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Abstract: Ewing sarcomas (ES) are aggressive primary bone tumors that require radical therapy.
Promising low toxicity, 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) could
enhance the effectiveness of conventional treatment modalities (e.g., doxorubicin (DOX)), improving,
thus, the anti-tumorigenic effects. In this study, we investigated the effects of DOX and 5-ALA PDT
alone or in combination on three different human ES cell lines. Cell viability, reactive oxygen species
(ROS) production, and cellular stiffness were measured 24 h after PDT (blue light-wavelength 436 nm
with 5-ALA) with or without DOX. ES cell lines have a different sensitivity to the same doses and
exposure of 5-ALA PDT. DOX in combination with 5-ALA PDT was found to be effective in impairing
the viability of all ES cells while also increasing cytotoxic activity by high ROS production. The
stiffness of the ES cells increased significantly (p < 0.05) post treatment. Overall, our results showed
that across multiple ES cell lines, 5-ALA PDT can successfully and safely be combined with DOX to
potentiate the therapeutic effect. The 5-ALA PDT has the potential to be a highly effective treatment
when used alone or in conjunction with other treatments. More research is needed to assess the
effectiveness of 5-ALA PDT in in vivo settings.

Keywords: Ewing sarcoma; photodynamic therapy; doxorubicin; combination therapy; cytoskeleton;
atomic force microscopy

1. Introduction

Ewing sarcoma (ES) is a group of highly malignant tumors that primarily affect the
bones and soft tissue of children and young adults, making it the second most common
of its kind [1,2]. While ES occurs in any part of the body and can cause severe pain and
local swelling, it is usually not detected until this stage [3,4]. Risk-adapted therapy is
essential due to the high mortality caused by early metastases and includes neoadjuvant
or adjuvant chemotherapy, local removal, and radiotherapy [5-7]. In this conventional
approach, induction chemotherapy has prevailed, which consists of, among other drugs,
the anthracycline doxorubicin (DOX) [2]. Although DOX is characterized by multiple
mechanisms of cytotoxic action, including: DNA intercalation; topoisomerase II poison-
ing; generation of free radicals and oxidative stress; and membrane damage via altered
sphingolipid metabolism [8], it has limited therapeutic use due to severe side effects that
cause toxicity to organs such as the heart, brain, liver, and kidney [9,10]. Subsequent radical
surgery and radiation can raise the chances of recovery for patients without metastases
to 65%, however, the 3-year survival rate for already metastatic findings remains at only
25% [11]. New, safe, and effective treatment modalities that complement conventional
approaches are desperately needed in the complex landscape of ES. Due to its potential
for treating both neoplastic and non-neoplastic diseases, photodynamic therapy (PDT)
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has been the focus of numerous research efforts in recent years [12,13]. Put simply, PDT
uses so-called photosensitizers (PS) to damage target tissue by harnessing the energy of
light [14,15]. The otherwise harmless PS can produce reactive oxygen species (ROS) from
molecular oxygen when they are excited by certain wavelengths. The highly reactive ROS
that are produced when a cell is exposed to light excitation damage the cell by attacking var-
ious cellular components such as the cell membrane or proteins, leading to cell death [16].
As a PS, 5-aminolevulinic acid (5-ALA) has been approved by both the Food and Drug
Administration and the European Medicine Agency due to its low toxicity and rapid metab-
olization [17]. Because 5-ALA is an inactive precursor in the heme pathway, as opposed to
earlier PS, the risk of negative phototoxic effects that plagued its predecessors was greatly
diminished [18]. Exogenously administered 5-ALA is metabolized into protoporphyrin
IX (PpIX). Because the activity of key enzymes in tumor cells is significantly altered, pIX
accumulation in tumor cells is generally higher than in healthy cells [19,20]. Irradiation of
PpIX preferentially accumulated in tumor cells can result in a significant amount of reactive
oxygen species (ROS), such as singlet oxygen, superoxide, hydroxyl radical, and hydrogen
peroxide [21,22]. Although 5-ALA is a safe fluorescent contrast agent that has been used
for intraoperative margin identification of various types of tumors as well as PDT, there is
not much information available on its use with soft tissue sarcomas [18]. A combination
between the two approaches, chemotherapeutics and PDT, has already been suggested as
an approach for tumor treatment. Numerous in vitro studies have already demonstrated
the enhanced therapeutic benefit of PDT and DOX in several cancer entities [23-25]. The
idea of combining chemotherapy with PDT to kill tumor cells is not new; in fact, the
anticipated effects of such a combination were first described three decades ago showing an
enhanced tumoricidal effect [26]. Meanwhile, while more recent studies have shown that
DOX in combination with PDT has synergistic effects in breast cancer cells [27,28], lung
cancer cells [23,29], hematological malignancies [30] as well as various cancer stem cells
entities [31], there is little information about ES.

The aim of this study was to investigate effects of 5-ALA-mediated PDT on ES cell lines
as a single treatment as well as combined with DOX. We hypothesize that 5-ALA-mediated
PDT potentiates the effectiveness of DOX in ES cell lines.

2. Materials and Methods

A flow chart of the experimental setup in their chronological order is given in Figure 1.
Each experiment was carried out in triplicate and repeated three times.

2.1. Cell Lines and Culture

Three human Ewing sarcoma cell lines, namely: RD-ES (HTB-166™; ATCC, Manassas,
VA, USA); A-673 (CRL-1598™; ATCC); and TC-71 (ACC 516; Leibniz Institute DSMZ,
Braunschweig, Germany) were employed for all experiments. Bone marrow-derived mes-
enchymal stem cells (MSC) isolated (local ethical approval number: 885/2021BO2) and
propagated in culture as previously described [32], were used as a control group. The
RD-ES cells were cultured and maintained in RPMI-1640 with L-glutamine (Gibco, Life
Technologies, Waltham, MA, USA) media, supplemented with 15% (v/v) FCS (Biochrom
Ltd., Cambridge, UK), and 1% (v/v) penicillin/streptomycin (Gibco, Life Technologies)
while A-673 cells were grown in Dulbecco’s modified Eagle’s medium (Gibco, Life Technolo-
gies) supplemented with 10% FCS (Biochrom Ltd.) and 1% (v/v) penicillin/streptomycin
(Gibco, Life Technologies). Iscove’s MDM with L-glutamine (Gibco, Life Technologies)
supplemented with 10% (v/v) FCS and 1% (v/v) penicillin/streptomycin (Gibco, Life
Technologies) was used for TC-71 cells.

2.2. PDT Exposure with 5-ALA

For all in vitro experiments, 5-ALA (Sigma-Aldrich, St. Louis, MO, USA) was used as
a PS and was dissolved in H,O (stock concentration: 50 mM). In preliminary experiments,
cells were seeded at different cell densities (0.3-1 x 10* cells/well) in 96-well plates with
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fresh culture medium and incubated for 24 h at 37 °C in 5% CO, to determine the optimal
seeding density and confluency for each cell line. Following 4 h of incubation in the dark,
the medium was removed and various concentrations (0.1-0.35 mM) of 5-ALA in serum-
free medium were added to the cells. The cells were then exposed to light for a predefined
time frame of 600 s. To this end, the lluminOss System (IlluminOss Medical Inc., East
Providence, RI, USA) was employed as the light source. In continuous output mode, it
emits blue light with a wavelength of 436 nm (3.8 ] /cm?). With a distance of 5 cm towards
the light source, the cells were evenly illuminated from below in black 96-well plates. Cells
that were not exposed to PDT irradiation and/or 5-ALA were used as a control group.
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Figure 1. Flow chart of the experimental procedure. Summary of the experimental steps in chrono-
logical order, starting from cell seeding to treatment with DOX and/or 5-ALA followed by irradi-
ation. Further measurements were then conducted. Created with BioRender.com. Abbreviations:
AFM—atomic force microscope; 5-ALA—5-aminolaevulinic acid; DOX—doxorubicin; ES—Ewing
sarcoma; MTS—Cell Proliferation assay; ROS—Cellular Oxidative Stress assay; sec—seconds.

2.3. Doxorubicin Treatment

Cells were treated with doxorubicin hydrochloride, a chemotherapeutic agent com-
monly used to treat ES (DOX HCL; Selleckchem, Houston, TX, USA). Stock solutions
(50 mM) in dimethyl sulfoxide (DMSO; Sigma-Aldrich) were prepared and stored at —80 °C.
After growing cells in 96-well plates or atomic force microscope (AFM) dishes overnight in
fresh culture medium at 37 °C under 5% CO,, different DOX concentrations (10-100 nM)
in the appropriate media were added to the cells for a 72 h incubation period.

2.4. Doxorubicin and 5-ALA PDT Combined Therapy

An amount of 0.3 x 10* RD-ES cells/well and TC-71 cells/well, 0.6 x 10* A-673
cells/well and 0.5 x 10* MSCs per well were seeded in 96-well plates with fresh culture
medium and incubated for 24 h at 37 °C in 5% CO,. For AFM petri dishes (TPP Techno
Plastic Products AG, Trasadingen, Switzerland), RD-ES cells were plated at a density of
2 x 10* cells/plate, A-673 cells and TC-71 were plated at a density of 4 x 10* cells/plate,
and MSCs were plated at a density of 2.5 x 10* cells/plate. The cells were then incubated
for another 72 h in fresh culture medium containing 15 nM DOX. DOX was removed from
the cells prior to PDT irradiation, and FCS-free medium supplemented with 0.15-0.35 mM
5-ALA was added. After 4 h of incubation in the dark, the cells were subjected to PDT for
600 s. Further experiments were carried out 24 h after PDT exposure and 5-ALA, as well as
DOX removal.
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2.5. Cell Viability Assay

The Cell Titer 96° AQueous One Solution Cell Proliferation (MTS) assay (Promega,
Mannheim, Germany, Fitchburg) was used to assess cell viability, which is measured
colorimetrically due to mitochondrial conversion of yellow 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) to purple formazan.
The amount of formazan is directly correlated with the percentage of viable cells. Following
5-ALA-mediated PDT exposure and DOX treatment, seeded ES cells (for cell density, please
see section: “Doxorubicin and 5-ALA PDT combined therapy”) were supplemented with
15 uL of a 2 mg/mL solution of MTS in complete media and incubated for 90 min at 37 °C.
At a wavelength of 490 nm, the absorbance was measured using an EL800 microplate reader
(BioTek Instruments GmbH, Bad Friedrichshall, Germany).

2.6. Reactive Oxygen Species Assay

The activity of reactive oxygen species (ROS) within metabolically active cells was
measured using a Cellular ROS Assay Kit ( # ab113851; abcam, Cambridge, UK) following
the manufacturer’s protocol. In brief, following 5-ALA PDT with or without DOX treatment,
ES cells (for cell density, please see section: “Doxorubicin and 5-ALA PDT combined
therapy”) were stained with a 2/,7’-dichlorofluorescein diacetate DCFDA solution (20 pM)
and incubated for 45 min at 37 °C and 5% CO; in the dark. Afterwards, the DCFDA
reagent was replaced by assay buffer and the resulted fluorescence was measured using a
fluorescent microplate reader (GloMAX; Promega, Fitchburg, W1, USA), EM:475 nm/Ex:
500-550 nm.

2.7. Cellular Elasticity Assessment

Cellular elasticity measurements were performed as described before [33]. Briefly,
measurements were performed in Leibovitz’s L-15 medium without L-glutamine (Merck
KGaA, Darmstadt, Germany) using a CellHesion200 (Bruker, Billerica, MA, USA) AFM sys-
tem, mounted onto an inverted light microscope (AxioObserver D1; Carl Zeiss Microscopy,
Jena, Germany). The cells (for cell density, please see section: “Doxorubicin and 5-ALA
PDT combined therapy”) were subjected to AFM indentations using a 5 pm spherical tip
(model: SAA-SPH-5UM, k = 0.2 N/m; Bruker). The AFM tip was placed above the cells
of interest, and three measurements were taken per cell. A total of 30 cells were indented
per condition, with three independent replicates performed for each cell line. Indentation
curves were sampled at 2 kHz with a 2 nN force trigger. The force—distance curves were
processed using the Hertz fit model incorporated in the data processing software (Bruker).

2.8. Statistical Analysis

Boxplots and bar diagrams were used to display data graphically. Based on the
normality of the data, the Kruskal-Wallis test or analysis of variance (ANOVA) were used
to calculate differences between the groups, followed by appropriate post-hoc testing using
either the Dunn test or the ¢-test. An alpha adjustment based on a significance level of 0.05
was employed to control type I error in multiple comparisons. To this end, the Bonferroni
method for alpha adjustment was employed to control type I error in multiple comparisons
adjustment was used to correct raw p-values. SPSS statistical software 22 (version 28.0.0.0
(190)); IBM Corp., Armonk, NY) was used for statistical analyses.

3. Results
3.1. Viability Assessment
3.1.1. DOX and 5-ALA-Mediated PDT Reduce Cell Viability of Human ES Cell Lines

MTS assays were performed to investigate the effect on cellular viability after treat-
ment with DOX and PDT exposure with 5-ALA. The results showed that the cell viability
decreased with increasing concentration of DOX (Figure 2A). After treatment with 15 nM
DOX, all tumor cell lines showed a reduction in viability to about 80%. The same effect was
observed in 5-ALA PDT-exposed cells (Figure 2B), exhibiting cell line-specific sensitivities.
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A-673 cells were more resistant to 5-ALA PDT, with a viability reduction to around 80% not
reached up to a concentration of 0.35 mM, whereas TC-71 cells showed a viability decrease
to approximately 80% at a concentration of 0.25 mM 5-ALA. RD-ES cells, on the other hand,
showed approximately 80% viability after sensitization with 0.15 mM 5-ALA. The highest
doses of 100 nM DOX and 0.35 mM 5-ALA applied to cancer cell lines had no discernible
effect on the control group—MSCs (Figure 2A,B). While 15 nM DOX reduced viability of
all ES cell lines to about 80%, 100 nM DOX only reduced viability to 85.6% in the control
group (MSC), indicating that DOX specifically inhibits viability of ES cell lines. The same
applies to 5-ALA, even at the maximum dose of 0.35 mM 5-ALA, a viability of 97% was
noted for MSCs. While the treatment with 10 nM DOX showed no significant changes in
cell viability, except for A-673 (p < 0.001), overall significant changes could be measured for
higher concentrations regarding the tumor cell lines (Figure 2A,C). For 5-ALA, a significant
viability reduction could only be detected at a maximum concentration of 0.35 mM for all
three tumor cell lines (Figure 2B,D). No applied 5-ALA concentration had a significant
effect on the control group.
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Figure 2. Effect of DOX and 5-ALA PDT on the viability of the ES cell lines and control cells. After
24 h, cells (ES: RD-ES, A-673, TC-71 and MSC) were treated with different concentrations of DOX
(A) or 5-ALA PDT exposure for 600 sec; (B). Negative controls were set to 100% viability and the
relative viability was calculated. Mean values were plotted from three independent experiments.
Error bars indicate the standard deviations. Statistical significance (p < 0.05) compared to NT is
indicated by e for RD-ES, * for A-673, O for TC-71 and # for MSC. p-values after Bonferroni correction
are listed in (C) for DOX and (D) for 5-ALA PDT. Abbreviations: 5-ALA—5-aminolaevulinic acid;
DOX—doxorubicin; ES—Ewing sarcoma; MSC—mesenchymal stem cell; NT—no treatment control;
PDT—photodynamic therapy; sec—seconds.

3.1.2. DOX in Combination with 5-ALA-Based PDT Enhances Cell Mortality

To evaluate the combined effect of DOX and PDT, both treatments were used in
combined experiments. Human ES cells and MSCs (as control) were incubated with DOX
for 72 h, followed by 5-ALA treatment and irradiation for 600 s. Individual concentrations
for each cell line were adjusted to account for DOX and 5-ALA sensitivities (Figure 3). The
concentrations were chosen uniformly for comparability so that a viability reduction of
about 80% was achieved in all individual treatments (Figure 2). This ensured that, although
the cells died partially because of the single treatment, there were still enough cells viable
for the effects of the combined treatment to be visible. RD-ES cells exhibited a significant
decrease (p < 0.01) in viability to 44.5% after combination of 15 nM DOX and 0.15 mM
5-ALA compared to the single treated cells (DOX reduced viability to 84.1%, 5-ALA PDT
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reduced viability to 81.8%). A-673 cells were more resistant to PDT. After 15 nM DOX and
0.35 mM 5-ALA were applied, a decrease in cell survival to 58.2% was noted, whereas for
the single treatment, a reduction to 79.5% for DOX and 82.4% for 5-ALA was observed. The
most notable effect was observed in TC-71 cells, where cellular viability was 13.9% after
being treated with 15 nM DOX and 0.25 mM 5-ALA post PDT exposure. As a stand-alone
therapy, DOX or 5-ALA reduced cellular viability to 80.2% and 76.2%, respectively.

WDOX

o R [@PDT-5-ALA
% * R

PBDOX+PDT-5-ALA

RD-ES A-673 TC-71 MSC

Figure 3. MTS-viability assessment of ES cell lines after DOX treatment and PDT exposure. For
DOX, 15 nM was chosen for all three ES cell lines (RD-ES, A-673, TC-71) as well as MSCs. For the
photosensitizer 5-ALA, concentrations adapted to the sensitivity of the cell line were chosen (0.15 mM
RD-ES, 0.25 mM TC-71, 0.35 mM A-673, and MSCs). Mock-treated control was set to 100% viability.
Error bars indicate the standard deviations (* p < 0.05, ** p < 0.01, *** p < 0.001 relative to other
treatment). Abbreviations: 5-ALA—5-aminolaevulinic acid; DOX—doxorubicin; ES—Ewing sarcoma;
MSC—mesenchymal stem cell; PDT—photodynamic therapy; sec—seconds.

The combination of treatments (DOX and 5-ALA PDT) had no significant effect on
MSC cellular viability (87.7% viability after 15 nM DOX and 0.35 mM 5-ALA PDT).

3.2. ROS Assessment
DOX and 5-ALA-Mediated PDT Induce ROS Production in Human ES Cell Lines

As cancer cells are frequently characterized by high cellular oxidative stress and
have poor tolerance to oxidative insults [34], we evaluated the ROS production of ES
cells following DOX and 5-ALA-mediated PDT treatment. These findings should be
inferred in close association with the viability measured by the MTS assay (Figure 3). By
taking the TC-71 cells as an example, after the combined treatment, only 20% of these
cells were viable (Figure 3). However, these 20% showed a five-fold increase in ROS
production (Figure 4), indicating that the remaining 20% of cells were severely damaged.
ROS formation decreased significantly (p < 0.05) after DOX treatment in RD-ES cells and
MSCs compared to an untreated control group (Figure 4). The 5-ALA treatment led to a
significant increase (p < 0.05) in ROS in A-673 cells, whereas an opposite trend was observed
in MSCs. The combined treatment of DOX and 5-ALA PDT showed a significant increase
(p < 0.05) in all cancer cell lines compared to the untreated control group. No notable change
was observed in MSCs. Compared to DOX treatment alone, the combination increased ROS
production significantly (p < 0.01) in all ES cell lines; the same effect was observed for PDT
alone compared to DOX (p < 0.05). While for RD-ES cells, no significant difference between
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the sole 5-ALA PDT irradiation and the combined therapy could be observed, both A-673
cells and TC-71 cells showed a significant increase (p < 0.05) in ROS production after the
combined treatment. These findings suggest that cells treated with a combination of DOX
and 5-ALA PDT exhibited more oxidative stress than mock-treated cells.

% %% *%

% _*
S I %k f B DOX
[[PDT-5-ALA
[DOX+PDT-5-ALA

fold change
N W e U1 o N

RD-ES A-673 TC-71 MSC

Figure 4. ROS assessment of ES cell lines after DOX treatment and PDT exposure. For DOX, 15 nM
was chosen for all three ES cell lines (RD-ES, A-673, TC-71) as well as MSCs. For the photosensitizer 5-
ALA, concentrations adapted to the sensitivity of the cell line were chosen (0.15 mM RD-ES, 0.25 mM
TC-71, 0.35 mM A-673, and MSCs). Results are presented as mean fold difference of mock-treated
control. Error bars indicate the standard deviations (* p < 0.05, ** p < 0.01, *** p < 0.001 relative
to other treatment, # p < 0.05 compared to untreated control group). Abbreviations: 5-ALA—b5-
aminolaevulinic acid; DOX—doxorubicin; ES—Ewing sarcoma; MSC—mesenchymal stem cell;
PDT—photodynamic therapy; sec—seconds.

3.3. Atomic Force Microscopy
DOX and 5-ALA-Mediated PDT Increase Stiffness in Human ES Cells Lines

To assess the effect of the treatment approaches on cell stiffness, AFM measurements
were performed on all ES cancer cells as well as the control group (MSC). The elastic moduli
in the form of the Young’s modulus recorded for the cell lines (RD-ES, A-673, TC-71, and
MSC) are depicted in Figure 5A-D. For RD-ES, the cells of each pertaining to each treatment
category were significantly stiffer (p < 0.001) compared to the untreated control group.
Absolute values increased between mock-treated controls and DOX-treated cells by 28%
(median: 240 Pa to 307 Pa), by 42% for the 5-ALA-mediated PDT (median: 240 Pa to 243 Pa),
respectively, by 35% for the combined approach DOX and 5-ALA PDT (median: 240 Pa to
325 Pa). A similar effect was seen in A-673 cells, where the single treatment with DOX and
PDT (p < 0.001) as well as the combined approach (p < 0.05) showed a significantly altered
Young’s moduli profile. Values were increased by 26% for the DOX-treated cells (median:
600 Pa to 754 Pa), by 40% for the PDT treatment (median: 600 Pa to 842 Pa) and 16% for
the combined treatment (median: 600 Pa to 694 Pa). Both RD-ES and A-673 cells showed
no significant difference between the single treatments and the combined therapy. While
for TC-71, treatment with DOX or PDT alone significantly (DOX: p < 0.05, PDT: p < 0.001)
stiffened the cells compared to the untreated group (DOX increased by 19%, median: 109 Pa
to 130 Pa; PDT increased by 50%, median: 109 Pa to 163 Pa), no statistically significant
change in elasticity was observed between the untreated group and the combined therapy.
Interestingly, the cells treated with only PDT had significantly (p < 0.05) higher Young’s
moduli than the combined treatment approach (median: 163 Pa to 119 Pa). In contrast,
the control group (MSC) showed no significant difference in stiffness when compared to
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non-treated cells or among the treated groups. The median values of the treated MSCs did
not differ from the control group by more than 5% (median for NT: 952 Pa, DOX: 905 Pa,
PDT-5-ALA: 953 Pa, DOX-PDT-5-ALA: 976 Pa).
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Figure 5. Analysis of Young’s modulus of human ES cell lines and MSC controls. Box plots (medians,
minimum, maximum) of the cellular stiffness (Pa) for each cell line is displayed (RD-ES: (A) A-673:
(B) TC-71: (C) MSC: (D). Outliners are depicted by circles. Statistical significance is indicated by
stars over the compared datasets (* p < 0.05, *** p < 0.001). ES cells treated with DOX, PDT, or
in combination were stiffer than their corresponding untreated cells, whereas MSCs serving as
controls showed no significant change in elasticity. Abbreviations: 5-ALA—b5-aminolaevulinic acid;
DOX—doxorubicin; ES—Ewing sarcoma; MSC—mesenchymal stem cell; NT—no treatment control;
PDT—photodynamic therapy.

In order to shed light on the observed changes in stiffness, we further investigated the
effect of DOX and 5-ALA-mediated PDT on ES cells. To this end, changes in cellularcytoskele-
tal structure were assessed qualitatively using F-actin labeling (Supplementary methods and
Figure S1 (Supplementary Materials)). For RD-ES, mock-treated cells showed a typical net-
work of peripheral F-actin (Figure S1A). In general, the cancer cells exhibited fewer short
and less organized F-actin fibers (Figure S1A,C,E,G), whereas MSCs showed better-aligned
F-actin with well-defined, longer stress fibers (Figure S1B,D,FH). Actin filaments in the
RD-ES cells exhibited a rather randomly tangled network of shorter F-actin strands.

Moreover, a change in the cellular morphology was also noted, with small round
cells RD-ES cells observed in the mock-treated group (Figure S1A) compared to enlarged
and flattened cells revealed in the cells treated with DOX and 5-ALA-mediated PDT
(Figure S1C,E,G).

4. Discussion

Current treatment approaches for ES include aggressive local and systemic thera-
pies, which severely limit the quality of life of affected patients. In Europe, the standard
chemotherapy for localized ES lesions consists of vincristine, ifosfamide, doxorubicin
(DOX), and etoposide [2], with relatively good prognosis. However, for the quarter of
patients who present with metastatic disease, survival remains poor, with less than 30%
of patients surviving beyond 5 years, regardless of therapy employed [35]. Thus, there
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is an unmet need for new therapeutic approaches to augment and improve the current
standard of care for ES. Although 5-ALA-mediated PDT has been shown to be a viable
therapeutic option for the treatment of various types of cancer [18,30,36], its use with soft
tissue sarcomas such as ES is not well documented. The goal of this study was to investigate
the therapeutic effects of 5-ALA PDT and DOX on ES cell lines, both individually and
in combination.

Our results showed that the combination of DOX and 5-ALA PDT efficiently and selec-
tively suppressed the viability of ES cells. All ES cell lines exhibited decreased viability with
increasing doses of either DOX or 5-ALA. Moreover, peculiar dose-dependent effects for ev-
ery cell line have been noted. Overall, these results are in line with existing research [37,38].
All ES cell lines showed similar DOX sensitivities, A-673 and TC-71 exhibited a higher
resistance to 5-ALA-mediated PDT compared to RD-ES. While 5-ALA PDT potentiated the
efficacy of DOX in all ES cell lines, the most notable effect was observed in TC-71 cells while
the MSCs remained viable. Different sensitivities to combined treatment across ES cell lines
could also be attributed to different resistances to DOX and different cell fates: apoptosis
or senescence [39]. As a p53 non-functional cell line, TC-71 and A-673 cells have been
shown to have above-average chemosensitivity, particularly to DOX [40]. Because single
treatments only had a minor effect on cell viability, the combined treatment’s high efficacy
suggests that it generates the shift inducing cellular death rather than cellular growth arrest
(i.e., senescence). While DOX alone may induce senescence in some cancer cells [41], the
addition of 5-ALA PDT may activate and trigger cell death, resulting in decreased viability
rates similar to those observed in our study. In fact, DOX'’s cytotoxicity has already been
shown to be enhanced when combined with 5-ALA-mediated PDT [28,30].

Supporting the viability results, an increased oxidative stress after treatment in all
cancer cell lines was observed, with the combined therapy having the strongest effect. DOX
treatment alone, on the other hand, reduced ROS production in RD-ES and MSCs, despite
the fact that the drug is known to work through a variety of mechanisms, including the
formation of ROS [42]. This could be explained by the timing of the ROS measurement,
which was chosen after incubation due to the subsequent experimental setup with irra-
diation. While the increased cellular level of ROS improves the killing effect of ROS on
cancer cells [43], TC-71 cells showed extremely high ROS production and thus a remarkable
decrease in viability, suggesting the metabolism to be highly sensitive to the combined
treatment. Significantly lower ROS production was observed in the other cell lines, which
could be attributed to defense mechanisms such as ROS-eliminating antioxidants such as
glutathione [44].

Since the mechanical fingerprint of the cells is considered to act as a label-free biomarker
for metastatic potential [45,46], we investigated the ES elastic properties prior to and post
treatment. Our results showed that both individual applications of DOX and 5-ALA PDT
as well as their combination significantly reduced cellular stiffness. Cancer cells are less
stiff than healthy cells [47], and this peculiar characteristic is believed to be associated
with an increased cell invasion and metastatic potential [48]. Moreover, F-actin staining
of RD-ES and MSCs (Figure S1) exhibited altered cytoskeletal structure after treatment.
Our findings that stiffer cells such as MSCs or treated RD-ES cells have thicker stress
fibers are consistent with results from previous studies [49]. Stress fibers have been shown
to influence cancer by participating in cellular contractility and thus providing force for
cancer motility and migration [50,51]. Furthermore, Grady et al. have already suggested a
potential relation between the stability of the cellular F-actin network and changes in the
Young’s modulus [47]. The genotoxic drug DOX is known to cause remodeling of actin cy-
toskeleton architecture; however, its effects are debatable [52]. DOX inhibits the formation
of filopodia, which are thin finger-like cell protrusions formed by actin polymerization,
in mouse embryonic fibroblasts [53]. Since filopodia protrusions promote the survival
of disseminated carcinoma cells [54], DOX-induced attenuation of filopodia formation
may contribute to DOX-treated cells’ low viability. Regardless of the treatment method,
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no cytoskeleton changes were observed in the control cell line—MSC. These findings are
consistent with previous research, indicating the therapeutic approach’s safety [55,56].

It has to be noted that light exposure conditions, such as the light source and wave-
length, the distance to the target cells, the intensity and duration of the illumination,
contribute to the efficacy of PDT and therefore influence the outcome, in particular for
in vivo settings. When applied in vivo, PDT is limited by tumor penetration depth as
well as oxygen available in the hypoxic core and insufficient PS accumulation [57]. In this
current study, our methodological approach is based on clinical circumstances, such as
chemotherapy following tumor removal surgery. If PDT was to be applied during tumor
resection, it could damage the cancer or, ideally, even induce cell death and thus secure a
tumor-free surgical margin. Since the light source used in our experiments is the current
version of the clinical product distributed by IlluminOss Medical for its Photodynamic Bone
Stabilization system, the application of PDT in a clinical setting is already implementable.
Moreover, if PDT was to potentiate the effectiveness of DOX, dose adjustments could
mitigate serious side effects, such as cardiotoxicity.

For ES, the combination of 5-ALA-mediated PDT and DOX has a good potential
as an innovative therapeutic strategy. However, further research is needed to optimize
possible combined treatments and enhance effectiveness of 5-ALA-mediated PDT via
in vivo experiments.

Overall, our results show that the 5-ALA PDT exposure exerts selective cytotoxicity for
ES cells. A combination approach of 5-ALA-mediated PDT on ES cells after chemotherapy
(DOX) has an increased anti-tumorigenic effect, implying that PDT could work in tandem
with conventional therapies.

5. Conclusions

The present study intended to prove that across multiple ES cell lines, 5-ALA-mediated
PDT could successfully and safely be combined with DOX to potentiate the therapeutic
effects. While the cancer cell lines exhibited different sensitivities to PDT, the combined
therapy with DOX was able to achieve significant impairment of ES cells. Thus, 5-ALA PDT
has the potential to be a useful treatment in the future, both on its own and in conjunction
with conventional methods. Further research is necessary to determine whether the use of
PDT might make it possible to reduce otherwise toxic doses of DOX.

6. Study Limitations

Our in vitro study investigated the effect of 5-ALA PDT on several ES cell lines. Since
cellular interaction in solid tumors is influenced by a 3D growth pattern, 3D cell culture
settings and animal models may come closer to in vivo settings compared to the monolayer
(2D) cell culture used in this study.

The distance between the light source and the target cells, as well as the intensity and
duration of the illumination, all have an impact on the effect of the light source on the cells.
Given all of these variables, the PDT setup for ES would need to be tested and adapted for
future in vivo experiments. Our results are, however, in line with previous publications
that showed both PDT alone or in combination with drugs such as DOX can be effectively
used against various cancer-derived cell lines [23,27,58,59].

Absolute values for AFM stiffness measurements depend on the experimental setup,
such as indenter shape and size, indentation velocity and depth, and an analysis adapted
to the shape of the tip in the model-fitting employed [60,61], but the tendency within one
study remains unaffected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10112900/s1. Figure S1. Representative figures of
F-actin organization in human ES cells and MSCs after DOX and 5-ALA-mediated PDT.
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