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Abstract: Atopic dermatitis (AD) has been shown to be closely related to gut dysbiosis mediated
through the gut–skin axis, and thus the gut microbiome has recently been explored as a potential
therapeutic target for the treatment of AD. Contrasting and varying efficacy have been reported since
then. In order to investigate the determining factor of probiotics responsiveness in individuals with
AD, we initiated the analysis of 41 AD patients with varying disease severity in Hong Kong, whereas
the severity was assessed by Eczema Area and Severity Index (EASI) by board certified dermatologist.
16S rRNA sequencing on the fecal samples from AD patients were performed to obtain the metage-
nomics profile at baseline and after 8 weeks of oral administration of a novel E3 probiotics formula
(including prebiotics, probiotics and postbiotics). While EASI of the participants were significantly
lower after the probiotics treatment (p < 0.001, paired Wilcoxon signed rank), subjects with mild
AD were found to be more likely to respond to the probiotics treatment. Species richness among
responders regardless of disease severity were significantly increased (p < 0.001, paired Wilcoxon
signed rank). Responders exhibited (1) elevated relative abundance of Clostridium, Fecalibacterium, Lac-
tobacillus, Romboutsia, and Streptococcus, (2) reduced relative abundance of Collinsella, Bifidobacterium,
Fusicatenibacter, and Escherichia-Shigella amid orally-intake probiotics identified using the machine
learning algorithm and (3) gut microbiome composition and structure resembling healthy subjects
after probiotics treatment. Here, we presented the gut microbiome dynamics in AD patients after the
administration of the E3 probiotics formula and delineated the unique gut microbiome signatures in
individuals with AD who were responding to the probiotics. These findings could guide the future
development of probiotics use for AD management.

Keywords: atopic dermatitis; gut microbiome; probiotic; metagenomics; machine learning; Lactobacillus

1. Introduction

Atopic dermatitis (AD) is a complicated chronic immune-mediated skin disorder
presenting with remarkable and recurrent pruritic eczematous lesions, which could be
provoked by environmental stimulus and skin hyperactivity. It could not only affect infants,
children, and adolescents but also be increasingly identified in adults [1–5]. AD contributes
as the leading cause of skin disorders globally and is one of the top non-fatal illnesses
that may be regarded as an emerging endemic which poses a significant socio-economic
burden [6].
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Several factors are evidenced to be associated with AD incidence, susceptibility and
severity, including but not limited to environmental factors, genetic composition, integrity
of skin barrier, and variability in immune response. For example, it has been demonstrated
that greater helper T cell Th17/Th22 polarization is observed in Asian populations with a
combined manifest of AD and psoriasis [7,8]. Loss-of-function mutation in the filaggrin
(FLG) gene is another well-recognized risk factor leading to severe AD with a diverge
reported prevalence in different ethnic groups [9–15]. On top of the regular risk factors, a
growing number of studies about the association between intestinal microbiome dysbiosis
and AD has emerged owing to the recent advancement in next-generation sequencing
(NGS) [13,16–19]. Decreased intestinal bacterial biodiversity, lower relative abundance
of Bifidobacterium, Akkermansia and Fecalibacterium, depletion of Coprococcus eutactus, and
enrichment of Clostridia and Fecalibacterium prausnitzii have been observed to be extremely
related to the infants with eczema or AD onset early in life [17,20–26]. This association of
gut microbiome with the skin condition is commonly known as the “gut-skin axis”, which
was originally postulated in 1930 [27]. The concept and the importance of the axis are
becoming increasingly appreciated by the wider dermatologists community nowadays [28].

Hence, the use of probiotics appeals as a possible intervention to augment the standard-
of-care treatment of using moisturizing cream for hydration, topical/oral anti-inflammatory
drugs for reducing inflammation. Compared with conventional therapies, probiotics have
a favourable pharmacological profile and a low production cost, which makes it a more
feasible and accessible option. At a cellular and molecular level, it has been demonstrated
that probiotics could potentially regulate allergic responses through Th2 suppression and
Treg activation [22,29–32]. There are a number of trials evaluating the clinical efficacy of the
use of probiotics prenatally on mothers, infants, and children in preventing and treating
AD, but the results remain inconclusive. Recent meta-analyses reckoned the administration
of probiotics to significantly reduce SCORAD index in AD patients and might be beneficial
in preventing AD onset with a less confident extent [10,16,24,25,29,31–50].

In this study, our group aims to evaluate the effectiveness and gut microbiome evo-
lution upon the application of prebiotics, probiotics and postbiotics mixture in southern
Chinese AD patients through 16S rRNA sequencing. The findings could help to evaluate,
refine, and improve the clinical efficacy of probiotics as an intervention in AD patients.

2. Materials and Methods

Study design Forty-one adult (18–73 years) AD patients of Chinese ethnicity were
recruited from a community trial through a collaboration between The Chinese University
of Hong Kong and the BioMed Microbiome Research Centre. All participants (1) with
chronic AD that has been present for at least 3 years before the screening visit with any
severity; (2) aged above 18; and (3) who provided informed consent were included. Subjects
with any one of the following conditions were not recruited or were excluded from the
study: (1) history of adverse reaction to probiotics; (2) known overt bacterial infections in
the skin; (3) known pregnancy; (4) premorbid medical conditions, such as cardiovascular,
liver or renal dysfunction or diabetes mellitus; (5) having used oral corticosteroids, oral
antibiotics, other immunosuppressive or any preparation of oral herbal medicines for the
treatment of AD in the past one month; (6) having been diagnosed with scabies, allergic
contact dermatitis, seborrheic dermatitis or psoriasis; and (7) had taken anti-coagulant or
anti-platelet drugs in the past month. All forty-one recruited subjects were included in the
subsequent analysis. All patients involved in this study were first diagnosed with AD and
evaluated the AD severity by a professional dermatologist according to the EASI scale and
fecal samples were collected for downstream sequencing. Then, the patients were orally
administered the probiotic mixture for two consecutive months after which AD severity
of each recruitment was assessed again and fecal samples were collected for the follow-
up studies. Moreover, AD patients were separated into responders and non-responders
according to the alterations of EASI score. Those whose AD severity score dropped by
more than half before and after taking probiotic mixture were considered as responders,
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while non-responders were defined as the patients whose AD severity score increased, or
did not decrease, or decreased by no more than half after probiotic mixture administration.
Informed consent statements were obtained from all recruited subjects in this study. This
study received approval from the Research Ethics Committee of Hong Kong Doctors Union.
There was no change to the trial protocol after it commenced.

Eczema Area and Severity Index (EASI) EASI score assess the extent (i.e., area) and
severity of inflamed areas in AD [51]. It covers 4 body regions, namely head and neck, trunk,
upper limbs, and lower limbs. Each body region will be evaluated according to the average
intensity of 4 signs including redness, thickness, scratching, and lichenification against a
3-point scale. The severity score of respective body region will be the sum of the average
intensity score of the above-mentioned signs. Another component of EASI score involves
the percentage of skin affected by AD rated against a 6-point scale. The final EASI score
is the sum of severity score multiplied by area score and a multiplier of respective body
region. EASI score could therefore range from 0 to 72 with higher score indicating worse
severity [52]. Owing to the total number of subjects recruited, subjects were categorized
into two subgroups of which subjects with EASI less than 16 were regarded as mild AD,
and subjects with EASI larger than or equal to 16 were regarded as severe AD group.

Probiotic mixture All AD patients received daily capsule of a novel E3 probiotics
formula developed by BioMed Microbiome Research Centre (BioMed Laboratory Company
Limited, Hong Kong) containing a mixture of 7 types of highly effective gastro-resistant
probiotics (not less than 2 × 1010 CFU/capsule at the time of production), effective post-
biotic HK-LP (heat killed L. plantarum, 10 mg/capsule), and triple prebiotics containing
inulin (22 mg/capsule), Galacto-oligosaccharides (GOS) (8.1 mg/capsule), and Fructo-
oligosaccharides (FOS) (0.9 mg/capsule) for two months. The product was designed not as
a single strain but as a bacteria mixture with Lactobacilli and Bifidobacterium. The probiotic
mixture was composed of Lactobacillus rhamnosus GG, Lactobacillus acidophilus GKA7, Lac-
tococcus lactis GKL2, Lactobacillus casei GKC1, Lactobacillus paracasei GKS6, Bifidobacterium
bifidum GKB2, and Bifidobacterium lactis GKK2. L. rhamnosus GG formula was evidenced to
reduce the occurrence and recurrence risks of allergy and eczema simultaneously and B.
lactis was previously proved to strengthen the immunity system and improve symptoms
of allergy and eczema [53–57]. Additionally, postbiotics HK-LP involved in this formula
was proved to enhance the probiotics functions [58,59]. Moreover, prebiotics act as an
energy source for probiotics, which not only enhance the probiotics function but also foster
intestinal peristalsis as well as detoxification [60–64].

Library Preparation and 16SrRNA Sequencing All the fecal samples were processed
in BioMed Laboratory (BioMed Laboratory Company Limited, Hong Kong) and were
first homogenized in PurSafe® DNA and RNA preservative (Puritan, Guilford, ME, USA)
and subjected to beating with glass beads (425–600 µm, Sigma-Aldrich, Burlington, MA,
USA) for 1 h by following the instructions provided. DNeasy Blood & Tissue Kit (Qiagen,
Hilden, Germany) was used to conduct the isolation of Microbial DNA from fecal sam-
ples. The extracted DNA concentration of each sample was quantified using a Qubit™
dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA) with Qubit 3 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA). Amplicon library was constructed using
515F(5′-GTGCCAGCMGCCGCGG-3′)/907R(5′-CCGTCAATTTCMTTTRAGTTT-3′) primer
pair spanning targeting at V4-V5 hypervariable of 16S rRNA genes, together with adapter
sequences, multiplex identifier tags, and library keys. 16S rRNA gene sequencing was per-
formed using the Illumina MiSeq platform (Illumina, Inc., San Diego, CA, USA) following
the original Earth Microbiome Project Protocols. In the end, index barcodes and adapters
removed pair-end clean reads were obtained for the downstream analysis [65].

Microbiome bioinformatics analysis Microbiome bioinformatics data were analyzed
using a plugin-based system, QIIME 2-2021.4, integrating various microbiome analysis
algorithms and tools [66]. Demultiplexed reads were firstly subjected to quality control
and denoising filter of sequence data with DADA2 [67] using the q2-dada2 plugin to
retrieve exact amplicon sequence variants (ASVs) [68]. All ASVs were then aligned with
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mafft [69] and then a phylogenetic tree was generated using fastree2 [70] via the q2-
phylogeny plugin. Taxonomic annotation of the resulting ASV was carried out using
the q2-feature-classifier [71] plugin and a pre-trained Naive Bayes classifier which was
based on SILVA v138 taxonomic reference database with 99% similarity [72–74]. Diversity
analyses were performed using the R package microeco (v0.3.2) [75]. We used six metrics
to indicate alpha diversity: Observed OTUs, Chao1 Index (Chao1), ACE Index (ACE),
Shannon Diversity Index (Shannon), Simpson Index (Simpson), and Faith’s phylogenetic
diversity (PD). Furthermore, Beta diversity was calculated based on the Jaccard distance
metric, Bray–Curtis distance metric, weighted UniFrac, and unweighted UniFrac distance
metrics. The PERMANOVA test on beta diversity (999 permutations) was applied to
compare the microbial community dissimilarity across groups using the adonis function
in vegan R package to adjust the clinical variables and batch effects [76]. Differential
abundance test between the Pre and Post groups was conducted using random forest and
non-parametric test.

Statistical analysis All the statistical analysis and visualization of results were con-
ducted in R 4.0.4. Shapiro–Wilk normality test were carried out for normality of all data.
Demographic characteristics across groups were compared using Wilcoxon rank-sum tests
for continuous variables and Chi-square tests or the Fisher exact test for categorical vari-
ables. Paired t-test or paired Wilcoxon signed-rank test was performed to determine the
differences in AD severity and alpha diversity before and after probiotic use in the same
patient. Statistical significance was set as a p < 0.05.

3. Results
3.1. Study Population

A total of 41 AD patients were recruited in this study, including 17 mild AD patients
and 24 severe AD patients. After 2 months of oral administration of probiotic mixture (one
capsule daily), severity of AD patients was re-evaluated by a board certified dermatologist
(S.K.F.L) with EASI. Significant improvement in AD severity was seen in 24 patients,
which was considered as responders, 14 of which was from mild AD group and 10 was
from severe AD group. The AD severity of the remaining 17 patients failed to improve,
who were recognized as non-responders including 3 mild AD patients and 14 severe AD
patients (Figure 1). As detailed in Table 1, the demographic characteristics and presence
of comorbidity including sex (p = 0.5737), age (p = 0.8633), BMI (p = 0.3898), allergy (food
allergy: p > 0.999 and other p = 0.7417, respectively), GI symptoms (constipation: p > 0.999
and diarrhea p = 0.2118) were similar between mild and severe AD subgroups. No other
drugs were administrated during the study period.
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 Weight, mean (SD), kg 59.9 (11.1) 62.5 (11.1) 58.0 (10.9) 0.1414 
 BMI, mean (SD) † 22.5 (3.3) 23.1 (3.3) 22.1 (3.3) 0.3898 
 EASI, mean (SD) 17.7 (7.0) 10.7 (2.1) 22.7 (4.5) <0.001 
Presence of comorbidity         
 Allergy ever, No. (%)         
  Food allergy 3 (7.3) 1 (5.9) 2 (8.3) >0.999 
   Others 14 (34.2) 5 (29.4) 9 (37.5) 0.7417 
 GI, No. (%)         
  Constipation 14 (34.2) 6 (35.3) 8 (33.3) >0.999 
    Diarrhea 6 (14.6) 4 (23.5) 2 (8.3) 0.2118 
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classified as overweight, while BMI > 25.0 kg/m2 is classified as obese. 
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Table 1. Baseline Demographic and Disease Characteristics of Patients.

Patients (No.)

Variable Overall (n = 41) Mild AD (n = 17) Severe AD (n = 24) p Value

Characteristics

Sex, No. (%)

0.5737Male 16 (39.0) 8 (47.1) 8 (33.3)

Female 25 (61.0) 9 (52.9) 16 (66.6)

Age, mean (SD) [range], y 47.0 (15.6) [18–73] 47.6 (15.5) [26–66] 46.6 (16.0) [18–73] 0.8633

Weight, mean (SD), kg 59.9 (11.1) 62.5 (11.1) 58.0 (10.9) 0.1414

BMI, mean (SD) † 22.5 (3.3) 23.1 (3.3) 22.1 (3.3) 0.3898

EASI, mean (SD) 17.7 (7.0) 10.7 (2.1) 22.7 (4.5) <0.001

Presence of Comorbidity

Allergy ever, No. (%)

Food allergy 3 (7.3) 1 (5.9) 2 (8.3) >0.999

Others 14 (34.2) 5 (29.4) 9 (37.5) 0.7417

GI, No. (%)

Constipation 14 (34.2) 6 (35.3) 8 (33.3) >0.999

Diarrhea 6 (14.6) 4 (23.5) 2 (8.3) 0.2118

BMI, body mass index; EASI, Eczema Area and Severity Index. † BMI between 23.0–25.0 kg/m2 is classified as
overweight, while BMI > 25.0 kg/m2 is classified as obese.

3.2. Probiotic Mixture Significantly Ameliorates AD Severity

As shown in Figure 2, more mild AD patients significantly improved (p < 0.001) their
AD condition after taking novel E3 probiotics formula, compared with the severe AD
group. 82.4% of the patients in the mild AD group responded to the probiotics mixture,
while only 41.7% of the patients in the severe AD group responded to the probiotic blend
(Figure 2A). Our results also illustrated that the EASI of AD patients was significantly
reduced (p < 0.001) after oral administration of the probiotic mixture regardless of baseline
disease severity (Figure 2B).

3.3. Probiotic Mixture Improves the Diversity of Gut Microbiome in AD Patients

Alpha diversity, also called within-habitat diversity, is usually calculated to describe
the richness and evenness of the community within a sample. The richness was measured by
the Chao1 index, ACE index, and observed OTUs. Shannon diversity index and InvSimpson
diversity index comprehensively consider the richness and uniformity of the community.
For responders, significant increase of the species richness was obtained in mild AD patients
(p < 0.001), while only a slight increase was identified in the severe AD group (p = 0.1139
for Observed OTUs; p = 0.1167 for Chao1 Index; Table S1, Figure 3A). In addition, for
responders, a considerable increase of Shannon diversity index was obtained in mild AD
group (p = 0.019) after taking probiotic mixture, while the Shannon diversity index of severe
AD patients did not change significantly after the use of probiotics (p = 0.689; Table S1,
Figure 3A). For non-responders, after probiotic mixture administration, no significant
alteration was identified in alpha diversity of the gut microbiome among AD patients
(Table S2, Figure S1). Moreover, in terms of beta diversity analysis, a similar intestinal
bacterial community was obtained between pre and post groups in both responders and
non-responders based on the Jaccard distance metric, Bray–Curtis distance metric, weighted
UniFrac, and unweighted UniFrac distance metrics by PERMANOVA test (Tables S3 and S4,
Figure 3B).
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3.4. Gut Microbiome Profiling

At the phylum level, a total of 15 phyla, including 13 from the kingdom of bacteria
and 2 from archaea, were detected in both responders and non-responders, and the top 4
most abundant phyla accounted for over 99% of sequences in the dataset. Before and after
probiotic use, Firmicutes was dominant in the gut microbiome of all AD patients, followed
by Bacteroidota, Actinobacteriota, and Proteobacteria (Figure 4A,B). At the genus level, the
top five genera in the gut microbiome of responders were Bacteroides, Fecalibacterium, Blautia,
Bifidobacterium, and Fusicatenibacter. However, in non-responders’ group, the top five genera
were Bacteroides, Blautia, Prevotella, Fecalibacterium, and Bifidobacterium (Figures S2 and S3).
After probiotics administration, 1098 ASVs were shared and persisted among responders.
420 unique ASVs and 581 unique ASVs were identified in pre and post groups separately
(Figure 4C). For non-responders, Venn diagrams illustrated 399 and 375 unique ASVs from
pre and post groups separately and a total of 906 shared ASVs (Figure 4D).

3.5. The Relative Abundance of Lactobacillus Increased Significantly after Oral Administration of
Probiotic Mixture

In order to determine the changes in gut microbiota composition following probiotic
administration in AD patients, the random forest algorithm was conducted to select the
key features affected by probiotics. Mean decrease in Gini coefficient was selected as the
indicator value in the random forest analysis. The higher the value of the mean decrease
in the Gini coefficient, the higher the importance of the genera responding to the treat-
ment of probiotic mixture [77–79]. For responders, a total of 130, 98, and 92 features were
identified between pre and post groups among all participants, mild AD and severe AD
patients, respectively (Figure S4). We sorted the selected key features from high to low
according to the mean decrease in the Gini coefficient and marked the rank of each genus
in mild AD and severe AD group. We found that the relative abundance of Lactobacil-
lus, Lachnospiraceae_ND3007_group, Streptococcus, Clostridium_sensu_stricto_1, Lachnospira,
Fecalibacterium, Romboutsia, Erysipelatrichaceae_UCG-003, Monoglobus, Butyricimonas, and
[Eubacterium]_ventrisum_group increased significantly after oral administration of probi-
otic mixture, while the relative abundance of Collinsella, Bifidobacterium, Fusicatenibacter,
Escherichia-Shigella, Erysipelatoclostridium, Bilophila, and Lachnospiraceae_NK4A136_group
decreased considerably (Figure 5). For non-responders, a total of 112, 25, and 99 features
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were identified between pre and post groups among all participants, Mild AD and Severe
AD patients, respectively, and the relative abundance of Lactobacillus increased significantly
(Figure S5).
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Figure 5. Significant genera selected across the pre and post groups in responders of (A) increasing
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4. Discussion

Despite the on-going debate on whether human gut microbiome dysbiosis is a cause or
effect in the development of AD, there is convincing evidence showing that gut dysbiosis has
a significant association with AD through the gut-skin axis. [16,47]. Therefore, probiotics have
been explored as a therapeutic option for the treatment of AD [10,11,24,33–38,40,42,44,47–50].
In this study, we focus on the effect of probiotics in adult AD patients, the gut microbiome
dynamics upon the course of probiotics and the gut microbiome signatures in responders
under real world setting.

First of all, AD severity was significantly improved as evidenced by the drop in EASI
after 8 weeks of oral probiotics in this cohort, although the minimal clinical important
difference (MCID) had not been reached [80]. The effect of probiotics was more apparent in
mild AD patients, likely because it would be relatively easier to restore the dysbiosis in mild
AD patients than the heavily imbalanced gut flora in severe AD patients by probiotics [23].
Unsurprisingly, there is a surge in species richness among responders and it is consistent
with the results reported by other groups [81]. For non-responders, no notable change in
both alpha- and beta-diversity was observed. The taxonomic profile was highly comparable
as illustrated in Figure 4 at the phylum level and in terms of ASVs across AD severity and
time point.

At the genera level, our studies unrevealed the plausible colonization of probiotics
in the responders’ gut. The probiotics strain, Lactobacillus, blended in the probiotics may
directly colonize the gut microflora [81] or facilitate the expansion of existing beneficial
communities. Further experiments would be required to validate the exact mechanism of
colonization. Still, we presented concrete evidence that the successful colonization and/or
expansion of Lactobacillus could be the key to stimulate response towards probiotics in
AD patients. Furthermore, the relative abundances of commonly recognized beneficial
bacteria including Clostridium, Fecalibacterium, Romboutsia, and Streptococcus were found to
be enriched in AD patients after the course of probiotics, in addition to Lactobacillus. The
expansion of beneficial bacteria could exert anti-inflammatory effects by the production
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of short-chain fatty acids (SCFAs) [20,82], including but not limited to acetate, butyrate,
and propionate [83–86]. Lachnospira and Butyricimonas likely augment the production
of SCFAs [87,88]. Lachnospiraceae ND3007 group and [Eubacterium] ventrisum group were
also reported as a putative SCFA producer [88–90], while Erysipelotrichaceae UCG-003 was
reported to be closely related to Fecalibacillus genus [91], namely Fecalibacillus intestinalis and
Fecalibacillus faecis. Fecalibacillus intestinalis and Fecalibacillus faecis are recently discovered
bacterial species from human clinical samples [92] and is associated with Type II diabetes
(T2D), hypertension and ageing [91,93]. Although the definitive role of both Lachnospiraceae
ND3007 group, [Eubacterium] ventrisum group, and Erysipelotrichaceae UCG-003 remains
unclear, it is anticipated that they function similarly to modulate inflammation activity by
SCFAs or other anti-inflammatory metabolites.

On the other hand, responders were characterized by the decline of relative abundance
of detrimental bacteria (including Collinsella, Escherichia-Shigella) and other genera without
an explicit role (Fusicatenibacter, Erysipelatoclostridium and Bilophila). For Fusicatenibacter,
Erysipelatoclostridium and Bilophila, they have been described to correlate with a high fat
diet, obesity, T2D, Crohn’s disease, and ulcerative colitis [94–97]. However, the role and
relationship between the genera and AD are largely uncertain; it is anticipated that they
would facilitate inflammation mediated by inducing the expression of pro-inflammatory
cytokines, such as IL-17A [98]. Thus, lower relative abundance of these bacteria might
relive the symptoms in AD patients. Nonetheless, the apparent reduction in the genera
may not necessarily reflect the absolute bacteria counts [99]. Instead, the beneficial bacteria
and SCFA-rich intestinal environment may outcompete these bacteria and discourage their
expansion rather than inhibiting their growth.

Most importantly, the gut microbiome signatures among responders substantially
overlapped with the gut microbiome signatures of AD patients previously reported by
our group [100]. In particular, depletion of Clostridium_sensu_stricto_1, Romboutsia, and
Erysipelatrichaceae UCG-003 were detected in AD patients compared with healthy subjects,
and their relative abundance were shown to be inversely correlated with AD severity. In
this study, we reported the elevated relative abundance of both Clostridium_sensu_stricto_1,
Romboutsia, and Erysipelatrichaceae UCG-003 among responders with improving disease
severity as evidenced by lower EASI score. An elevated relative abundance of Erysipelato-
clostridium has been noted in AD patients, while the findings of reduced relative abundance
of Erysipelatoclostridium in responders discussed herein further resonate the results. In other
words, AD patients who responded to probiotics acquired a gut microbiome composition
and structure resembling healthy subjects. To the best of our knowledge, this is the first
depiction of gut microbiome composition shift from AD status to healthy status.

Interestingly, the relative abundance of Lachnospiraceae NK4A136 group and Bifidobac-
terium were significantly shrunken in the responders of mild and severe AD patients,
respectively. The alterations could be an outcome instead of the causal driver of the respon-
siveness towards oral probiotics. For example, the Bifidobacterium in the probiotics blend
and the pre-existing Bifidobacterium may compete for nutrients with each other and other
bacteria in the gut, which Lachnospiraceae NK4A136 group may face comparable challenges
in the presence of Lachnospira. Or in the contrary but less probably, the decrease in relative
abundance might also reflect decrease shredding into stool following colonization. Nev-
ertheless, it indicated a complicated reciprocity between micro-organisms in the human
intestinal environment even though the observation might be counter-intuitive, and the
utilization of probiotics to revert the gut microbiome balance from dysbiosis status might
not be straightforward [101,102].

Taken all together, lines of evidence about the reshape of gut microbiome composition,
especially in Southern Chinese atopic dermatitis patients in this study, has been presented.
Although the duration of oral probiotics being taken, the optimal dosage of probiotics
intake, and when should probiotics being administrated remain unresolved [101,102] due
to the limitation of resources to conduct a more comprehensive longitudinal study, our
findings hint at important clues on the effect of probiotics in AD patients and the distinctive
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microbiome signatures between responders and non-responders to probiotics. Reddel
and colleagues conducted a 90-day gut microbiota profile with 3 time points recorded
in 18 child AD patients from Italy [81], but further investigation to record the temporal
evolution of gut microbiome composition and the persistence of probiotics in human gut
upon the course of probiotics could potentially exacerbate the scientific ground for oral
administration of probiotics for skin disease symptoms alleviation. Given the disparity of
gut microbiome profile between mild and severe AD patients as previously reported [100],
the impact of probiotics on the gut flora were expected to be inherently dissimilar, implying
the potential of personalized probiotics blend [103,104] to improve efficacy with baseline
and following microbiome profiling. Despite the fact that MCID could not be reached in this
cohort, likely due to the relatively small sample size, it lays the foundation to incorporate
probiotics into the management of AD patients. Of note, the role of fungi and virus in
the gut flora of AD patients remains poorly elucidated. Shotgun metagenomics analysis
could provide valuable insights in the whole picture down to the species and sub-species
levels, with the hope that the complex interplay between numerous micro-organisms and
hosts will be delineated in a more accurate and precise manner [105,106]. Last but not
least, additional investigations would be required to validate and establish the definitive
association of the above-mentioned observations and speculations with the management
of AD in a generalizable manner.
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