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Abstract: Renal clear cell carcinoma (ccRCC) comprises over 75% of all renal tumors and arises in
the epithelial cells of the proximal convoluted tubule. Molecularly ccRCC is characterized by copy
number alterations (CNAs) such as the loss of chromosome 3p and VHL inactivation. Additional
driver mutations (SETD2, PBRM1, BAP1, and others) promote genomic instability and tumor cell
metastasis through the dysregulation of various metabolic and immune-response pathways. Many
researchers identified mutation, gene expression, and proteomic signatures for early diagnosis
and prognostics for ccRCC. Despite a tremendous influx of data regarding DNA alterations, gene
expression, and protein expression, the incorporation of these analyses for diagnosis and prognosis
of RCC into the clinical application has not been implemented yet. In this review, we focused
on the molecular changes associated with ccRCC development, along with gene expression and
protein signatures, to emphasize the utilization of these molecular profiles in clinical practice. These
findings, in the context of machine learning and precision medicine, may help to overcome some
of the barriers encountered for implementing molecular profiles of tumors into the diagnosis and
treatment of ccRCC.

Keywords: clear cell carcinoma; molecular pathology; biomarkers; gene and protein signatures;
machine learning; treatment decision

1. Introduction

Renal cell carcinoma (RCC) originates in the renal cortex and comprises 80–85% of all
primary renal neoplasms [1]. RCC accounts for 2% of global cancer diagnoses and is one of
the ten most common types of cancer diagnosed in the United States [2]. In recent years,
RCC has become one of the fastest-growing cancers in North America, with the incidence
doubling from 1975 to 2016 [2]. According to recent Surveillance, Epidemiology, and End
Results Program (SEER) statistics, mortality rates remained relatively stable from 1975 to
2016, which may be associated with improved diagnostic and prognostic measures [2,3].
Despite the tremendous advancements, particularly in targeted therapeutics, RCC remains
the most lethal urogenital cancer with a 5-year survival rate of roughly 76% [2,3]. However,
the survival statistics depend highly on the initial stage at diagnosis, with localized patients
having 93% 5-year survival, while distant cases have only 15.3% [3]. The major subtypes
of RCC include clear cell carcinoma (ccRCC, ~75% cases), papillary cell (pRCC, ~10–15%
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cases), and chromophobe (chRCC, ~5% cases), and other rare types [4]. Each of these types
arises from histologically distinct cells [4]. Each subtype arises from a series of complex
genetic driver events and molecular aberrations [4]. Over the years, our knowledge has
broadened on genetic heterogeneity, including mutational burden and targetable markers
by high throughput assays and sequencing technologies [5,6]. Until the recent development
of proteomic signature data, all of the research in RCC biomarker identification has focused
on genomic alterations and gene expression signatures, which have various limitations
preventing their integration into the clinical practice [7].

Current genomic profiling approaches have limitations, such as small numbers of
individual mutations, which are both difficult to target therapeutically and fail to capture
phenotypic consequences of aberrant gene expression [7,8]. Transcriptomic analyses suffer
from a high degree of variability among expression signatures within individual tumors
with the absence of validation of the gene signatures in independent population [9]. With
the recent integration of protein signature data, a more robust molecular “landscape” for
ccRCC may be revealed as the number of protein signature profiles begins to approach the
level of genomic and gene expression data currently available [7]. In this literature review,
we provide developments over the past 15 years on proteogenomic characterizations of
ccRCC and their implication for targeted therapy development by incorporating DNA
mutations, gene expression, and proteomic signature data. Additionally, we provide our
comments on the role of machine learning and deep learning algorithms that can improve
diagnostic and prognostic measures using big data in RCC.

2. RCC Subtypes

Major subtypes of RCC include clear-cell (ccRCC), papillary (pRCC), and chromo-
phobe (chRCC), as mentioned earlier [10] (Table 1). The vast majority of RCC cases are of
clear-cell morphology (75%), while pRCC (10%), chRCC (5%), and other unclassified and
rare subtypes make up the remainder of renal cancer [11]. Clear cell RCC tumors arise from
epithelial cells of the proximal convoluted tubule in the nephron and are histologically
confirmed by their abundant lipid and glycogen-rich cytoplasmic droplets [12]. Roughly
2–3% of ccRCC are hereditary, originating from VHL disease-induced renal neoplastic
cysts [13,14]. Hereditary and sporadic tumors alike may degenerate into malignant tumors
as the result of a combination of early driver and somatic mutations, DNA methylation,
and copy number alterations (CNAs) [14]. These molecular changes promote oncogenesis
through the proliferation of a multitude of growth factors and dysregulated pathways,
i.e., VEGF, PDGF, and HIF pathways [15]. PRCC tumors are histologically classified as type
1 or type 2, which have distinct molecular and survival differences [16] (Table 1). Most
pRCC cases are sporadic; however, type 1 tumors have a hereditary component arising
from germline mutations of MET [17]. In comparison, type 2 tumors are linked to a greater
number of chromosomal aberrations and are associated with higher grade, stage, and an
overall worse prognosis [18]. ChRCC tumors are histologically subdivided into a classical
type, consisting of pale and eosinophilic cells, and an eosinophilic variant, which contains
predominantly eosinophilic cells [19] (Table 1). These tumors are generally viewed as less
aggressive compared to the more frequent RCC subtypes [20]. Molecular features unique
to chRCC include copy number variations involving complete loss of chromosomes 1, 2, 6,
10, 13, and 17 [19]. Despite these distinctions, much of the current multi-omics analyses
have been directed towards ccRCC, as it is the most frequently diagnosed and most lethal
subtype [21] (Table 1).

Over 50% of cases of RCC in the clinic are discovered incidentally, showing no common
clinical symptoms of flank pain, hematuria, and/or palpable abdominal mass(es), usually
associated with RCC [14]. Surgical removal of tumors is the preferred treatment for RCC
when patients are in stages I-III; however, up to 1/3 of these patients will experience disease
recurrence [22]. For advanced-stage disease, intratumor heterogeneity and tumor clonality
are important factors for predicting prognostic outcome [5].
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Table 1. Renal Cell Carcinoma Types.

RCC Type Tumor Type Histology 5-Year Survival (%) Ref

Clear-Cell Malignant Large, lipid-rich cells
with abundant cytoplasm 85.5 * [12,23]

Papillary Malignant

Type 1: thin, single-cell
layered papillae, basophilic, scant
cytoplasm; Type 2: thick, large-celled
papillae, abundant eosinophilic cytoplasm

90.9 [16,23]

Chromophobe Malignant Large cells, distinct membrane, abundant
pale cytoplasm 95.2 [19,23]

* 5-year survival for metastatic ccRCC is 12%.

Risk stratification and targeted therapeutic development for these patients have gener-
ally relied on certain physiological and biochemical markers expressed within the genome,
transcriptome, and proteome [24]. Recent progress in whole genome sequencing techniques
has led to the identification of a number of genes with clinical and prognostic relevance for
the ccRCC [21]. Additional analysis techniques, such as functional impact mutation rank-
ing, phylogenetic analysis, and ploidy profiling, have revealed distinct driver mutations
in the early development of ccRCC tumors [6,25]. The identification of common mutation
patterns that initiate tumor progression can improve early detection and prognostication
methods, which are two important factors for RCC survival outcomes [11,26].

We queried PubMed and Google Scholar to investigate studies revealing novel gene
and protein expression signatures in RCC. PubMed and Google Scholar searches were
performed on 21 September 2022, using the keywords “gene expression signature”, “protein
expression signature”, and “ccRCC”. The search was restricted to the years 2007–2022.
During the literature review, the inclusion criteria consisted of studies reporting sensitivity
and specificity (AUROC) values greater than 75% and hazard ratios falling between 0.0–0.5
and >2.0 to capture both protective and detrimental signatures. The exclusion criteria
consisted of publications prior to 2007 and studies with discovery sample sizes of less
than 40.

3. Molecular Changes in RCC

The identification of genomic and transcriptomic biomarkers has added tremendous
biological value for ccRCC characterization [27]. The development of ccRCC has been
described by a series of molecular changes associated with tumor initiation, driver gene
mutations, lethal events, and, ultimately, tumor metastasis [28]. Various DNA alterations
are involved in tumor development and progression, including copy number alterations
(CNAs), methylation, and mutations that drive genomic instability [28]. The resulting
biological state of these alterations is often reflected in the gene expression profiles of tumor
cells, from which expression signatures may be identified and associated with clinical
metrics, such as diagnosis and prognosis [29]. When analyzed together, the correlation
between mRNA transcripts and protein expression for RCC tumors has been shown to
be quite variable [27]. As such, protein expression signatures may adequately summarize
the consequences of genomic and transcriptomic alterations, while also providing new
targetable agents for precision medicine [27].

3.1. DNA Alterations

DNA mutations are the most common form of alteration found in all cancers including
ccRCC. Genomic alterations in ccRCC are summarized by copy number variations involv-
ing whole chromosome alterations (7 and 9), arm-level deletions (3p and 14q) and gains
(5q), and additional somatic mutations [30,31]. Many of the mutations associated with
ccRCC development follow the two-hit hypothesis of tumorigenesis; the loss of heterozy-
gosity (LOH) occurs via the loss of 3p and inactivation of the remaining allele by somatic
mutation [31] (Table 2). The loss of 3p leads to the loss of one copy of VHL, PBRM1, SETD2,
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and BAP1, the most commonly mutated genes in ccRCC. In addition to chromosomal
aberrations, promoter CpG hypermethylation, missense, and truncating mutations account
for a large percentage of the observed DNA dysregulation [6,31]. The most commonly
dysregulated pathways include the well-known VHL/HIF pathway, chromatin remodel-
ing/histone methylation activity, and the PI3K/AKT/mTOR pathway [31] (Table 2). The
models for ccRCC development and progression consistently depict the importance of
early driver mutations, which leave surroundings cells vulnerable to additional subclonal
mutations [26]. Somatic mutations of genes with chromatin remodeling and histone modi-
fication capabilities (PBRM1, BAP1, SETD2, KDM5C) contribute to increased chromosome
instability and alterations in gene expression control, which has been associated with
higher-grade tumors and poorer survival [32,33].

Table 2. Driver Mutations for ccRCC (Clark et al. [30]).

Gene Mutation Type % in ccRCC Affected Pathway

VHL Missense 45.8 HIFα inhibition
PBRM1 Missense, Truncating 32.6 Chromatin remodeling
SETD2 Missense, Truncating 11.7 Chromatin remodeling
BAP1 Missense, Truncating 9.1 Chromatin remodeling

KDM5C Missense, Truncating 5.5 Chromatin remodeling
mTORC1-associated genes * Missense, Truncating 13.4 mTORC1 regulation

* MTOR, PTEN, PIK3CA, TSC1.

Driver mutations are defined as a specific group of mutations that arise in the early
stages of cancer and are highly influential in the malignant transformation of tumor
cells [34] (Table 2). In certain analyses of the evolution of ccRCC tumor mutations, driver
mutations are differentiated by the time at which they occur along phylogenetic trees [5,6].
“Truncal” mutations represent the earliest mutational events in tumor progression, while
“branched” mutations occur later and characterize distinct trajectories of the tumor develop-
ment [5,6]. Despite largely ubiquitous VHL inactivation and 3p loss in ccRCC tumors, there
is a wide variation in clinical outcomes, which brings into question the role of subclonal and
passenger mutations in tumor progression and drug resistance [5,6]. Branched mutations
and epigenetic changes often involve gene products associated with chromatin remodeling
complexes and hypermethylation, which present unique challenges to the therapeutic
targeting [32,35]. Somatic mutations of genes with chromatin remodeling and histone
modification capabilities (PBRM1, BAP1, SETD2, KDM5C) contribute to increased chromo-
some instability and alterations in gene expression control, which has been associated with
higher grade tumors [32,33] (Table 2). The role of DNA hypermethylation has also been
investigated extensively in ccRCC, as silencing of tumor suppressor genes, such as FBN2,
PCDH8, BNC1, and SFRP1, plays an integral role in the tumor progression [36].

3.2. Gene Expression Signatures

The application of gene expression signatures for clinical use has remained a long-
standing question since the advent of expression analysis over 20 years ago [37]. Gene
expression signatures are defined as a single gene, or group of genes, with an expression
pattern that associates with some clinically relevant metric such as diagnosis, prognosis,
or predictive treatment response [37]. As a potential biomarker, RNA expression provides
a readily and easily available resource for detecting cellular changes reflected in mRNA
and other types of extracellular RNA (exRNA) [38]. Extracellular RNA transcripts are
also stable in a number of bio-fluids, including urine, serum, and plasma, providing a
potentially promising resource for non-invasive collection methods [38]. Changes in gene
expression patterns are directly correlated with biologically diseased states and ultimately
may represent a surrogate phenotype for the cancer [29]. With recent developments in
next-generation sequencing (NGS) transcriptomic signatures can be easily identified. It
can also predict splice variants, gene fusions, and epigenetic changes, which are missed in
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the DNA analysis [39]. Low sample numbers and lack of validation are major obstacles to
the clinical transition [40]. The gene expression signatures provided in Table 3 incorporate
diagnostic, prognostic, and predictive response outcomes, representing the current state of
expression signature analyses.

Classification of RCC, based on gene expression and survival outcomes, was proposed
in 2010 as a molecular stratification tool to investigate metastasis and tumor aggressive-
ness [41,42]. This approach suggested using clear cell type A (ccA) and clear cell type
B (ccB) for the classification of RCC to include metastasis and aggressive nature of the
RCC tumors [41]. Built off of the ccA/ccB classifiers, ClearCode34 is a prognostic sig-
nature that can reliably predict the ccRCC recurrence risk [43]. This gene signature has
been shown to identify patients who would benefit from surveillance versus adjuvant
therapy following surgery [43]. Gene expression signatures can also be used to differentiate
tumor and normal tissue [40]. Therefore, targeting driver mutation-specific expression
profiles is a logical strategy to detect early oncogenic changes in pre-neoplastic cells as
well as to supplement diagnosis by tumor biopsy and guide treatment decisions [44,45].
Ujfaludi et al. (2022) analyzed the transcriptomic signature of key ccRCC driver genes,
VHL, SETD2, PBRM1, and BAP1, to find that the median transcription of these genes distin-
guished ccRCC from normal tissue with a moderate level of sensitivity and specificity (87%
and 77%, respectively) [44]. There have been a number of recent clinical trials [46] which
have revolutionized the treatment landscape of ccRCC, from which a wealth of biomarker
data can be extracted. Biomarker analysis from the recent phase III CheckMate 214 clinical
trial compared survival outcomes, progression-free survival (PFS), and overall survival
(OS), of combination immune checkpoint inhibitor (ICI) treatment versus sunitinib, with es-
tablished gene expression signatures [47]. Their findings suggest that combined signatures,
such as tumor inflammation with angiogenesis or myeloid changes, may predict better
response to immunotherapy versus tyrosine kinase inhibitor (TKI) alone [47]. However,
the accumulated wealth of signature data has not been successfully implemented in the
clinical setting [48].

One of the greatest barriers to signature implementation in the clinic is reliable data
reproducibility, from which further analyses can build upon [49]. In an effort to overcome
this, The Cancer Genome Atlas (TCGA) compiled pan-cancer data sets, which have been
used as both discovery and validation sets for novel expression signatures [49–51]. Other
issues in expression signature development include opposing views in the method of
analysis, such as “top-down” and “bottom-up” supervised approaches. Supervised, “top-
down”, approaches attempt to associate some clinical outcome (survival or metastasis) with
an expression profile. Conversely, supervised, “bottom-up”, approaches utilize a biological
basis for gene expression, which can be connected to some factors associated with tumor
progression [52]. Predictive treatment responses encompass a much smaller range of the
available expression signatures, as the individual signatures are tied to specific therapeutic
agents [52]. Additionally, expression profiles can represent downstream alterations in
proteins which may eventually become therapeutic targets [52].

Table 3. List of gene expression studies for diagnostic (ccRCC vs. normal tissue), prognostic (overall
survival, recurrence, disease-free survival, and cancer-specific survival), and therapeutic outcomes.

Serial No. of Genes Metric No. of Samples Measure Outcome Ref

1. 3 AUC = 0.912 413 5-year survival
post-nephrectomy Prognostic [53]

2. 34
RFS: HR = 2.3 (1.6–3.3);
CSS: HR = 2.9 (1.6–5.6);
OS: HR = 2.4, (1.6–3.7)

530 RFS, CSS, and OS (ccA vs. ccB) Prognostic [43]

3. 5 AUC = 0.783 523 Overall Survival (OS) Prognostic [54]
4. 16 HR = 3.37 615 RFS, CSS, and OS Prognostic [55]
5. 10 HR = 2.85 468 Overall Survival (OS) Prognostic [56]
6. 8 AUC = 0.821 888 Fuhrman grade (high grade) Prognostic [57]
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Table 3. Cont.

Serial No. of Genes Metric No. of Samples Measure Outcome Ref

7. 9 OR = 3.08 443 Recurrence post-nephrectomy,
immune signature Prognostic [51]

8. 1 AUC = 0.9451 605 Overall Survival (OS) and DFS Prognostic [58]
9. 3 AUC = 0.9235–0.9451 605 Normal vs. ccRCC tissue Diagnostic [58]

10. 17 HR = 51.37 46 Overall Survival Prognostic [50]
11. 4 SN = 87%/SP = 77% 60 Normal vs. ccRCC tissue Diagnostic [44]

SN/SP: Sensitivity/Specificity. The names of all genes in the signatures are presented in Supplemental Table S1.

3.3. Protein Signatures

Next-generation sequencing (NGS) and other high-throughput analyses provide a
wealth of information regarding the abundance of genomic and transcriptomic alterations
but often fail to fully characterize the biological state of the tumor as protein modifications
are missed at these levels of analysis [59]. Post-translational modifications (PTMs) are
enzyme-catalyzed additions of specific functional groups to proteins that promote a variety
of biological functions [60]. Certain PTMs, such as phosphorylation and glycosylation,
are highly relevant for tumor progression as they regulate cellular processes such as ad-
hesion, migration, signaling, and growth [61,62]. Additionally, PTMs are key events in
the dysregulation of metabolic events associated with ccRCC, such as the upregulation of
glycolysis and downregulation of the Krebs cycle and electron transport chain, permitting
an oncogenic metabolic shift or Warburg effect [11,31]. Proteomic analyses have also been
influential in the categorizing of ccRCC, as molecular subgrouping is a useful tool in strat-
ifying patients for precision therapeutics, such as for the use of VEGF inhibitors versus
immune-based therapies [30,63]. Despite a multitude of studies over the past 15 years that
have uncovered a generalized proteomic profile for ccRCC, none have achieved an ade-
quately comprehensive characterization depicting the necessary linkage between genomic
and transcriptomic aberrations, phenotypic presentation, and independent validation to
promote clinical utility [59]. Matrix-assisted laser desorption ionization mass spectrometry
(MALDI-MS) was the most commonly utilized technique to analyze peptide fractions for
diagnostic studies, with validation by western- and immune-blotting (serum/plasma and
urine) and immunohistochemistry (IHC) (tissue) (Table 4). The results of these experiments
were used in statistical and machine learning models to identify correlation and association
with disease vs. control populations. Output metrics are AUC (Area under the receiver op-
erative curve), Sensitivity (SN), Specificity (SP), and hazard ratio (HR). Enrichment analyses
were also used to identify upregulation and downregulated pathways in tumor vs. normal
tissue. The use of alternate biomarker sources, such as serum/plasma and urine, will likely
have important implications for the progression of signatures into clinical practice.

Reviews of recent ccRCC proteomic studies revealed a wide variation of dysregulated
pathways ranging from metabolic alterations to disruptions of the cell division [64,65].
Clark et al. (2019) characterized the proteogenomic profile of ccRCC by evaluating the
role of genomic alterations in promoting the phenotypic presentation of ccRCC tumors.
Their efforts, through the Clinical Proteomics Tumor Analysis Consortium (CPTAC), iden-
tified a lack of correlation between gene and protein expression, particularly related to
oxidative phosphorylation, ribosome, spliceosome, and metabolic pathways [30]. Di-
agnostic studies found protein signatures associated with protein folding and binding
mediation, cell-signaling regulation, tubulin formation, and heat shock protein response
in addition to similarities with CPTAC data [64,66–69] (Table 4). Prognostic protein sig-
natures exhibited dysregulation in the mTORC1 signaling pathway, lipid metabolism,
intracellular/vesicle-mediated transport systems, cytokine response and receptor interac-
tion, ribosomal binding proteins (RBPs) functions, as well as a multitude of metabolic and
biosynthetic pathways [63,70–74] (Table 4).
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Table 4. Studies identifying proteomic signature for clinical management and treatment of renal cell
carcinoma patients.

Serial No. of
Proteins Metric SN/SP No. of

Samples Measure Outcome Ref

1. 3 † AUC = 0.90–0.94 - 70 Diagnostic ccRCC confirmed (NAT
vs. tumor) [64]

2. 3 * - 88/92% 162 Diagnostic ccRCC confirmed [65]

3. 5 * - 88.80/91.00% 189 Predictive ccRCC confirmed
(recurrence or initial) [66]

4. 1 * AUC = 0.86 87/80% 80 Diagnostic ccRCC confirmed [67]
5. 1 † - 96.61/71.43% 881 Prognostic reduced OS and DFS [68]

6. 1 ** ACC = 0.930 - 93 Diagnostic ccRCC vs. Healthy
Subjects (HS) [69]

7. 10 † AUC = 0.771 - 611 Prognostic Increased
overall survival * [70]

8. 9 † AUC = 0.689 - 512 Prognostic Decreased OS [71]

9. 7 * AUC = 0.769 - 445 Prognostic High/Low-
Risk Grouping [63]

10. 4 †,** HR = 2.76 - 552 Prognostic Higher risk of death
(decreased OS/RFS) [72]

11. 20 * AUC = 0.870 - 232 Prognostic decreased PFS [73]

* Serum/Plasma, † Tissue, ** Urine as an analyte. SN/SP: Sensitivity/Specificity. The list of proteins in the
signature(s) are presented in Supplemental Table S2.

Tumor tissue generally contains higher protein concentration than normal tissue,
however, the investigation of blood serum/plasma as well as the urine secretome, offer
alternative methods for noninvasive biofluid analysis [75]. Tissue-based sampling repre-
sents the most direct route of protein extraction, where fresh frozen (FF) tissues, obtained
via fine needle aspiration (FNA) biopsy or surgical resection, and formalin-fixed paraffin-
embedded (FFPE) tissues are most commonly used for analysis [75,76]. Limited access
to biopsy samples is invasive and challenging, while urine and blood collection require
less technical expertise and are minimally invasive [77]. Serum samples provide an ad-
vantageous route of analysis not only for their less-invasive collection methods but also
for potentially early predictive and diagnostic detection of the ccRCC [64,67,68,78]. Urine
sampling is the least-invasive peripheral fluid analysis technique, and it contains a less-
dynamic complement of proteins compared to the highly abundant proteome of plasma
and serum, which make identification of lower molecular weight proteins difficult [59,79].
While the direct relationship of urine analysis to kidney dysfunction may offer promising
diagnostic capabilities for the slow-to-moderate onset of tumors, orthogonal models of
study incorporating multiple sample types will likely be required to develop consistency in
the proteomic characterization of ccRCC [80].

4. Utility of Molecular Information in Clinical Management and Treatment of RCC

Diagnosis and staging of RCC are currently performed by anatomical evaluation
through imaging techniques (MRI, CT) followed by histopathological confirmation [10].
Diagnosis in the early stage is the most important factor for survival, and at presentation,
25% of the patients already have distant metastasis [81]. The symptoms of the classical
triad (hematuria, flank pain, and abdominal mass) are seen in only 10% of the patients’ [2].
Therefore, an early diagnosis of tumor can play a significant role in the survival of the
patients. The germline and driver gene mutations can be captured using gene signature as-
says for diagnostic purposes in both tumor and pre-neoplastic cells [34] (Table 3). Moreover,
gene and protein signatures can be used in small renal mass biopsies to identify benign, ma-
lignant, and normal tissue to direct therapy [82]. Changes in genetic and epigenetic profiles
can also be detected in the patient’s serum and urine analysis for methylation, miRNA, and
lncRNA. Genetic markers such as VHL [69,71], APC [83–85], and P16 [71,83–85] are most
commonly mentioned in the literature seen in both serum and urine samples in the form of
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cell-free DNA/ RNA/ methylomes. These tests are non-invasive and can be an excellent
screening tool for RCC detection as well as are commonly used in biomarker panels to
increase the accuracy of tumor detection. For example, Nuzzo et al. recently presented
300 differentially expressed methylomes in a study with 148 patients for the detection of
ccRCC and pRCC with AUROC of 0.99 in serum and 0.86 in urine (patient vs. control).
Similarly, miRNA [86] and lncRNA panels [87] are also available for the detection of RCC
in urine and serum, respectively. Screening with such tools in high-risk patients can help
to identify the tumors early in Stages I-III, where surgical intervention is curative. For
imaging, machine learning and deep learning models with the neural network can be used
in image classification to identify smaller tumors in suspecting cases [88].

CcRCC treatment depends on the stage at the time of diagnosis. Surgical interventions,
such as partial or radical nephrectomy, can be curative in Stages I-III, but about 33% of
patients eventually recur. Initial systemic therapy, for locally advanced or metastatic dis-
ease, is immune checkpoint inhibitors (ICI) in various combinations of PD-1 (nivolumab &
pembrolizumab), PD-L1 (avelumab and atezolizumab), anti-CTLA-4 (ipilimumab) with or
without the combination of VEGF inhibitors (axitinib, sunitinib, pazopanib, bevacizumab,
etc.), and mTOR inhibitors (everolimus) [89]. The selection of therapy depends on risk strat-
ification using IMDC risk stratification criteria. Response to ICI depends on the expression
of many different markers, including the following: PD-L1 [70], tumor-infiltrating lympho-
cytes [90], tumor mutation burden [91,92], mismatched repair [93], PTEN inactivation [94],
POLE mutation [95], co-mutation of KRAS and STK11 [96], and EGFR mutation [97]. There
are other markers in peripheral blood, such as neutrophil to lymphocyte ratio, LDH, periph-
eral immune cells, circulating tumor DNA, soluble PD-L1, peripheral blood T-cell receptor,
and peripheral cytokine [98]. Immune-related factors, such as Beta 2 microglobulin, B7-H4,
TOX, and gut microbiota, also play a role in the prediction of ICI response [98].

Prognostic signatures using specific biomarkers (genes and proteins, Tables 3 and 4)
can stratify the patients into groups. These groups can then be used for targeting specific
genomic aberrations for predicting drug responses [32]. The best example of this approach
is the Prosigna breast cancer signature [99] which quantifies gene expression for 50 genes
and uses that information to predict the recurrence [100]. Another example is the use of
cytogenetics for diagnosis/stratification of leukemia and lymphomas patients with high
and low risk and to identify minimal residual disease [101], i.e., the mutation in FLT3 gene
causes an aggressive form of acute myeloblastic leukemia which is likely to relapse [102].
Similar methods could also be used in ccRCC using mutational, transcriptomic, and pro-
teomic profiling. With metabolic dysfunction being central to tumor progression and
aggressiveness in nearly all cancers, including ccRCC, can provide a potential prognostic
tool based on metabolic signatures [35]. TCGA analysis found survival outcomes are asso-
ciated with alternations of mRNA and miRNA expression of multiple metabolic pathways,
including glycolysis, Krebs cycle, pentose phosphate pathway (PPP), fatty acid synthesis,
PI3K, and AMPK pathway [26]. Dynamic changes to the tumor microenvironment occur
in ccRCC development as well as in response to systemic therapies, and clinical trial data
have been evaluated to better stratify patients to specific treatments based on gene expres-
sion data [9,36–38]. Integration of machine learning can identify complex relationships
between the gene-gene and gene-protein interactions in regard to survival, recurrence, and
treatment responses. The drawback is that overfitting or underfitting the data can lead to
false discovery. To overcome that, larger validation studies are needed in a clinical trial
controlling all the variables. The eventual application of such signatures in the clinic can
guide the physicians for early diagnosis and prognosis to stratify the patients to be treated
aggressively or conservatively.

5. Conclusions

A lot of progress has been made in the fields of genomics and proteomics for the high-
throughput discovery of novel biomarkers for ccRCC, connecting genomic and molecular
data to biological significance. These biomarkers are measured in the tumor tissue itself,
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serum, or urine and have generated large-scale data. This data can extensively be used
for molecular characterization for diagnostic and prognostic signatures. This profiling can
identify the tumors in high-risk cases for early diagnosis and predict the prognosis of the
patients (Figure 1). The drawback is the lack of validation in a larger multi-institutional
cohort in randomized clinical trials. With the validation and implementation of these
signatures, it is possible to screen the general population for renal tumors, provide curative
therapy in early stages, and predict response and recurrence rates. This would inadvertently
lower the physical and emotional burden of the patients as well as the economic burden
for society.
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Figure 1. Implementation of biomarkers in Clear Cell Renal Carcinoma (ccRCC). DNA sequencing,
microarray, and mass spectrometry with liquid chromatography identify the mutation, gene, and
protein expression profiles. These profiles create big data, that, when analyzed by machine learning
algorithms, can identify markers for diagnosis, prognosis, and therapeutic decisions for ccRCC.
In terms of diagnosis, these biomarkers can help in distinguishing ccRCC patients from healthy
individuals, as well as from other patients with benign or malignant renal masses. Disease progression
and survival, as an outcome of therapy, can be monitored by prognostic biomarkers. Finally, these
biomarkers can provide information, which can offer precision medicine for patients.
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