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Abstract: Macrophages play a key role in the inflammatory phase of wound repair and foreign body
reactions—two important processes in the Masquelet-induced membrane technique for extremity
reconstruction. The macrophage response depends largely on the nature of the biomaterials implanted.
However, little is known about the influence of the macrophage microenvironment on the osteogenic
properties of the induced membrane or subsequent bone regeneration. We used metakaolin, an
immunogenic material, as an alternative spacer to standard polymethylmethacrylate (PMMA) in
a Masquelet model in rats. Four weeks after implantation, the PMMA- and metakaolin-induced
membranes were harvested, and their osteogenic properties and macrophage microenvironments
were investigated by histology, immunohistochemistry, mass spectroscopy and gene expression
analysis. The metakaolin spacer induced membranes with higher levels of two potent pro-osteogenic
factors, transforming growth factor-β (TGF-β) and bone morphogenic protein-2 (BMP-2). These
alternative membranes thus had greater osteogenic activity, which was accompanied by a significant
expansion of the total macrophage population, including both the M1-like and M2-like subtypes.
Microcomputed tomographic analysis showed that metakaolin-induced membranes supported bone
regeneration more effectively than PMMA-induced membranes through better callus properties
(+58%), although this difference was not significant. This study provides the first evidence of the
influence of the immune microenvironment on the osteogenic properties of the induced membranes.

Keywords: Masquelet-induced membrane; macrophages; PMMA; metakaolin

1. Introduction

In the face of large bone defects, surgery is required to restore the shape and function
of the bone. The induced membrane technique (IMT), also known as the Masquelet
technique, is a widely used two-stage surgical procedure. This technique is unique in
preparing the bed graft by molding a polymethylmethacrylate (PMMA) spacer to fill the
bone defect [1]. The implantation of this spacer leads to the formation of an induced
membrane (IM)—granulation tissue surrounding the spacer. In the second step, the spacer
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is removed while preserving the integrity of the IM. A standard autologous bone graft is
then implanted into the IM cavity to repair the bone.

The IM, which acts as a biologically privileged membrane at the site of the defect, is the
key element in this procedure. Preclinical and clinical studies have highlighted the various
roles of the IM. It prevents graft resorption and muscle invasion of the defective bone by
acting as a barrier membrane. It also creates an osteogenic and osteoinductive environment
by secreting many growth factors and cytokines. These factors include bone morphogenic
protein-2 (BMP-2), interleukin-6 (IL-6), transforming growth factor-β (TGF-β), vascular
endothelial growth factor A (VEGF-A), von Willebrand factor (vWF) and metalloproteinase-
9 (MMP-9) [2–6]. The IM has also been shown to be highly vascularized and to serve as a
source of bone progenitor cells.

Biologically, the IM results from a foreign-body reaction (FBR). Upon implantation, all
biomaterials elicit a FBR, a natural immunoinflammatory process that isolates the implant
from the rest of the body in a collagenous capsule [7]. Macrophages are plastic cells that
play a key role in the FBR by orchestrating the inflammatory environment around the
implanted biomaterial. Indeed, macrophages can adopt diverse functional phenotypes
upon activation, ranging from M1 (pro-inflammatory) to the M2 (pro-healing) profiles.
Interestingly, macrophage activation depends on the shape and surface properties of the
biomaterial (chemistry, porosity, wettability, roughness and stiffness) [8].

We hypothesized that changing the chemical composition of the spacer generating
the IM in the Masquelet technique would modify the immune microenvironment in which
the FBR occurred, thereby altering the osteogenic properties of the IM and potentially en-
hancing bone regeneration. We tested this hypothesis by replacing the PMMA of standard
spacers with an alternative biomaterial, a metakaolin-based geopolymer (Davidovits) [9].
This polymer is synthesized by an alkaline activator solution’s reaction (geopolymerization)
with metakaolin particles. Chemically, metakaolin is a dehydroxylated form of the clay
mineral kaolinite, an aluminosilicate material. Aluminosilicates and their derivatives are
known to have immunostimulatory effects due to induction of macrophage activation [10].
Metakaolin was, therefore, chosen for this study based on its immunogenicity, and its
innocuity relative to other clay minerals, such as bentonite [11]. Wiemann et al. [12] recently
showed that the intratracheal instillation of kaolin in rats induced transient macrophage-
based hypercellularity in rat lungs, with no signs of inflammation or structural change in
the lung parenchyma, whereas bentonite instillation leads to a very intense lung inflam-
mation with changes to the structure of the lung epithelium. Metakaolin is listed in the
US Pharmacopeia, suggesting that its transfer into clinical practice might be facilitated
in terms of the requirements for medical device regulation. Kaolinite and its chemical
derivatives have been widely used in the pharmaceutical domain for decades as well-
characterized pharmaceutical excipients: diluents, binders, disintegrants, pelleting agents,
granulating agents, amorphizing agents, film-coating additives or even drug carriers [13,14].
They are also used as active pharmaceutical ingredients in hemostatic wound dressings,
dermatological protectors, gastrointestinal protectors and antidiarrheal agents.

We used a validated Masquelet model in rats to assess the osteogenic properties of
metakaolin-generated IM with histological and immunohistochemical methods. We first
analyzed the distribution of M1-like and M2-like macrophage populations within the IM.
Finally, we determined the impact of metakaolin spacers as an alternative to PMMA on
bone-healing outcomes.

2. Materials and Methods
2.1. Animals

Animal procedures were approved by the appropriate institutional animal care and
use committee (protocol 65 DEF_IGSSA_SP). Interventions were performed at an accredited
animal facility. Male Sprague Dawley rats (Charles River, France) were housed individually
in cages with controlled temperature and lighting conditions, and food and water supplied
ad libitum. The rats were eight weeks old (mean weight of 200 g) when they underwent the
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first surgical procedure. In cases of postoperative complications, such as deep infection or
bone fixation failure, the animals were excluded from the study and euthanized. Animals
were killed by the intraperitoneal injection of sodium pentobarbital (150 mg/kg) at the age
of 12 weeks (for IM analysis) or 22 weeks (for bone repair assessment).

2.2. Surgical Procedures

IMT surgery (steps 1 and 2) was performed as previously described [15]. The first
stage of surgery was performed under general anesthesia induced by the intraperitoneal ad-
ministration of a ketamine/medetomidine mixture (60 and 0.42 mg/kg, respectively). Rats
were placed in the prone position and an incision was made through the skin and muscle
to expose the right femur. A mini external fixator (RatExFix RISystem, Davos, Switzerland)
was screwed onto the anterolateral surface of the femur shaft, and a Gigli wire saw was
used to create a 6 mm segmental defect. The bone defect was filled with either hand-made
PMMA or metakaolin spacers (n = 5/group). Four weeks later, the animals underwent the
second stage of graft surgery or were killed for stage 1 membrane studies. This time point
was chosen based on the results of our previous model validation study [15]. For stage 2 of
the IMT surgery, rats (n = 5/group) were anesthetized with isoflurane (1.5 to 2% isoflurane
in 1 to 1.5 L of O2/min). An incision was carefully made in the membrane for spacer
removal. The defect was then filled with a morselized corticocancellous allograft harvested
from the distal femur of littermates killed on the same day. On three consecutive days after
each surgical procedure, the animals received subcutaneous injections of a cephalosporin
antibiotic (10 mg/kg enrofloxacin) and an opioid painkiller (0.05 mg/kg buprenorphine,
twice daily). Unprotected weight-bearing activity was allowed immediately after surgery.
The animals were weighed daily, and animal facility staff also evaluated their behavior, pain,
normal movements and the appearance of the wound every day. Radiographic follow-up
evaluations were performed every two weeks to check for incorrect spacer positioning and
implantation failure. The animals were killed after 10 weeks for bone-healing assessment.

2.3. Spacers

PMMA (Palacos R + G, Heraeus, Hanau, Germany) spacers were made by hand
under sterile conditions before surgery. They were macroscopically smooth and cylindrical.
Metakaolin spacers were prepared in advance, as follows. Activated metakaolin paste was
prepared by mixing sodium silicate (activating solution) with metakaolin particles. The
activating solution was prepared by mixing NaOH solution (mass concentration Cw = 0.35)
with a solution containing Na2O (Cw = 0.08) and SiO2 (Cw = 0.27) provided by MERCK
KGaA, and water. The metakaolin particles (Argical M 1200S) were provided by AGS
Minéraux (Clérac, France). The Brunauer, Emmett and Teller (BET) specific surface area of
these particles was 19 m2/g and their mass mean diameter was about 2 µm. The chemical
composition of the resulting paste was characterized by the following ratios: Si/Al = 1.71
(molar), Na2O/Al2O3 = 1.01 (molar) and solid/liquid = 1.50 (mass ratio). The paste was
poured into cylindrical PMMA molds, all of the same diameter (4 mm), but with three
different lengths: 5.5, 6 and 6.5 mm. The opening was covered and the molds were left at
room temperature for 48 h. Geopolymerization resulted in very slight shrinkage, facilitating
the removal of the metakaolin spacers from the molds. Prior to animal implantation, spacers
were exposed to steam sterilization accomplished in an autoclave (20 min, +121 ◦C).

2.4. Bone Turnover Assessment

Serum samples were used to assess bone turnover markers, both markers of formation
(procollagen-1 N terminal telopeptide or P1NP) synthesized by osteoblasts, and markers of
resorption (tartrate-resistant alkaline phosphatase C or TRAP-C) released by osteoclasts
during bone matrix remodeling. The levels of these markers were determined by ELISA.
For P1NP assessments, we used the Rat/Mouse PINP EIATM assay kit (ref. AC-33F1, IDS
Inc., El Segundo, CA, USA). The rat TRAPTM (TRAcP-5b) ELISA kit (ref SBTR102, IDS
Inc.) was used for TRAP-C assays. Duplicate determinations were performed for each
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sample, and the two results were then averaged. The P1NP/TRAP-C ratio was calculated
to express bone turnover four weeks after creating bone defects.

2.5. Histology

Membrane fragments were fixed in a 4% paraformaldehyde solution for embedding
in paraffin. Sections (5 µm) were cut and stained with hematoxylin-eosin-saffron (HES) or
prepared for BMP-2 immunostaining and CD68 CD206 immunofluorescence analysis. A
pathological histologist examined all HES-stained sections. All immuno-stained sections on
glass slides were digitized with a Nanozoomer S60 slide scanner (Hamamatsu) to quantify
whole-slide images. Scanning resolution at 20× magnification was 0.46 µm/px. Virtual
slide images were saved in 16-bit raw format for immunofluorescence analysis and RGB
TIFF format for sections with standard staining. All image processing was performed with
Fiji software [16]. To quantify IM cellularity, sections were stained with DAPI to visualize
the cell nuclei. A region of interest (ROI) was drawn manually to exclude muscle fibers
from the areas analyzed. The DAPI image was thresholded with the Triangle algorithm
to select the brightest objects. Each object was then isolated to segment clusters of nuclei
based on the local maxima of the initial image (with the segmented particles option). A
“logical and” was used between the first threshold and the segmented particles.

2.6. BMP-2 Immunostaining

We assessed the expression of BMP-2, a potent osteogenic growth factor, by per-
forming immunohistochemical analyses on paraffin-embedded IM sections, as previously
described [15]. The rabbit polyclonal antibody specific for BMP-2 (Bioworld 90141) was
used at a dilution of 1:200. The ready-to-use ImmPRESS HRP Anti-Rabbit IgG detec-
tion kit (Vector, MP-7451) was incubated with the slides for 30 min, and hematoxylin
counterstaining was then performed.

2.7. Real-Time PCR Analysis

Membrane tissues for molecular biology analysis were collected and stored in RNA
later® (Ambion, Austin, TX, USA). Samples were kept at +4 ◦C for 24 h and then stored
at –20 ◦C until homogenization in guanidium-based lysis buffer with a TissueLyser II (RLT
buffer, Qiagen, 20 Hz, 2 min, two 3 mm-carbide beads). According to the manufacturer’s
recommendations, total RNA was extracted with the Nucleospin RNA XS kit (Macherey
Nagel, France) but with an additional proteinase K digestion step (Qiagen, Les Ulis, France).
RNA was eluted in 15 µL of RNase-free water. The quantity and purity of the RNA were
determined with an Agilent TapeStation 4200 automated electrophoresis system, with RNA
screen tape and reagents (Agilent Technologies, Santa Clara, CA, USA), according to the
manufacturer’s instructions. The total RNA concentration of each sample was expressed in
nanograms per microliter. RNA quality was assessed by determining the RNA integrity
number (RIN) on a scale of 1 (completely degraded RNA) to 10 (intact RNA), as described
by Schroeder and collaborators [17]. The mean RIN value was 7.4 for the PMMA group
and 7.6 for the metakaolin group. A real-time PCR study was carried out as described in
the MIQE guidelines [18].

Based on the manufacturer’s instructions, the first-strand cDNA was generated by re-
verse transcription with the EuroScript reverse transcriptase on 400 ng total RNA (Eurogen-
tec #RT-RTCK-03, Seraing, Belgium). RNA integrity and reverse transcription yields were
confirmed with the 5′/3′ integrity assay and Rplp0 selected primers (supplementary data,
Table S1) [19]. Primers were designed and optimized with MacVector® 3.5 software (Accel-
rys, San Diego, CA, USA) to prevent dimerization, self-priming and melting temperature.
Primers binding to flanking introns were selected to exclude genomic DNA amplification
and were assessed for specificity to rats with the Blast nucleotide algorithm. Oligonu-
cleotide primers were synthesized by Eurogentec (Sereing, Belgium). Real-time qPCR
was performed with a LightCycler® 480 instrument (Roche Applied Science, Mannheim,
Germany) with SybrGreen I Mastermix (Roche Applied Science). Quantification of mRNA
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was measured using the comparative threshold method [20] with efficiency correction
estimated from a standard curve. The qPCR primers used for the three reference genes
(ribosomal protein lateral stalk subunit P0 (Rplp0), peptidylprolyl isomerase A (Ppia), hy-
poxanthine phosphoribosyltransferase 1 (Hprt)) and the five target genes (transforming
growth factor beta 2 (TGFβ2), interleukin-6 (IL-6), interleukin-1-beta (IL-1β), insulin-like
growth factor (IGF1) and vascular endothelial growth factor A (VEGF-A) are listed in
Supplemental Table S1, along with the optimized concentration and annealing tempera-
ture for each primer. Normalization was assessed with geNorm software. A geometric
mean for the three internally validated reference genes (Rplp0, Ppia and Hprt) was cal-
culated [21]. The pairwise variation of these three genes was 0.119, which is below the
threshold (0.15), requiring the inclusion of an additional normalization gene.

2.8. Immunofluorescence Assays and Macrophage Quantification

Immunofluorescence analysis was performed to study the phenotypic profiles of
the macrophages in the IM. “M1-like macrophages” were defined as CD68-positive cells,
whereas “M2-like macrophages” were defined as cells positive for both CD68 and CD206,
as previously described [22]. Cells negative for CD68 but positive for CD206 were defined
as muscle satellite cells [22,23].

Sections were permeabilized by incubation for 15 min with 0.5% Triton X100 (v/v)
buffered with PBS. Non-specific binding sites were blocked by incubation with Emerald An-
tibody Diluent (Sigma 936B-08) for 1 h. The sections were then incubated overnight at +4 ◦C
with the primary mouse anti-CD68 (BIO-RAD MCA341GA, Hercules, CA, USA) antibody
at a dilution of 1:100 and the primary rabbit anti-CD206 (Sigma HPA045134) antibody at
a dilution of 1:100. They were washed in PBS and incubated with an anti-rabbit green
fluorescent Alexa Fluor 488 (A-21206, Thermo Fisher Scientific) secondary antibody and an
anti-mouse red fluorescent Alexa Fluor 568 (A10037, Thermo Fisher Scientific) secondary
antibody, both at a dilution of 1:1000, for two hours at room temperature. Finally, sections
were washed in PBS for 20 min and mounted in Fluoroshield mounting medium with DAPI
(Abcam, Cambridge, UK, ab104139). Fluorescence was detected under an epifluorescence
microscope DM6000 (Leica, Wetzlar, Germany) equipped with monochrome and color
digital cameras. Macrophages were quantified on whole-slide images with FIJI software.
The M2-like cells displayed double labeling (green + red), whereas M1-like macrophages
displayed only red labeling. A “zone of influence” was defined around each nucleus, with
nuclei segmented for cellularity measurement as seeds. On Alexa Fluor 488-labeled images,
the Otsu method set a double threshold for the previously drawn ROI. On the Alexa Fluor
568-labeled images, an Otsu threshold was determined within the same ROI. A geodesic
reconstruction of the cells was performed with each type of immunofluorescence labeling
used as a seed and the “zone of influence” of the nuclei as a mask. These analyses yielded
the number of stained cells/total number of cells expressed as a percentage.

2.9. Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS)

Proteins secreted by IM fragments were identified by mass spectrometry. No label-
ing/tagging techniques were used in our LC-MS/MS study. Therefore, we could not
determine the abundance of the secreted proteins. Instead, we aimed to identify all the
secreted proteins and their molecular networks and compare protein secretion frequencies
between the two batches. The proteins secreted by IMs were purified by an organic solvent-
based protein precipitation method. Briefly, nine volumes of ice-cold acetone-methanol
(8:1) were added to one sample volume, and the resulting mixture was incubated overnight
at −20 ◦C. The samples were then centrifuged at 10,000× g for 30 min, and the protein
pellet was dissolved in 40 µL of 2X Laemmli buffer (Biorad).

Protein samples were briefly subjected to SDS-PAGE (8% acrylamide gel, 8 × 8 cm)
until the sample had completely penetrated the gel. Following in-gel fixation (ethanol
30% v/v, acetic acid 7% v/v) for 1 h and protein staining with Coomassie Brilliant Blue,
each band was excised manually and cut into small pieces with a scalpel. Gel pieces were
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dehydrated by incubation in 100 µL acetonitrile for 15 min and rehydrated by incubation
with 100 µL 25 mM NH4HCO3 for 10 min. This operation was repeated twice. After final
dehydration in 100 µL acetonitrile, gel pieces were covered with 100 µL 10 mM DTT in
25 mM NH4HCO3 and incubated at +56 ◦C for 45 min. The supernatant was removed,
and 100 µL of 55 mM iodoacetamide in 25 mM NH4HCO3 was added. The mixture was
left in the dark at room temperature for 30 min and the supernatant was then removed.
The gel pieces were covered with 100 µL 25 mM NH4HCO3 for 10 min and dehydrated
by incubation with 100 µL acetonitrile for 15 min. The volume of the dehydrated gel was
evaluated and three volumes of trypsin (12 ng/µL) in 25 mM NH4HCO3 (freshly diluted)
were added. The digestion was allowed to proceed at +35 ◦C overnight. Peptides were
finally extracted from the gel pieces by incubation in 60% acetonitrile/5% HCOOH for 1 h.
The supernatant was collected, the volume of each peptide sample was reduced to 15 µL,
and the peptides were analyzed by mass spectrometry.

Peptide samples were then analyzed with a QToF instrument (Xevo G2-XS QTof,
Waters, Milford, MA, USA) coupled to a nano liquid chromatography apparatus (ACQUITY
UPLC M-Class system, Waters) running with two buffers: 0.1% formic acid in water (A) and
0.1% formic acid in acetonitrile (B). We separated 3 µL of each sample on a C18 reverse-phase
column (NanoE MZ HSS C18 T3, 1.7 µ 75 µm × 100 mm, Waters), with a linear gradient of
5% to 85% buffer B over 120 min at a flow rate of 300 nL min−1. Peptide ions were analyzed
with Masslynx v4.1, with the following data-independent acquisition steps (DIA): MS scan
range: 50–2000 m/z, scan time 0.5 s, ramp collision energy from 15 to 40 V. Proteins were
identified with Progenesis QI for proteomics v3.0 (Waters) with the following parameters:
enzymatic cleavage by trypsin with two missed cleavages allowed, carbamidomethylation
for cysteine residues and potential oxidation for methionine residues. Only peptides with a
score of at least 5 were considered. The Uniprot KB database (www.expasy.org (accessed on
1 October 2019)) and a custom-built contaminant database (trypsin, keratin, etc.) were used.
The species of origin was restricted to the rat. The identified proteins were filtered to retain
only those with a minimum of three fragments per peptide and one peptide per protein.
Analysis was performed on n = 5 animals/group. A protein was considered differentially
secreted if its detection frequency in a group differed from that of the other group by at
least two animals.

2.10. MicroCT

Three-dimensional microcomputed tomography (µCT) was used to quantify bone
regeneration 10 weeks after stage 2 of the Masquelet technique. The rats were killed, and
the limb on which surgery was performed was collected, together with the surrounding
soft tissues, and fixed by incubation in 10% phosphate-buffered formalin for two weeks.
The area between the inner pins was scanned by microCT (Skyscan 1174, Bruker Micro-CT,
Billerica, MA, USA) with a voltage source of 50 keV, a current of 745 mA and an isotropic
resolution of 14.4 µm. Three-dimensional reconstruction was performed for all scans and
analyzed with the same parameter setup (NRecon v.1.6 and CTAn v.1.11 software, SkyScan,
Kontich, Belgium) to separate mineralized elements from the background, with the software
histogram tool used to determine grayscale level threshold values. As a dedicated external
fixator with a guide saw had been used to create the defect, it was possible to locate the
6 mm long defective region with precision (the distance between the two adjacent pins)
and to identify it as the region of interest. The following data were collected within the
region of interest: total defect volume (TV in mm3) and bone volume (BV in mm3) for the
calculation of the bone volume ratio (BV/TV, as a %).

2.11. Statistical Analysis

All results are reported as means ± standard error of the mean (SEM). The Shapiro-
Wilk test was used to determine whether the data followed a normal distribution. An F-test
was performed to verify the assumption of equal variances. Two-tailed Student’s t-tests
were used for comparisons if the data met both these requirements (normal distribution and
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equal variances). If one or both the assumptions were not met, the PMMA and metakaolin
groups were compared in non-parametric Mann–Whitney U-tests. Values of p < 0.05 were
considered significant in all tests. Statistical analyses were performed with GraphPad Prism
5 statistical software (GraphPad Software Inc, La Jolla, CA, USA).

3. Results
3.1. Animals and Blood Parameters at the End of IMT Stage 1

All rats tolerated surgical procedures well and gained weight steadily from day 4 after
stage 1 surgery onwards. Two animals (one PMMA and one metakaolin) were excluded
from the analysis due to infection-related fixator failure. Given the inflammatory potential
of the aluminosilicate present in metakaolin, we determined blood cell counts for the
animals to assess systemic inflammation at the time of death. White blood cell counts
and red blood cell parameters were similar between the PMMA and metakaolin groups
(Figure 1A). Serum P1NP and TRAP-C concentrations and ratios were similar in the two
groups, suggesting that bone remodeling activity four weeks after the creation of the bone
defect was similar in the PMMA and metakaolin groups (Figure 1B).

1 
 

 
Figure 1. Panel (A) shows the hematological parameters of animals four weeks after spacer im-
plantation. Blood was collected into EDTA-containing tubes when the animals were killed, and
blood parameters were determined with an optical hematology analyzer (MS-9, Melet Schloesing)
with rat-specific analysis software. Panel (B) shows the serum levels of bone turnover markers, as
determined by ELISA, four weeks post-spacer implantation. Concentrations of a bone formation
marker P1NP (top) and a bone resorption marker TRAP-C (middle) were determined, and turnover
for bone remodeling was evaluated by calculating the P1NP/TRAP-C ratio (bottom).

3.2. Comparison of Biological Properties between Metakaolin- and PMMA-Induced Membranes
3.2.1. Membrane Architecture and Cellularity

We previously showed that bioactive IMs are organized as bilayered structures and
have a rich cellular network. Figure 2 illustrates typical sections of PMMA-induced
(Figure 2A) and metakaolin-induced (Figure 2B) membranes, with an inner layer in contact
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with the biomaterial, including fibroblasts, lymphocytes and macrophages. A thick outer
layer principally consists of fibroblasts with a dense vascular network in contact with
the muscle. The quantification of DAPI-stained nuclei showed cell density to be slightly
higher in metakaolin-IMs than in PMMA-IMs, although this difference was not statistically
significant (4553 ± 51 nuclei/mm2 in the PMMA group versus 5882 ± 695 nuclei/mm2 in
the metakaolin group, p = 0.15).
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Figure 2. Representative hematoxylin-eosin-saffron-stained sections of (A) PMMA-IMs and (B) metakaolin-
IMs showing their histological organization. * Indicates the site of the spacer before its removal.
The right panel (C) illustrates the semi-automatic counting process of DAPI-stained nuclei and
the comparison of cell density (the mean number of nuclei per mm2 ± SEM) in PMMA-IMs and
metakaolin-IMs.

3.2.2. Gene Expression within Membranes

We compared the expression of key inflammation-related genes involved in wound
healing between PMMA-IMs and metakaolin-IMs. Real-time RT-PCR analysis (Figure 3)
showed that the relative levels of insulin-like growth factor-1 (IGF-1), vascular endothelial
growth factor (VEGF), interleukin-6 (IL-6) and interleukin-1-beta (IL-1β) expression was
similar in PMMA-IMs and metakaolin-IMs. However, in metakaolin-IMs, transforming
growth factor-β (TGF-β) mRNA levels were significantly upregulated (fold change = 2.74,
p = 0.016), potentially enhancing bone healing and regeneration.

3.2.3. Secretion of Proteins by the IM and BMP-2 Expression within Membranes

IMs form a biological chamber containing secreted angiogenic and osteogenic factors
around the bone defect. We, therefore, performed a descriptive mass spectrometric analysis
to compare the secretome profiles of PMMA-IMs and metakaolin-IMs. We detected a total of
688 proteins in both groups (Figure 4A), 683 (99.3%) of which were not differentially secreted
between PMMA-IMs and metakaolin-IMs (i.e., the frequency of secretion of these proteins
was similar in the two groups). In contrast, the secretion frequency differed between the
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two groups for five proteins (0.72%): four were more frequently secreted by metakaolin-IMs,
and one was more frequently secreted by PMMA-IMs. The four proteins more frequently
secreted by metakaolin-IMs were identified as cysteine- and glycine-rich protein 3, the
GON7 subunit of the KEOPS complex, carboxylic ester hydrolase and synaptogyrin. These
proteins are involved in various metabolic pathways, including myogenesis and apoptosis.
The protein most frequently secreted by PMMA-IMs was the neurotrophin tyrosine kinase
receptor 1 TrkA L0 variant, which is involved in the MAPK pathway.
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Figure 4. (A) Secretome profiles of PMMA-IMs and metakaolin-IMs. In total, 683 proteins with similar
frequencies of secretion in the PMMA and metakaolin groups were identified by mass spectrometry.
By contrast, five proteins were differentially secreted: four proteins were more frequently secreted by
the metakaolin-IMs, and the other was more frequently secreted by PMMA-IMs. (B) Representative
histological slide of in situ BMP-2 immunostaining in PMMA-IMs (left panel) and metakaolin-IMs
(right panel). The diagram shows the percentage of the area of the collected membranes positive for
BMP-2; * p < 0.05.

We also investigated the expression of the pro-osteogenic mediator BMP-2 within the
membranes by immunohistochemistry (Figure 4B). BMP-2-expressing cells were uniformly
distributed throughout the membranes, but BMP-2 staining was more intense in metakaolin-
IMs than in PMMA-IMs. Furthermore, the percentage of the membrane area positive for
BMP-2 was 1.9 times higher in metakaolin-IMs than in PMMA-IMs (25.25% ± 4.83% versus
48.41% ± 7.11%, p = 0.0.21).
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3.3. Macrophage Distribution in IMs

We characterized the macrophage populations in IMs by immunofluorescence analysis
to detect both CD68 and CD206, with CD68 used as a phenotypic marker of the M1-like sub-
type and CD68+/CD206+ double labeling as a marker of the M2-like subtype (Figure 5A).
CD68-/CD206+ cells were defined as satellite cells. Semi-automatic quantification revealed
that the total macrophage population was significantly larger in metakaolin-IMs than in
PMMA-IMs (25.77% ± 5.48% versus 48.11% ± 5.77%, p = 0.02; Figure 5B). This larger
total macrophage population reflected a significant expansion of the M1-like population
(20.01% ± 3.81% versus 36.30% ± 4.45%, p = 0.02) and a smaller, non-significant expansion
of the M2-like subtype (5.75% ± 2.40% versus 11.81% ± 1.72%, p = 0.07).
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3.4. Bone Healing after IMT Stage 2 Surgery

We compared the bone-healing properties of PMMA-IMs and metakaolin-IMs, by
performing a quantitative analysis of callus volume within the osteotomy region 10 weeks
after bone graft implantation in the IM cavities. We observed a small, non-significant
difference in new bone volume within the defect, with a slightly greater volume in the
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metakaolin group (16.65% ± 3.59% versus 26.37% ± 6.5%, p = 0.22, Figure 6A) than in the
PMMA group.
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4. Discussion

In this study, we evaluated the use of a metakaolin spacer as an alternative to standard
PMMA spacers for the induced membrane technique. This technique is increasingly used in
orthopedic surgery to repair large bone defects in humans. We first analyzed the osteogenic,
biological and inflammatory properties of IMs in rat bone defects treated with metakaolin
or PMMA spacers. We then assessed bone repair efficiency in rats 10 weeks after the
implantation of a morselized corticocancellous allograft into the IM cavity generated by
the two types of spacers.

4.1. Metakaolin Modifies Several Osteogenic and Biological Parameters of IMs

IMs are well-organized bilayer encapsulation membranes resulting from a foreign body
reaction to the implanted spacer [15,24,25]. In a previous investigation, we demonstrated
the importance of both the cellularity and collagen density of IMs on their biological
properties in humans. Indeed, patients in which the Masquelet technique was unsuccessful
(absence of bone repair resulting in non-union) had IMs with 50% lower levels of cellularity
and a much higher collagen density (fibrosis-like status membrane) than those in which this
technique was successful [4]. Conversely, here, the replacement of the PMMA spacer with
a metakaolin spacer tended to increase IM cellularity (+30%). The IM acts as a biological
chamber, promoting bone graft vascularity and corticalization by the secretion of various
cytokines and growth factors [3,5,26–28]. Mass spectrometry showed that the metakaolin-
IM and PMMA-IM secretomes differed by only 0.72%, suggesting that the secreted protein
profiles of metakaolin-IMs and PMMA-IMs differed very little. Our mass spectrometry
proteomic analysis was purely descriptive. We did not, therefore, have precise data for
protein secretion levels. However, evidence from other molecular and protein analyses
suggests that the expression levels of several proteins are modified by metakaolin-IMs. We
observed a non-significant trend towards higher Igf-1, Il-6 and Il-1β transcript levels with
the metakaolin spacer. Fischer et al. [29] showed that serum Igf-1 levels were higher in
patients successfully treated with the IMT than in patients presenting treatment failure.

We found that Tgf-β transcript levels and BMP-2 protein levels were significantly
higher (2.7-fold and 1.9-fold increases, respectively) in metakaolin-IMs than in PMMA-IMs.
BMP-2 is undoubtedly the most osteoinductive growth factor, promoting the migration,
proliferation and osteoblastic differentiation of osteoprogenitor cells. TGF-β has dual
activity in bone remodeling activity [30], acting as a chemoattractant for osteoprogenitor
cells at bone lesion sites and stimulating bone formation (osteoprogenitor proliferation
and active osteoblastic differentiation; collagen synthesis) while inhibiting bone resorption
(inhibition of osteoclast proliferation and activity). Interestingly, BMP-2 and TGF-β belong
to the same growth factor superfamily. They bind to serine/tyrosine kinase receptors, and
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this interaction activates the SMAD intracellular signaling transduction pathway, which
is involved in various steps of the bone regeneration process during fracture healing [31].
Tang et al. [32] suggested that activation of the SMAD pathway by both BMP-2 and TGF-β
might underlie the osteogenic effects mediated by IMs. Taken together, the increase in IM
cellularity and higher levels of IGF-1, IL-6, IL-1β IM transcripts and BMP-2 protein are
consistent with the theory that the membranes induced by metakaolin are more osteogenic
than those induced by PMMA spacers.

4.2. Metakaolin Spacers Modulate the IM Immune Microenvironment

The nature of the spacer did not affect systemic inflammation, as estimated from
white blood cell counts in our animals. However, the increases in Igf-1, Il-6, Il-1β and
Tgf -β transcripts suggested that the metakaolin spacer modulated the local inflammatory
response. Macrophages are one of the most abundant sources of cytokines [33]. In this
context of biomaterial implantation in a bone lesion area, it is difficult to separate the local
inflammation process induced by the bone lesion from that triggered by biomaterial implan-
tation. Macrophages form a highly heterogeneous and plastic population of cells and are,
therefore, of particular interest in the IMT context due to their involvement in both wound
repair processes and the foreign body response [34,35]. After activation, tissue-resident
and monocyte-derived macrophages are recruited to the inflammation site. Depending
on local environment cues, they transiently gain and lose functions by undergoing major
phenotypic changes. A consensus has emerged concerning a sequential macrophage polar-
ization pattern in the bone-healing process [35–37]. Following the formation of the bone
lesion, there is a rapid, massive infiltration of monocytes and undifferentiated M0 subtype
macrophages at the fracture site. During the first few days after the injury, the polarization
of macrophages to the M1 “pro-inflammatory” phenotype is driven by secreted inflam-
matory and chemoattractant mediators, such as IL-6, IL-1β, IFN-γ, TNFα and monocyte
chemotactic protein 1 or MCP-1.

M1 macrophages remove the provisional fibrin matrix and necrotic cells by phagocy-
tosis. By secreting TNFα, IL-1β, IL-6 and MCP-1, they support inflammation by recruiting
additional immune cells, but they also initiate the recruitment of fibroblasts and osteopro-
genitor cells to the lesion site. Later in inflammation/repair kinetics, under the influence
of IL-4, IL-10 and IL-13 signaling, macrophage polarization switches to the M2 “anti-
inflammatory” phenotype. The secretion of VEGF, matrix metalloproteinases (MMPs),
BMP-2 and platelet-derived growth factor (PDGF) by M2 macrophages triggers both an-
giogenesis and bone tissue remodeling during the healing process [35,37]. Macrophages
are also crucial regulators of the FBR [38]. Following the implantation of biomaterials,
plasma components adsorb onto the surface of the material, promoting neutrophil inflam-
mation and macrophage recruitment. The macrophage-driven secretion of TGF-β around
the implant triggers the transdifferentiation of fibroblasts into myofibroblasts, thereby
promoting myofibroblast collagen production, leading to encapsulation of the biomaterial.
In addition, macrophages fuse to form foreign body giant cells (FBGCs). FBGCs are large
multinucleated cells secreting cathepsin-K and reactive oxygen species to degrade the
foreign body (in this case, the biomaterial).

Surprisingly, despite their key role in the FBR, little is known about the phenotypes of
macrophages in vivo during this reaction. Conflicting reports have been published [39],
probably because the characteristics of the biomaterial (including surface chemistry, poros-
ity, stiffness, etc.) directly affect macrophage phenotype. However, there is a general
consensus that both M1 and M2 macrophages are present throughout the FBR [40,41].
Moreover, higher levels of M2 macrophages than M1 macrophages surrounding implanted
biomaterials are associated with more constructive remodeling [42,43]. For example,
Zhu et al. [44] tested the capacity for orienting macrophage polarization of four scales
of honeycomb-like titanium structures with honeycomb diameters ranging from 90 nm
to 5 µm. Raw 264.7 macrophages cultured with the smoothest titanium structure had the
highest M2-macrophage polarization rate, with the highest levels of CD206 expression (a
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specific marker of M2 macrophages) and IL-4, IL-10 and BMP-2. In vivo, the implanta-
tion of titanium rods with 90 nm honeycombs in rat tibia gave the best results for bone
osteointegration [44]. Here, we compared macrophage polarization in IMs according to
the nature of the spacer implant. In metakaolin-IMs, we observed a significant expansion
of the total macrophage population. This observation is consistent with previous findings
indicating that aluminosilicates stimulate the immune response by inducing the activa-
tion of macrophages. The expansion of the macrophage population in metakaolin-IMs is
also consistent with the increase in key inflammation-related transcripts observed in the
same membranes. More specifically, even though the expansion of the M2-like population
was not significant (p = 0.07), both M1-like and M2-like macrophage subtypes increased
markedly in frequency in metakaolin-IMs. To our knowledge, this study is the first in an
IMT context to show a link between greater osteogenic properties of the induced membrane
and a spacer-driven modulation of the phenotype and number of macrophages. Further
studies are required to elucidate the mechanism underlying the balance between M1 and
M2 macrophages in the induced membrane.

4.3. Metakaolin Slightly Improves Bone Repair Efficiency

Given the more osteogenic properties of the metakaolin-IMs, better bone regeneration
was expected in this group. Unsurprisingly, we observed a trend towards better bone
healing, as shown by the 1.58-fold increase in BV/TV when a metakaolin spacer was
used to generate IM rather than a PMMA spacer. Other alternative biomaterials have
been tested for the creation of IM mimetics [45] or the induction of IMs with enhanced
osteogenic properties [46]. However, mixed results for bone repair outcomes have been
obtained for these alternative spacers. Indeed, after four weeks of maturation in rats,
smooth and rough titanium spacers generated thicker IMs than smooth and rough PMMA
spacers but with similar histological structures and biochemical expression parameters [47].
The only difference observed concerned IL-6 protein levels in the IM, which were about
35% higher with rough spacers (both PMMA and titanium spacers) than with smooth
spacers. Smooth PMMA spacers resulted in a more functional bone union than the other
PMMA and titanium spacers tested [47]. Unfortunately, the authors did not investigate
the immune microenvironment of the membranes, particularly the balance between M1
and M2 macrophages. Following on from the successful clinical use of polypropylene
syringes as alternative spacers to PMMA cement to treat metacarpal bone lesions [48], we
validated the potential of this biomaterial in a rat IMT model [15]. Polypropylene-induced
membranes had a similar histologic organization, cell density and BMP-2 protein level to
PMMA- IMs, and similar levels of serum bone turnover markers. In micro-CT analysis,
bone regeneration capacities were similar in the polypropylene and PMMA groups of
rats [15]. Our investigation highlights the value of polypropylene syringes as an alternative
to PMMA cement for use as spacers in a military practice context and/or in low-medical
resource environments. With a view to developing a modified IMT approach for efficient
one-step surgery, Ma et al. [49] evaluated the osteogenic properties of calcium sulfate
(CS)-induced membranes in rats. The histological characteristics of CS-IM and PMMA-IM
were similar, except that the calcium sulfate spacer induced thicker membranes. Levels
of the TGF-β1, BMP-2 and VEGF proteins were not significantly higher in CS-IMs at two,
four, six and eight weeks post-implantation, whereas IL-6 protein levels were significantly
higher in PMMA-IMs at two weeks post-implantation. Finally, CS-IMs promoted better
endochondral ossification at the edges of the bone defect than PMMA-IMs at six and
eight weeks post-implantation [49]. The authors concluded that calcium sulfate could
replace PMMA as an alternative spacer in IMT. The results obtained with the metakaolin
spacer in this study are equivalent to those obtained by Ma’s research team for the calcium
sulfate spacer.
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5. Limitations, Conclusions and Future Directions

This study is the first to date to investigate a correlation between local inflamma-
tion/the immune microenvironment of the IM and osteogenic properties by comparing
IMs generated with PMMA and metakaolin spacers in a preclinical rat model of IMT.
Metakaolin induced a membrane with slightly better osteogenic properties than the PMMA
spacer, improving bone-healing efficiency, albeit not significantly in our rat model. This
significant success in bone repair was accompanied by an expansion of the macrophage
population in the IM structure for both M1 and M2 subtype macrophages. This stronger
local inflammation process was sustained by local overexpression of the osteogenic BMP-2
protein and several inflammatory cytokines, including TGF-β, IL-1β and IL-6.

This study had several limitations. The number of rats included was relatively small,
which may have contributed to the high standard deviation in the RT-PCR analysis. Further-
more, our study included only male rats. Sex-specific differences in bone-healing outcomes
remain underinvestigated, but most studies in the field have suggested that being female is
a significant risk factor for compromised bone healing [50]. This influence of sex on fracture
healing may be related to the smaller numbers of mesenchymal stromal cells (MSCs) in
female bone marrow [51].

Given the presence of MSCs in the induced membrane [4], it would be desirable
to investigate sex-specific differences in bone-healing outcomes, particularly in the IMT
context. Another limitation of the study concerns the in situ characterization of polarized
macrophages using CD68 and CD206 immunofluorescence. The CD68 protein is one of
the most common monocyte/macrophage markers [52], whereas the CD206 protein is
mostly expressed by M2 macrophages [53]. The co-expression of CD68 and CD206 is
generally considered to indicate an M2-like phenotype. In this study, the expression of
CD68 alone was considered to indicate a M1-like macrophage phenotype. The use of a
single marker for identifying the M1-like population is questionable. Since a weak CD68
expression can be detected in some non-hematopoietic cells (mesenchymal stem cells,
fibroblast, endothelial and tumor cells) [54], we assumed that the M1-like population is
overestimated in our study. Indeed, the in situ detection of polarized macrophages is
technically challenging [22,55], and none of the other discriminating markers we tested
gave conclusive results. We acknowledged that the in situ CD68-based strategy for M1-like
cell detection can be regarded as a “by default” identification of this population. Although
there is no real direct evidence for the use of CD68 as a single marker for the M1-type
population characterization in rats, this labeling approach is commonly described in the
literature [22,56–58], thus providing robust indirect evidence to our conclusion.

In conclusion, metakaolin spacers would be a valuable biomaterial for replacing
PMMA spacers in the Masquelet technique. One particularly interesting clinical application
would be the healing of complicated bone defects. Indeed, this strategy would involve the
manufacture of 3D printing molds in the shape of the injured bone areas based on the CT
scans for the patients concerned. A metakaolin spacer could then be molded in a specific
cast to obtain the appropriate shape before implantation into the bone defect. Finally, given
the high absorbency of metakaolin, the metakaolin spacer could be impregnated with a
large panel of antibiotics to eradicate potential bone infections that might lead to a failure
of bone repair. Conversely, only heat-resistant antibiotics could be loaded onto PMMA
spacers due to the exothermic nature of the PMMA polymerization reaction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10123017/s1, Table S1: Primers sets, forward (F)
and reverse (R), used for quantitative PCR assays. Product size and specific qPCR conditions
are indicated.
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