [120]. Further-
more, inhibition of SUCNR1 by NF-56-EJ40 substantially reduced succinate-mediated gene
expression in primary human M2 macrophages [121].

The studies investigating the signaling machinery downstream of SUCNR1 showed
significant discrepancy. For instance, in human embryonic kidney (HEK293) cells, SUCNR1
coupled to both Gi and Gq proteins [116]. Similar signaling pattern was observed in polar-
ized Madin Darby Canine Kidney (MDCK) cells where SUCNR1 used both the Gq/11 and
Gi/o pathways to increase intracellular calcium and induce extracellular-signal-regulated
kinase 1 and 2 (ERK1/2) phosphorylation [122]. The activation of Gi, quantified as a reduc-
tion of cAMP levels, upon succinate binding to SUCNR1 was demonstrated in both heterol-
ogous and native systems [123–127]. In contrast, SUCNR1 activation of the Gαs leading to
increased PKA activity was described in macrophages and mediated an anti-inflammatory
response [128]. Interestingly, some publications reported that [Ca2+]i mobilization upon
SUCNR1 activation was a consequence of PLC-β activation by the βγ dimer, as opposed to
classical Gαq stimulated Ca2+ mobilization [126,127].

Activation of mitogen-activated pathway (MAP) kinases, especially ERK1/2, upon
SUCNR1 stimulation has been described in numerous cell models such as in HEK293
cells [116,127], MDCK [122], immature dendritic cells [129], retinal ganglion neuronal
cell line [130], TF-1 (human erythroleukemia) cell line [123], cardiomyocytes [131] and
HUVECs [42,132]. Additionally, induction of nitric oxide production and prostaglandin
E2 secretion upon activation of SUCNR1 were also noted [129,133]. Figure 5 illustrates the
distinct signaling pathways downstream of SUCNR1.
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In HEK293 cells, SUCNR1 was internalized into vesicular structures upon succinate
stimulation [116]. However, in polarized MDCK cells SUCNR1 was rapidly desensitized
and re-sensitized but not internalized [122]. Similarly, desensitization of SUCNR1 occurred
in platelets [124]. However, interesting data demonstrated that coupling of activated
SUCNR1 to arrestins 2 and 3 was very weak [127,134]. Therefore, it has been proposed
that homologous desensitization and internalization of SUCNR1 occurred independent of
arrestins. The distinct and even contradicting observations regarding SUCNR1 signaling and
trafficking might be reflecting distinct G protein partners among different cell types or arti-
facts due to overexpression of the receptor. Hence, further investigation of SUCNR1 signaling
and trafficking, especially in native and physiologically relevant systems, is warranted.

The pathophysiological implications of succinate–SUCNR1 signaling are evident in
conditions where local stress affects cellular metabolism such as hyperglycemia, ischemia
and hypoxia, and can be reviewed elsewhere [135]. Thus, it is plausible that SUCNR1 acts
as a metabolic sensor, modulating cellular functions in response to succinate. Some of these
inferences, in the context of angiogenesis, are addressed below.

8. Succinate as a Regulator of Angiogenesis

As mentioned before, accumulated succinate in the cytosol stabilizes HIF1α and
subsequently induces the expression of genes with HRE, which include angiogenesis
regulatory genes such as VEGF. Succinate can also be released to the extracellular space
where it activates SUCNR1 and mediates a wide range of responses including angiogenesis.
In this section, we highlight studies that particularly demonstrated a role of succinate in
angiogenesis both in normal and pathological contexts (summarized in Table 1). We also
cover studies that implicate an indirect role of succinate in angiogenesis via immune cells,
particularly macrophages.

In tumor tissues with SDH mutations such as paragangliomas and phaeochromocy-
tomas, increased succinate concentrations together with increased expression of HIF1α and
associated angiogenic genes such as VEGF were reported [136–138]. Similarly, elevated
succinate was measured in human gastric cancer tissues in comparison to paracancerous
tissues, where the succinate–SUCNR1 axis induced tumor angiogenesis via regulation of
ERK1/2 and STAT3 signaling [132]. As stated earlier, circulating succinate was elevated in
patients with head and neck squamous cell carcinoma, along with increased expression
of SUCNR1, HIF1α, SDHA and SDHB in the tumor tissue relative to matched normal
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mucosa, further highlighting a role of succinate as oncometabolite [34]. Another study
demonstrated that targeting HIF1α was a promising approach to face chemo-resistance in
colorectal cancer. In this study, the DNA-demethylating agent zebularine induced HIF1α
protein degradation via hydroxylation, reduced tumor angiogenesis and potentiated the
anticancer effect of oxaliplatin in an induced colorectal cancer model [139]. In melanoma
cell lines, microphthalmia-associated transcription factor (MITF) activated SDHB expres-
sion and inhibited succinate accumulation and the consequent stabilization of HIF. Hence,
it ameliorated the pseudohypoxic response by regulating succinate levels [140]. Indeed,
a correlation between increased expression of HIF1α and HIF2α, and VEGF expression
was described in nodular malignant melanomas [141]. Similarly, in triple-negative breast
cancer, increased activity of the HIF1 pathway was detected [142], and collagen prolyl
4-hydroxylase 1 (P4HA1) was demonstrated to enhance HIF1α stability by modulating
α-ketoglutarate and succinate levels. Therefore, targeting collagen P4H could be a novel
strategy to hinder tumor progression and increase the sensitivity of triple-negative breast
cancer to chemotherapeutic agents [143]. Collectively, these studies demonstrate that succi-
nate is a critical regulator of tumor progression and angiogenesis and shed lights on SDH,
HIF1α and SUCNR1 as valid targets to manipulate angiogenesis in cancer.

Table 1. List of studies that investigated a direct role of succinate in angiogenesis and/or tumorigenesis.

Tissue/Cells Pathological Context Mechanism/Effectors References

Neuroendocrine Pheochromocytoma paraganglioma SDH mutation [136–138]

Breast Triple-negative breast cancer HIF1α stabilization [143]

Melanoma cell line Melanoma HIF1α stabilization [140]

Intestine Gastric cancer SUCNR1-mediated ERK1/2 and
STAT3 phosphorylation [132]

Colorectal cancer HIF1α stabilization [139]

Oral cavity, pharynx
and larynx

Head and neck squamous
cell carcinoma

Increased expression of SUCNR1, HIF1α,
SDHA and SDHB [34]

Placenta Gestational diabetes SUCNR1-mediated ERK1/2
phosphorylation [42]

Retina/retinal ganglion cells Diabetic retinopathy SUCNR1-mediated ERK1/2/COX-2
signaling [55]

Proliferative ischemic retinopathy SUCNR1 activation [144,145]

Synovium Rheumatoid arthritis HIF1α induction and via SUCNR1 [60]

Peripheral limb muscles Acute peripheral ischemia Increased SUCNR1 expression [146]

Brain Hypoxia/ischemia brain injury SUCNR1 regulation of prostaglandin
E2–prostaglandin E receptor 4 [147]

As endothelial cells are central players in angiogenesis, we recently demonstrated that
succinate, via SUCNR1, induced an angiogenic phenotype in endothelial cells in migration
and sprouting assays, and by upregulating VEGF gene expression, a response which could
be of pathological relevance in placental hypervascularization in gestational diabetes [42].
Furthermore, in diabetic rat retinas, knockdown of SUCNR1 hindered the activities of
ERK1/2 and cyclooxygenase-2 (COX-2) and reduced the expression of PGE2 and VEGF [55].
Likewise, succinate regulated angiogenesis in hypoxic retinas of rodents via SUCNR1 in
retinal ganglion cells, in the settings of both normal retinal development and proliferative
ischemic retinopathy. Indeed, retinal ganglion cells in response to succinate upregulated
the production of angiogenic factors such as VEGF [144]. A recent publication verified that
SUCNR1 in retinal ganglion cells was localized at the endoplasmic reticulum and that this
localization was necessary for its angiogenic regulatory role [145].
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In arthritic synovium, succinate accumulation resulted in angiogenesis and exacer-
bated inflammation through HIF1α induction and via SUCNR1. Furthermore, targeting
SDH prevented succinate accumulation and inhibited angiogenesis in rheumatoid arthri-
tis [60]. In addition, succinate injection promoted earlier angiogenesis after acute peripheral
ischemia in mice, inducing more effective revascularization with prolonged response [146].
Evidence also supported that succinate/SUCNR1 enhanced post-hypoxia/ischemia vas-
cularization and reduced infarct size in a mouse model of newborn hypoxia/ischemia
brain injury acting through prostaglandin E2–prostaglandin E receptor 4 to govern ex-
pression of major angiogenic factors. In this study, cyclooxygenase inhibitor and selective
prostaglandin E receptor 4 antagonist both hampered succinate-induced VEGF gene ex-
pression [147].

Another indirect mechanism by which succinate regulates angiogenesis is via
macrophages. In fact, TAMs are promotors of angiogenic neovascularization and this
phenotype could be induced by hypoxic-tumor-cell-derived succinate and lactate [148].
Macrophages could sense succinate in the environment via SUCNR1, which then drives
polarization of macrophages into TAMs. In a study by Wu et al. phosphoinositide 3-kinase
(PI3K) signaling downstream of SUCNR1 participated in succinate-induced TAM polariza-
tion [149]. TAMs enhance cancer angiogenesis through the release of several pro-angiogenic
factors such as VEGFA [150]. In some tumors, TAMs seemed to be a major source of MMP9,
which mediate extracellular matrix degradation and release of bioactive VEGFA. Other
angiogenic factors released by TAMs include basic fibroblast growth factor (bFGF), thymi-
dine phosphorylase (TP), urokinase-type plasminogen activator (uPA) and adrenomedullin
(ADM) [151].

In a tissue environment, when pro-angiogenic factors outbalance anti-angiogenic ones,
an angiogenic switch in endothelial cells is turned on, resulting in the activation, prolif-
eration and migration of these cells into tube-like structures [152,153]. Supporting these
data, targeting the enzyme glutamine synthetase, which synthesizes glutamine from gluta-
mate, in M2-polarized macrophages skewed their polarization towards M1-like phenotype
and hindered their ability to foster endothelial cell branching, and thus their angiogenic
potential [154]. Interestingly, TAM-derived factors such as transforming growth factor-β
could inhibit SDH in the tumor cells, which resulted in an accumulation of succinate and
subsequent HIF1α stabilization. TAM depletion–repletion in a 4T1 mouse model of breast
cancer corroborated that TAMs promoted HIF-associated vascularization [155].

Taken together, there is substantial evidence supporting the role of succinate in regulating
angiogenesis via HIF1α and SUCNR1 in different settings. Furthermore, SDH is an important
target regulating succinate levels and subsequently succinate-induced angiogenesis.

9. Conclusions and Future Perspectives

In the Krebs cycle, succinate is metabolized to fumarate by the enzyme complex SDH,
resulting in energy production. In conditions where the expression and/or activity of SDH
are hindered, succinate concentrations rise beyond physiological levels. This can have
implications for cellular behavior including succinate-mediated regulation of angiogenesis.
Succinate on the one hand can stabilize HIF1α by inhibiting its degradation and on the other
hand can bind to and activate its GPCR partner, SUCNR1. Both pathways have become
evident as mechanisms inducing angiogenesis in physiological and pathological settings.
Hence, SDH, HIF1α and SUCNR1 are vital checkpoints in the tuning of angiogenesis, as
shown in Figure 6.

Despite the remarkable progress in understanding the role of succinate as an angio-
genic signal, more research is required to further unravel the interplay between different
metabolites in the environment, especially in endothelial cells. Furthermore, means to
restore the activity of SDH and shuttles to ameliorate succinate accumulation need to be
explored. So far, it seems that, in diseases such as cancer, succinate is released by hypoxic
cells and activates SUCNR1 on endothelial cells. Whether endothelial cells accumulate
and release succinate in response to metabolic stress and whether this differs among en-
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dothelial subpopulations are open questions. In fact, how endothelial cells switch their
metabolism in response to stress, and how this reflects on their functionality and behavior,
is an understudied area to date.
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Figure 6. SDH, HIF1α and SUCNR1 are key targets modulating angiogenesis. In conditions where
the expression and/or the activity of SDH are hindered, succinate levels increase. Accumulation of
succinate can induce angiogenesis via two mechanisms, either through HIF1α stabilization or by
SUCNR1 signaling. This has been shown in many pathological settings so far and is yet to be exploited
to ameliorate pathological angiogenesis. Red arrows stand for elevated succinate concentrations and
increased angiogenesis.

While targeting HIF1α might be an attractive target to modulate angiogenesis in
diseases like cancer, caution must be taken to not target other HIF isoforms such as HIF2α,
which might be part of the defense machinery against disease progression. Indeed, the
two isoforms can induce different or even opposite effects. Additionally, because of the
complexity of SUCNR1 signaling, which also appears to be context- and cell-type-specific,
more efforts are needed to delineate the architecture and the signaling machinery of the
succinate receptor in endothelial cells. This approach will enable structure-based drug
discovery and might increase the translational potential of current research.
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