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Abstract: Abnormal resting-state functional connectivity (rs-FC) and brain structure have emerged
as pathological hallmarks of fibromyalgia (FM). This study investigated and compared the accuracy
of network rs-FC and brain structural features in identifying FM with a machine learning (ML)
approach. Twenty-six FM patients and thirty healthy controls were recruited. Clinical presentation
was measured by questionnaires. After MRI acquisitions, network rs-FC z-score and network-based
gray matter volume matrices were exacted and preprocessed. The performance of feature selection
and classification methods was measured. Correlation analyses between predictive features in final
models and clinical data were performed. The combination of the recursive feature elimination
(RFE) selection method and support vector machine (rs-FC data) or logistic regression (structural
data), after permutation importance feature selection, showed high performance in distinguishing
FM patients from pain-free controls, in which the rs-FC ML model outperformed the structural ML
model (accuracy: 0.91 vs. 0.86, AUC: 0.93 vs. 0.88). The combined rs-FC and structural ML model
showed the best performance (accuracy: 0.95, AUC: 0.95). Additionally, several rs-FC features in the
final ML model correlated with FM’s clinical data. In conclusion, ML models based on rs-FC and
brain structural MRI features could effectively differentiate FM patients from pain-free subjects.

Keywords: fibromyalgia; functional connectivity; brain structure; MRI; machine learning

1. Introduction

Fibromyalgia (FM) is a complicated chronic syndrome characterized by widespread
pain, fatigue, sleep disorders, and psychological distress, considerably reducing patients’
quality of life [1]. The underlying pathomechanisms of FM have remained unclear, making
diagnosis and treatment challenging [1–3]. Currently, FM is diagnosed based solely on
clinical presentation, and the treatment for FM is just symptomatic therapy with limited
efficacy in clinical practice [3,4].

Using electroencephalogram (EEG) and functional magnetic resonance imaging (MRI),
studies observed that functional connectivity (FC) among several brain networks was
impaired when patients performed tasks, were triggered by stimuli, or were during rest [5].
Specifically, several studies showed abnormal FCs in the triple networks, including the
default mode network, salience network, and central executive network (frontoparietal
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network), considered the chronic pain pathway integrating physical and psychological
domains [6–9]. Moreover, those abnormalities in these networks correlated with FM
patients’ clinical presentations [6,7]. Moreover, altered FCs of the sensorimotor network
have been shown to be associated with dysfunctional pain processing in FM [10].

The brain structural changes were also identified as the pathological features of FM [5].
Gray matter volume changes have been observed in several specific regions, such as the
orbitofrontal cortex and anterior cingulate cortex, correlated with pain and psychological
symptoms in FM patients [11,12]. Volume alterations in the gray matter might reflect the
pathohistological process under FM and serve as specific signatures to detect FM from
healthy and other conditions [13].

Machine learning (ML) effectively supports the diagnosis and prognosis of diseases
based on different data, including neuroimaging data [14]. A previous study showed
that ML based on multisensory-stimulated functional MRI patterns could distinguish FM
patients from a pain-free population [15]. Another study demonstrated that ML using
anatomical brain volume predicted FM patients with acceptable accuracy compared to
self-reported clinical data [16]. Because the alterations in network-based rs-FC and brain
structure are the characteristics of FM, we hypothesized that both network-based rs-FC
and brain structural data could classify FM patients from healthy controls using the ML
approach. However, no study compares or combines the predictability of resting-state FC
(rs-FC) and structural data in distinguishing FM patients from healthy controls. Therefore,
our study investigated the FM predictability of network rs-FC data and structural data. In
addition, the study was also to evaluate the correlation between the predictive features of
ML models and clinical presentation in FM patients.

2. Materials and Methods
2.1. Participants

Thirty healthy participants and twenty-six FM patients were enrolled in this study.
All patients initially met the American College of Rheumatology 2016 criteria for the
classification of fibromyalgia [17] at the time of diagnosis, which was confirmed by an
experienced specialist at Taipei Medical University Hospital. The inclusion criteria of FM
patients were as follows: (1) using stable medication dosages at least one month before
enrolling in this study [18,19] and (2) being able to write the informed consent. In addition,
both healthy participants and FM patients were excluded from this study if (1) participants
had other types of pain or any history of head injuries, major neurological disorders, drug
abuse, or malignant diseases; (2) participants were pregnant; and (3) participants had
contraindications to MRI. The procedure of this cross-sectional study was approved by
the Institutional Review Board-Taipei Medical University (N201812078, the approval day:
14 February 2019). Written consent was obtained from participants before they participated
in the study.

2.2. Clinical Assessment

The clinical presentation of each participant was re-evaluated using standardized
questionnaires prior to MRI acquisitions. For sleep quality evaluation, the Pittsburgh Sleep
Quality Index (PSQI), a self-reported questionnaire consisting of seven components with
nineteen questions, was used [20]. The score for each item of the PSQI ranges from 0 (“no
difficulty”) to 3 (“severe difficulty”), with a maximum score of 21 [20]. Recent evidence
shows that PSQI has good internal consistency and test-retest reliability in FM patients
(>0.8) [21].

For anxiety and depression measurement, Beck’s anxiety inventory (BAI) [22] and
Beck’s depression inventory version II (BDI) [23] were used. BAI and BDI are the self-
reported questionnaires with 21 items, which are easy to use and to interpret. The score of
each item ranges from 0 (“not severe at all”) to 3 (“very severe”), and the maximum score is
63 [22,23]. The total BAI score is categorized into four groups of anxiety severity, including
normal (0–9), mild (10–18), moderate (19–29), and severe anxiety group (>29) [22], which
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has been shown to have high internal consistency (>0.9) and test-retest reliability (>0.8) [24].
The total BDI score is also categorized into four groups of depression severity, including
normal (0–13), mild (14–28), moderate (29–35), and severe depression group (>35). BDI-II
has been shown to have good internal consistency and construct validity for depression
measurement in patients with chronic pain [25].

For pain intensity, the Visual Analog Scale (VAS), which is a ten-centimeter ruler
ranging from 0 (“no pain”) to 10 (“the worst imaginable pain”), was used to examine the
patients at the clinical assessment time. To measure pain widespreadness and fibromyalgia
impacts, the widespread pain index (WPI) was used to assess the pain widespreadness in
FM patients by measuring painful areas in patients [17]. Recent evidence shows that WPI
has an acceptable construct validity and reliability in chronic pain youth patients [26].

The levels of fibromyalgia symptoms in patients during the previous week were
assessed using the Symptom Severity Scale (SSS) and Fibromyalgia Impact Questionnaire
(FIQ). SSS mainly focuses on the severity of fatigue, cognitive symptoms, and unrefreshed
waking up, with scores ranging from 0 (“no problem”) to 3 (“severe”) for each symptom and
a maximal total score of 12 [17]. SSS has an acceptable reliability (0.7) [26]. FIQ, a ten-item
questionnaire, is designed to measure the health status of FM patients, including physical
functions, pain, fatigue, work status, stiffness, anxiety, and depression [27]. Internal
consistency of FIQ is >0.8, whereas test-retest reliability of FIQ ranges from 0.56 to 0.95 [28].

To measure pressure pain threshold (PPT), the assessment sites were the nine paired
tender points of the diagnostic criteria for FM defined by the ACR in 1990 [29], which
are located at the occiput, low cervical, trapezius, supraspinatus, second rib, lateral epi-
condyle, gluteal, greater trochanter, and knee. During the measurement, the subject took a
relaxed sitting position. Pressure pain thresholds were measured three times on each side
and averaged.

2.3. MRI Acquisitions

All image data were acquired by a 3T MRI system (MAGNETOM Prisma; Siemens
Healthcare, Erlangen, Germany) with a 20-channel head coil. During the MRI acquisition
process, the participants were instructed to stay awake with closed eyes. T1-weighted
high-resolution structural images were collected, using a 3D magnetization-prepared
rapid gradient-echo sequence: repetition time (TR) = 2000 ms, echo time (TE) = 2.3 ms,
flip angle = 80, pixel matrix = 256 × 256, voxel-size = 1 mm × 1 mm × 1 mm, number
of slices = 192, and slide order = interleaved. T2*-weighted functional images were ob-
tained by a gradient echo sequence: TR = 2720 ms, TE = 24 ms, flip angle = 840, pixel
matrix = 64 × 64, voxel-size = 3 mm × 3 mm × 3 mm, number of slices = 50, and slide
order = interleaved. All image data were recorded in DICOM format and then converted to
NIFTI format.

2.4. Functional MRI Preprocessing and Resting-State Functional Connectivity Matrix Extraction

The CONN toolbox version 21a (The Gabrieli Lab, McGovern Institute for Brain
Research, MIT) is based on Statistical Parametric Mapping software version 12 (SPM12; The
Wellcome Department of Imaging Neuroscience, London) and implemented in MATLAB
2022a (The MathWorks Inc., Natick, MA, USA) was used to preprocess MRI data [30]. The
imaging data were first realigned by co-registering and resampling all scans to a reference
image. The SPM slice-timing correction procedure was applied to correct misalignment
among slices of functional data, and then potential outliers were identified. Subsequently,
the data were normalized into MNI space and were smoothed with a Gaussian kernel
of 8 mm full width half maximum (FWHM). The anatomical component-based noise
correction procedure was used to estimate and remove potential confounders from the
estimated BOLD signal. The BOLD signal with temporal frequencies smaller than 0.008 or
higher than 0.09Hz from the imaging data was removed using a band-pass filter.

After imaging preprocessing, the first level of ROI-to-ROI analysis was performed to
extract the network-based rs-FC matrix. The ROIs were defined using the HCP network
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atlas built-in CONN toolbox [30], resulting from independent component analysis on the
Human Connectome Project dataset. The atlas defined 32 nodes of 8 networks, including
the default mode network, salience network, sensorimotor network, visual network, dorsal
attention network, frontoparietal network, language network, and cerebellar network.
For each subject, the time series of voxels in each ROI (node) were averaged, and the
correlations between the averaged time series among ROIs were calculated. The ROI-to-
ROI correlation coefficients were Fisher-transformed to z-scores for normalization. The
z-score matrix was extracted for further analyses, including (32 × 31)/2 = 496 ROI-to-ROI
z-scores for each subject.

2.5. Voxel-Based Morphology Analyses and Gray Matter Volume Matrix Extraction

Voxel-based morphology (VBM) analyses were performed using the Computational
Anatomy Toolbox (CAT12) in SPM12 [31]. In brief, the T1-weighted high-resolution struc-
tural images were segmented into gray matter, white matter, and cerebrospinal fluid.
Subsequently, the images were normalized to MNI and smoothed with a Gaussian kernel
of 8 mm FWHM. The gray matter volume matrix of 400 anatomical regions, defined by the
400-parcellation network atlas of Schaefer (2018) [32], was extracted for further analysis.

2.6. Machine Learning Analysis

Our ML pipeline was divided into data processing, model building (baseline and
optimal models), and validation (Figure 1). All steps were performed using Python 3.7 and
the Scikit-learn 1.1.2 package [33].

2.6.1. Preprocessing Data

For data processing, the datasets were checked for missing values. Then the structural
dataset was scaled by the Min-Max scaling method (the functional data did not need to be
scaled because those were z-score values already).

2.6.2. Feature Selection Methods for Selecting Baseline Models

It should be noted that both rs-FC and structural MRI data extracted from participants
are high-dimensional, which includes noise and could induce overfitting for classification
results [14]. Therefore, the feature selection was performed for those datasets. When
building the baseline ML models in this study, several common feature selection methods
were used, including recursive feature elimination (RFE), univariate feature selection,
principal component analysis (PCA), and the L1-based selection method [33].

RFE is a wrapper method to select important features for classification or regression
which is commonly used in ML studies with high-dimensional data [34,35]. Two main
parameters needed to be set for the RFE method: the estimator and the number of selected
features. In this study, logistic regression was applied as an estimator of RFE. The opti-
mal number of features that best-distinguished FM patients from healthy controls was
determined by performing the loop of RFE with leave-one-out cross-validation (RFECV
function). The univariate feature selection method (“SelectKBest” technique) uses the
univariate regression approach to find the most important features for classification [36].
In the current study, the F-test classification score was set as a score function, and the
number of features that produced the best performance was chosen. PCA is the method to
reduce the dimension of large data but still preserve the original data information [37].
The number of components was set to account for 95% of the variance of the input. The
L1-based feature selection method is based on a linear model penalized with the l1 norm
to remove the features having zero coefficients with the outcome [38]. This study used a
linear support vector machine (LinearSVC) for feature selection with the parameter C set
at 0.1.
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Figure 1. The machine learning procedure in this study. After extracting resting-state functional
connectivity (rs-FC) data and structural data, both datasets were checked for missing values. Because
rs-FC data were z-scores already, we just scaled structural data using the min-max scaling method.
The baseline machine learning models for either the rs-FC dataset or structural dataset were built
by selecting the best model among cross-combinations between four feature selection methods and
six classifiers. Subsequently, feature importance function was applied on baseline models to remove
features that had zero or negative features important scores, resulting in the final machine learning
model for each of the rs-FC dataset and structural dataset. The performances of the two final models
were compared to determine which was better for FM prediction. Finally, the predictive rs-FC and
structural features were used to build the combined model to investigate the predictability of both
functional and structural data. The validation for all models in this study were conducted with
leave-one-out cross-validation (LOOCV). The performance matrix included accuracy, sensitivity,
specificity, f1-score, and ROC_AUC. Note: TP = true positive; TN = true negative; FP = false positive;
FN: false negative.

2.6.3. Classification Algorithms and Hyperparameter Optimization to Build Baseline Models

To find good performance baseline ML models, we used the cross-combination strat-
egy in which each feature selection method mentioned above was combined with several
classifiers [39,40]. We investigated six classification algorithms: support vector machine
(SVM), Logistic Regression (LR), k-nearest neighbors (KNN), random forest (RF), linear
discriminative analysis (LDA), and Gaussian Naïve Bayes (GBN), which were commonly
used in machine learning of MRI data [41–45]. The hyperparameter optimization processes
with the GridSearchCV method were conducted for all selection method + classifier com-
binations. The C, gamma, and kernel parameters were tuned for the SVM classifier. The
C, penalty, and solver parameters were optimized for the LR classifier. The algorithm,
number of neighbors, power, and weight parameters were adjusted in KNN classification.
The criterion, max_features, and the number of estimator parameters for the RF classifier
were tuned. The solver parameter was optimized for LDA classification, and the variance
smoothing was adjusted for GNB classification. The combination of feature selection and
classifier that showed the best performance among the others was selected as the baseline
ML model for further building the final ML models.
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2.6.4. Permutation Feature Importance Ranking to Building the Final Models for Each Data
Type and the Combined Model

A permutation feature importance function was applied to detect and remove noise in
the baseline ML models. The features that showed zero or negative permutation importance
scores (usually observed in small datasets such as ours) were removed, resulting in the
final ML model for each rs-FC dataset and structural dataset. The two final models were
compared in all measurement indicators to determine the better classification datatype of
FM. Finally, the ML model of combined FC and structural features was built to investigate
the predictability of combined functional and structural features in distinguishing FM
patients from healthy controls.

2.6.5. Defining the Classification Performance Matrix

Due to the small sample size, the performance of feature selection methods and
validation processes in this study was obtained by leave-one-out cross-validation, which
has been suggested to reduce the risk of overfitting. Measurement indicators were recorded,
including accuracy, sensitivity, specificity, f1, and ROC_AUC scores. In addition, the
permutation test (repeated 1000 times) was performed to evaluate the classifying ability of
each model. A permutation p-value < 0.05 was considered significant [46].

2.7. Correlation with Clinical Data

The data were expressed as mean ± standard deviation (continuous variables) or
ratio (for gender). The Shapiro–Wilk test was used to evaluate the normal distributions of
variables. The differences in demographic and clinical data were investigated by the Inde-
pendent Sample T-test (for normally distributed variables) or Mann–Whitney U test (for
non-normally distributed variables). A correlation analysis between all features of the final
ML models and clinical measurement data (PSQI, BDI, BAI, WPI, FIQ, SSS, VAS, and PPT)
was conducted using Kendall’s rank correlation method with false discovery rate (FDR)
correction for multiple correlations. Statistical analyses were performed by R version 4.1.2
(R Foundation for Statistical Computing, Vienna, Austria) and Jeffreys’s Amazing Statistics
Program (JASP) version 0.16.3 (The JASP Team; available at: https://jasp-stats.org/). A
p-value < 0.05 was considered significant.

3. Results
3.1. Demographic and Clinical Characteristics

Age, gender, and BMI had no significant difference between the two groups. However,
the PSQI, BAI, and BDI scores in the FM group were significantly higher than those in the
control group (p < 0.05). Pain intensity (VAS score), pain widespreadness (WPI score), and
FM impacts (FIQ and SSS scores) were recorded in the FM group but not detected in the
control group (Table 1).

3.2. Fibromyalgia Classification Using Resting-State Functional Connectivity Data
3.2.1. Comparison of Cross-Combination Models and Baseline rs-FC ML Model Selection

The numbers of rs-FC features (or components for PCA) selected by RFE, univariate,
PCA, and L1-based methods were 14, 11, 44, and 2, respectively. The RFE method out-
performed the other feature selection methods, expressing high accuracy and AUC when
combined with all classifiers. Regarding classifiers, after hyperparameter optimization,
SVM and LR exhibited high accuracy compared with KNN, RF, LDA, and GNB classifiers
combined with all feature selection methods (See Table S1 in the Supplementary Materi-
als). Feature selection RFE + classifier SVM showed the highest accuracy (accuracy: 0.89,
AUC = 0.93, p = 9.9 × 10−4), followed by RFE + classifier LR (accuracy: 0.88, AUC = 0.94,
p = 9.9 × 10−4) and RFE + classifier LDA (accuracy: 0.84, AUC = 0.93, p = 9.9 × 10−4). In
addition, RFE + classifier SVM also ranked first in sensitivity (0.85), specificity (0.93), and
f1-score (0.88) in the rs-FC dataset. Thus, the SVM classifier with fourteen features selected

https://jasp-stats.org/
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by the RFE method was chosen as our baseline ML model of rs-FC data for further analyses
(Table 2).

Table 1. Demographic and clinical characteristics.

FM
(n = 26)

Control
(n = 30) p-Value

Age 49.6 ± 11 52.1 ± 10.5 0.393
Gender (Female/male) 25/1 28/2 1.000

BMI (kg/m2) 21.6 ± 3.8 23.2 ± 4.5 0.183
PSQI 11.7 ± 3.5 5.3 ± 2.4 2.1 × 10−8

BAI 19.2 ± 13.8 4.1 ± 4.2 5.5 × 10−7

BDI 18.7 ± 12.9 4.6 ± 4.5 4.3 × 10−7

VAS 5.6 ± 2.3 - -
WPI 8.9 ± 4.5 - -
SSS 6.9 ± 2.8 - -
FIQ 53.1 ± 16.0 - -

PPT (kg/cm2) 2.37 ± 1.14 - -
The table shows the demographic characteristics as well as clinical presentation of fibromyalgia patients (FM)
and the healthy controls measured by Pittsburgh Sleep Quality Index (PSQI), Beck’s anxiety inventory (BAI),
Beck’s depression inventory version II (BDI), Visual Analog Scale (VAS), Widespread Pain Index (WPI), Symptom
Severity Scale (SSS), Fibromyalgia Impact Questionnaire (FIQ), and Pain Pressure Threshold (PPT). The results are
expressed as mean ± standard deviation (except for the gender variable expressed as the number of females to
males). The differences between the two groups were examined by Independent Sample T-test (for Age and BMI),
the Mann–Whitney U test (for PSQI, BAI, and BDI), and Chi-square test (for Gender).

Table 2. Comparing performance among different combinations of four feature selection methods
and six classifiers in resting-state functional connectivity dataset.

Selection
Method Classifier Accuracy Sensitivity Specificity F1-Score ROC_AUC p-Value

(Permutation Test)

RFE
(14 features)

SVM 0.89 0.85 0.93 0.88 0.93 9.9 × 10−4

LR 0.88 0.85 0.90 0.86 0.94 9.9 × 10−4

KNN 0.79 0.81 0.77 0.78 0.83 9.9 × 10−4

RF 0.77 0.81 0.73 0.76 0.83 9.9 × 10−4

LDA 0.84 0.85 0.83 0.83 0.93 9.9 × 10−4

GNB 0.79 0.81 0.77 0.78 0.89 9.9 × 10−4

Univar
(11 features)

SVM 0.77 0.69 0.83 0.73 0.80 9.9 × 10−4

LR 0.82 0.77 0.87 0.80 0.87 9.9 × 10−4

KNN 0.73 0.73 0.73 0.72 0.80 0.002

RF 0.71 0.69 0.73 0.69 0.74 0.002

LDA 0.73 0.69 0.77 0.71 0.82 9.9 × 10−4

GNB 0.75 0.77 0.73 0.74 0.85 9.9 × 10−4

PCA
(44 components)

SVM 0.59 0.54 0.63 0.55 0.17 0.175

LR 0.55 0.54 0.57 0.53 0.56 0.283

KNN 0.61 0.65 0.57 0.61 0.61 0.089

RF 0.55 0.46 0.63 0.49 0.55 0.266

LDA 0.45 0.42 0.47 0.42 0.45 0.753

GNB 0.39 0.31 0.47 0.32 0.32 0.889

L1-based
(2 features)

SVM 0.68 0.85 0.53 0.71 0.63 0.008
LR 0.66 0.65 0.67 0.64 0.68 0.013

KNN 0.61 0.58 0.63 0.58 0.61 0.110
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Table 2. Cont.

Selection
Method Classifier Accuracy Sensitivity Specificity F1-Score ROC_AUC p-Value

(Permutation Test)

L1-based
(2 features)

RF 0.64 0.62 0.67 0.62 0.64 0.027
LDA 0.64 0.65 0.63 0.63 0.67 0.024
GNB 0.66 0.69 0.63 0.65 0.69 0.018

The table shows a performance matrix of different combinations of selection methods and classifiers using resting-
state functional connectivity data. The feature selection methods include recursive feature elimination (RFE),
univariate feature selection (Univar), principal component analysis (PCA), and L1-based feature selection method
(L1-based). The classifiers include support vector machine (SVM), logistic regression (LR), k-nearest neighbors
(KNN), random forest (RF), linear discriminative analysis (LDA), and Gaussian Naïve Bayes (GNB). Permutation
test was used to test the significance of each model, which a significant level was 0.05.

3.2.2. The Final ML Model for rs-FC Data

The permutation importance function was performed to rank the importance of
14 selected features in the baseline ML model. Five of fourteen features showed negative
scores and thus were removed (Figure 2A). Therefore, the SVM model with nine features
was applied as our final model of rs-FC data to classify FM patients from healthy controls.
Compared to the baseline model, the final model was higher in accuracy (0.91), sensitivity
(0.88), and f1-score (0.90), but similar in specificity (0.93) and AUC (0.93) (p = 9.9 × 10−4)
(Table 2, Figure 2B).
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Figure 2. The figure show (A) The important feature ranking in the baseline model of resting-state
functional connectivity data and (B) The performance of the model before (baseline rs-FC ML model)
and after removing non-informative features (final rs-FC ML model). Note: Visual.Lateral (L) and
Visual.Medial = the left lateral visual network and the medial visual network; DorsalAttention.IPS
(L) and DorsalAttention.FEF (R) = the left intraparietal sulcus node and frontal eye field node of
dorsal attention network; Language.IFG and Language.pSTG = the inferior frontal cortex node
and the posterior superior temporal gyrus node of language network; Frontoparietal.LPFC and
Frontoparietal.PPC = the lateral prefrontal cortex node and the posterior parietal cortex node of
frontoparietal network; Cerebellar.Anterior and Cerebellar.Posterior = anterior and posterior node of



Biomedicines 2022, 10, 3002 9 of 18

cerebellum; SensoriMotor.Lateral and SensoriMotor.Superior = the lateral sensorimotor network
and the superior sensorimotor network; DefaultMode.MPFC and DefaultMode.PCC = the medial
prefrontal cortex node and posterior cingulate cortex node of the default mode network; Salience.ACC
and Salience.RPFC = the anterior cingulate cortex node and the rostral prefrontal cortex node of the
Salience network.

3.3. Fibromyalgia Classification Using Structural Data
3.3.1. Comparison of Cross-Combination Models and Selecting Baseline ML Model for
Structural Data

The numbers of gray matter volume features (or components for PCA) selected by
RFE, univariate, PCA, and L1-based methods were 9, 96, 44, and 1, respectively. RFE was
also ranked as the best feature selection method in the structural dataset. Compared with
the other classifiers, SVM and LR demonstrated good performances when combined with
all feature selection methods (See Table S2 in the Supplementary Materials). RFE + classifier
LR showed the highest accuracy (accuracy = 0.86, AUC = 0.86, p = 9.9 × 10−4), followed
by RFE + classifier SVM (accuracy = 0.82, AUC = 0.89, p = 9.9 × 10−4) and RFE + classifier
LDA (accuracy = 0.82, AUC = 0.89, p = 9.9 × 10−4). In addition, RFE + classifier LR also
showed the highest sensitivity (0.85), specificity (0.87), and f1-score (0.85) in the structural
dataset. Therefore, the LR classifier with nine features selected from the RFE method was
chosen as our baseline ML model of structural data for further analyses (Table 3).

Table 3. Comparing performance among different combinations of four feature selection methods
and six classifiers in structural data.

Selection
Method Classifier Accuracy Sensitivity Specificity F1-Score ROC_AUC p-Value

(Permutation Test)

RFE
(9 features)

SVM 0.82 0.85 0.80 0.81 0.89 9.9 × 10−4

LR 0.86 0.85 0.87 0.85 0.86 9.9 × 10−4

KNN 0.79 0.85 0.73 0.79 0.79 0.002
RF 0.71 0.73 0.70 0.70 0.64 0.217

LDA 0.82 0.81 0.83 0.81 0.89 9.9 × 10−4

GNB 0.70 0.65 0.73 0.67 0.78 0.004

Univar
(96 features)

SVM 0.71 0.73 0.70 0.70 0.76 0.006
LR 0.77 0.73 0.80 0.75 0.76 9.9 × 10−4

KNN 0.63 0.81 0.47 0.67 0.60 0.415
RF 0.66 0.62 0.70 0.63 0.58 9.9 × 10−4

LDA 0.57 0.73 0.43 0.61 0.66 0.225
GNB 0.55 0.58 0.53 0.55 0.62 0.327

PCA
(44 components)

SVM 0.59 0.54 0.63 0.55 0.24 0.146
LR 0.55 0.54 0.57 0.53 0.59 0.285

KNN 0.50 0.85 0.20 0.61 0.44 0.408
RF 0.53 0.54 0.53 0.52 0.53 0.250

LDA 0.38 0.42 0.33 0.39 0.40 0.948
GNB 0.46 0.42 0.50 0.42 0.46 0.644

L1-based
(1 feature)

SVM 0.70 0.62 0.77 0.65 0.55 0.007
LR 0.70 0.62 0.67 0.65 0.64 9.9 × 10−4

KNN 0.61 0.73 0.50 0.63 0.58 0.096
RF 0.48 0.38 0.57 0.41 0.46 0.618

LDA 0.70 0.62 0.77 0.65 0.64 0.002
GNB 0.61 0.50 0.70 0.54 0.59 0.071

The table shows a performance matrix of different combinations of feature selection methods and classifiers, using
structural MRI data. The feature selection methods include recursive feature elimination (RFE), univariate feature
selection (Univar), principal component analysis (PCA), and L1-based feature selection method (L1-based). The
classifiers include support machine vector (SVM), logistic regression (LR), k-nearest neighbors (KNN), random
forest (RF), linear discriminative analysis (LDA), and Gaussian Naïve Bayes (GNB). Permutation p-value was
used to test the significance of each model, which a significant level was 0.05.



Biomedicines 2022, 10, 3002 10 of 18

3.3.2. The Final ML Model for Structural Data

The permutation importance function was performed to rank the importance of nine
structural features in the baseline ML model. No feature showed a zero or negative score
(Figure 3). Thus, the baseline model was kept as our final model of structural data to
classify FM patients from healthy controls.
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Figure 3. The important feature ranking in the baseline model of structural data. Note: lSalVen-
tAttnB_PFCI_3 = the lateral prefrontal cortex regions of the left salience ventral attention network
B; rDefaultC_IPL_1 = the right inferior parietal lobule node 1 of the default mode network C;
lDefaultB_PFCv_2 = the ventral prefrontal cortex node 2 of the left default mode network; Mis-
Peri_ExStrSup_4 = extra-striate superior node 4; lDorsAttnA_ParOcc_1 = parietal occipital node
1 of the left dorsal attention network A; lSalVentAttnA_FrMed_3 = the medial frontal node of the
left salience ventral attention network A; lSomMotB_S2_4 = the S2 node 4 of the left sensorimotor
network B; lSomMotB_Aud_3 = the auditory node 3 of sensorimotor network B; rSomMotA_2 = the
right sensorimotor network A node 2.

3.4. Comparison in the Classification Ability between Functional MRI Data and Structural Data

Compared to the final model of structural MRI data, the rs-FC ML model was higher
in all indicators: accuracy (0.91 vs. 0.86), sensitivity (0.88 vs. 0.85), specificity (0.93 vs. 0.87),
f1-score (0.91 vs. 0.85), and ROC_AUC score (0.93 vs. 0.88) (Figure 4). Of note, the rs-FC
ML model also outperformed the structural model that used the same feature selection
(RFE) and classifier (SVM) method (Table 3, Figure 4).

3.5. Fibromyalgia Classification Using the Combination of Functional and Structural Data

We performed the ML model using both predictive FC and structural features from
the final ML models of FC and structural data (Table S3). The combined model with SVM
or LR showed the same performance, with accuracy: 0.95, sensitivity: 0.96, specificity: 0.93,
f1-score: 0.95, and ROC_AUC score: 0.95 (p-value = 9.9 × 10−4). Compared to the final
ML model of rs-FC features only, the model of combined functional and structural features
showed higher in all indicators, except specificity.

3.6. Correlation between the Selected Features in the Final ML Models with Clinical Data

Among nine rs-FC features in the final ML model of rs-FC data, the rs-FC between
the right sensorimotor network and prefrontal parietal cortex was negatively correlated
with BAI, SSS, and FIQ scores (τ = −0.49, −0.46, and −0.43 with p-FDR = 0.008, 0.017, and
0.023, respectively). In contrast, the rs-FC between the medial prefrontal cortex (default
mode network) and the right rostral prefrontal cortex (salience network) was positively
correlated with FIQ and WPI scores (Kendall’s Tau τ = 0.39 and 0.39 with p-FDR = 0.040
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and 0.042, respectively). The rs-FC between the medial prefrontal cortex (default mode
network) and the posterior cerebellar region (cerebellar network) was positively correlated
with the PSQI score (τ = 0.44; p-FDR = 0.024) (Figure 5, Table S4). A significant correlation
between structural features and clinical data was not found in this study (Table S5).
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Figure 4. Comparison between two final machine learning models of resting-state functional con-
nectivity data and structural data. The figure showed the performance matrix (the upper table) and
the receiver operating characteristic (ROC) curve and its area under curve (AUC) score of the two
models (the lower chart).
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coefficients (with p-value corrected by false discovery rate) were shown for statistically significant
correlations. Note: SensoriMotor.Lateral (R)–FrontoParietal.PPC (R) = the functional connectivity
between the lateral sensorimotor network and the posterior parietal cortex node of frontoparietal
network; DefaultMode.MPFC-Salience.RPFC (R) = the functional connectivity between the medial
prefrontal cortex node of the default mode network and the rostral prefrontal cortex node of the
Salience network; DefaultMode.MPFC-Cerebellar. Posterior = the functional connectivity between
the medial prefrontal cortex node of the default mode network and the posteior part of cerebellum;
PSQI = Pittsburgh Sleep Quality Index; BAI = Beck’s anxiety inventory; SSS = Symptom Severity
Scale; FIQ = Fibromyalgia Impact Questionnaire; WPI = Widespread Pain Index.

4. Discussion

Many studies have reported the alterations of network rs-FCs and brain structure in
FM patients [7,47,48]. These alternations are considered to reflect the pathophysiology of
FM [13,49]. However, the features extracted from structural and functional brain mapping
are complex, making the interpretation difficult. Thus, our study used the ML approach to
analyze the high dimensional data from the brain MRI. We successfully selected signatures
of the neuroimaging data in FM. Using the SVM/LR classifier with two-step feature
selection by RFE and permutation importance function, we found that both rs-FC and
structural data could classify FM patients from healthy controls with high performance.
The classification performance of rs-FC data was higher than that of structural data, as
evidenced by the higher in all indicators, including accuracy, sensitivity, specificity, f1-
score, and ROC-AUC. When combining the predictive rs-FC and structural features, our
ML model showed the best performance compared to the models of each kind of FC or
structural data only. In addition, the predictive rs-FCs of the final ML model were also
significantly correlated with clinical measurement scores (PSQI, BAI, WPI, SSS, and FIQ).
Our study suggested the predictive validity of rs-FC data and structural MRI data in FM.

The cross-combination strategy could filter down irrelevant features and select the
optimal ML model for classification [39,40]. Regarding feature selection methods, our
study showed that the RFE method exhibited high performance when combined with all
classifiers in building baseline ML models. In contrast, the PCA method expressed lower
performance in most classifiers. Of note, RFE is the wrapper method that selects features
based on predictive accuracy and has been widely used in previous ML studies of MRI
data to achieve high performance [50–52]. Because PCA is the unsupervised technique
for feature selection, this method might not always enhance the model performance in
supervised ML [14,41]. After building the baseline models for both rs-FC and structural
data, we applied the permutation importance function to further remove non-informative
features. This feature selection method can calculate feature importance independent of the
classifiers used and, thus, can be applied to most classifiers, even without native feature
importance scores [46]. Regarding classifiers, the SVM or LR classifiers expressed high
performances compared with the other classifiers across different feature selection methods
in our study, which might be because those classifiers’ regularization could reduce the
effect of noise in the dataset [14,41]. However, evidence also suggests that SVM or LR does
not provide good performance in some cases of noisy MRI data, and thereby the dataset
needs to undergo feature selection before applying SVM or LR training to reach the optimal
performance [53]. The other classifiers, including GNB, LDA, and KNN, showed inferior
performance compared with SVM or LR in our study, possibly because those classifiers are
more sensitive to noise [41,53]. In sum, our study showed that SVM or LR with two steps
of feature selection (RFE + permutation importance feature selection) might be one of the
good options for ML studies using functional and structural MRI data to understand FM.

Our study showed that the ML model of network-based rs-FC data using the SVM
classifier with RFE + permutation importance feature selection could classify FM patients
from healthy controls with high performance. In support of this, in a previous ML study
analyzing the altered patterns of functional MRI after painful and non-painful stimula-
tion in FM, the combined activity of altered patterns effectively predicted the FM from
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healthy control, whose accuracy, sensitivity, and specificity were 93%, 92%, and 94%, respec-
tively [15]. The altered patterns in this study [15] involved several anatomical regions of the
salience network (i.e., insula, operculum, and anterior cingulate cortex), the default mode
network (i.e., medial frontal cortex and posterior cingulate cortex), and the sensorimotor
network (i.e., sensory cortices), which were consistent with our findings. Another study
evaluated the predictability of rs-FC MRI data on chronic pain, showing that deep learning
with the Ann4brain architecture model classified FM and chronic back pain patients from
non-pain participants with 86.8% accuracy and 91.8% ROC_AUC, in which the predictive
features were also rs-FC among the default mode network, salience network, frontoparietal
network, and cerebellum [54]. Additionally, a previous study showed that the ML model
of rs-FC data could classify patients with migraine (without aura) from healthy controls
and other chronic pain disorders such as FM, also based on rs-FC among the networks
mentioned above [55]. Altogether, accumulative evidence suggests that rs-FC data might
be used to classify chronic pain patients such as FM from pain-free controls. The predictive
FC features mainly belong to the triple networks and the sensorimotor network, repeatedly
suggesting the important role of those networks in chronic pain disorders, including FM.
However, each kind of chronic pain may have its own specific predictive patterns of rs-FC.

In addition to rs-FC data, our study found that the ML model of network-based gray
matter volume could also distinguish FM patients from healthy controls. The best model
using the LR classifier with RFE + permutation importance feature selection achieved a high
accuracy of 85%. A previous study used the J48-decision tree classifier on anatomical gray
volume to predict FM patients, reaching 76% accuracy [16]. In this study [16], the altered
volumes of the cerebellum, cerebral cortex, and basal ganglia were used to predict FM. In
contrast, our study using a network-based atlas showed that the brain regions belonging to
the triple networks and sensorimotor network were predictive features compatible with
our results in rs-FC data. Differences in performance between our study and the mentioned
study [16] might be partially due to different atlases (anatomical vs. network-based atlases),
ages, and severe stages of FM patients in the two studies. In addition, evidence suggests
that the brain structure in FM is specifically changed by age, making the brain structure
alterations in FM vary across the samples [56]. The global volume of the brain was also
unchanged in previous reports [56]. However, both studies suggested that the ML model
using structural MRI features could outperform the chance to predict FM patients. Our
study also emphasized that the structural alterations of triple and sensorimotor networks
could be the critical pathological characteristics in FM, in addition to those networks’ rs-FC.

To the best of our knowledge, our study was the first to compare the ML performance
between rs-FC and structural features in FM classification. We found that the rs-FC model
outperformed the structural model in all indicators. Although both data types can be used
for FM classification, the finding implied that rs-FC data might be preferred to structural
data in the ML approach. It should be noted that FM interacts with age to change brain
structure, making the changes in gray matter volume not directly correlated with FM
status [56]. Evidence suggests that long-term FM duration might be needed to re-organize
brain structure [57]. Furthermore, gray matter volume variation in FM might be not only
based on pain symptoms but also cognitive and psychological symptoms that are affected
by several aspects [58]. In addition, abnormal neural plasticity and neuroinflammation
could affect the volumes of specific brain regions, leading to variations in structural changes
in FM patients [59]. Therefore, rs-FC data might be more sensitive and specific for FM
prediction than structure data.

The study showed that the model of combined rs-FC and structural data outperformed
the ML model of rs-FC data only. Consistently, a previous ML study using functional
and structural MRI features discriminated migraine patients (without aura) from healthy
controls with 83.67% accuracy, 92.86% sensitivity, and 71.43% specificity [45]. Another
study using multimodal neuroimaging and autonomic signals to predict clinical pain in
patients with chronic low back pain, achieving 92.45% accuracy and 97% ROC_AUC [60].
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The findings might imply that the combined different feature types could be superior to
the single feature type in distinguishing among health conditions.

Moreover, we found that the predictive rs-FCs were related to both pain and psy-
chological symptoms, supported by correlations between the selected features of our ML
model and clinical measurement scores (PSQI, BAI, WPI, FIQ, and SSS). Those features
mainly belonged to the triple and sensorimotor networks, which have been hypothesized to
be involved in pain processing in FM [9,10]. Specifically, the rs-FC between the right lateral
sensorimotor network and the posterior parietal cortex of the frontal-parietal network was
negatively correlated to BAI, FIQ, and SSS scores, meaning that the more hypo-connectivity
in FC between these networks might reflect the higher level of anxiety and FM impacts,
which is consistent with previous studies showing that dysfunction in this network might
induce anxiety disorders and pain dysregulation in FM [10,61]. In addition, our study
found that rs-FC between the default mode network and salience network, as well as rs-FC
between the default mode network and cerebellum, were positively correlated with WPI
and FIQ, meaning that the stronger FC between the two networks might worsen the FM
presentation in patients. Consistently, a previous study showed that FC between the default
mode network and salience network was positively correlated with pain widespreadness
and pain catastrophizing in FM [19]. In addition, FC alterations in the default and salience
networks were repeatedly observed and found to be significantly related to FM symp-
toms [6,8,62]. The previous study showed that clinical pain was also correlated with the
altered patterns of multisensory-response functional MRI features in the triple networks
and the sensorimotor network [15]. In sum, the selected features of the final rs-FC model
could help predict FM from healthy controls. Because those features were related to presen-
tation in FM, our findings might suggest further investigation regarding the therapeutic
methods for FM that modulate the FC among triple and sensorimotor networks to reduce
pain and psychological symptoms [9]. The application of noninvasive brain stimulation
(such as noninvasive transcranial electrical stimulation) in neural networks integrated
with predictive artificial intelligence in chronic pain has been introduced. It is promised
to reduce medication usage in patients, but evidence for its efficacy is still lacking [63].
Moreover, a study found that the alterations of migraine headache frequency caused by
treatment correlated with FC alteration [55], which might imply that FCs could predict
treatment responses in FM.

There were several limitations of the current study which need to be concerned. First,
we did not carry out external validation due to the small sample size. However, we applied
the integration of leave-one-out cross-validation and permutation test to evaluate the ML
models, which could reduce the risk of overfitting. Second, we did not have the group
of other chronic pain and disorders that might be misdiagnosed with FM. Our model
could classify FM patients from healthy controls, but we did not know whether rs-FC and
structural data could classify FM from those diseases. Third, this study did not apply
deep learning classification due to sample size limitations. Our study was cross-sectional,
which cannot evaluate the temporal alterations of rs-FC and predictive features in FM.
All of those limitations encourage us to recruit a larger sample size of FM patients and
other disorders, such as chronic fatigue syndrome, rheumatoid arthritis, osteoarthritis, or
depression, to investigate the predictability of the ML model to classify FM from other
disorders, thereafter compare the performance of the deep learning model to other ML
models, as well as investigate the time-based alterations of the predictive ML model in FM.
Finally, the study population is not treatment naïve for FM. Therefore, the potential effects
of treatments (e.g., medications) cannot be excluded from the present study.

5. Conclusions

In conclusion, our study found that both rs-FC and structural MRI data could classify
FM patients from healthy controls, but the former outperformed the latter. The ML model of
combined functional and structural data showed the best performance in FM classification.
The predictive rs-FC features correlated with clinical presentation in FM. Those FCs mainly
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belong to the triple networks and the sensorimotor network, repeatedly supporting the
hypothesis that those networks might involve in chronic pain processing, including FM. The
current study also showed that the combination of functional and structural features was
superior to a single kind of data type in distinguishing FM from healthy controls. Because
FCs correlate with clinical presentation, we might further hypothesize that MRI features
could predict treatment responses to therapeutic modalities in FM. Future studies might be
conducted to evaluate the alterations of network FCs in response to the improvement of
different therapeutic methods, such as transcranial direct current stimulation or repetitive
transcranial magnetic stimulation, to further clarify the predictability of MRI features in
the treatment of FM. Moreover, it should be noted that, in addition to the triple networks
and the sensorimotor network, FCs and structural features of the visual network, emerging
as a contributor to pain processing [64], were a predictive feature of our ML model. Both
FC and structural MRI alterations of the visual networks in FM remain unclear and in need
of further investigation.
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