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Abstract: Huntington’s disease (HD) is distinguished by a triple repeat of CAG in exon 1, an
increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the
striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in
the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal
inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated
that beta Boswellic acid (β-BA), a naturally occurring phytochemical, has several neuroprotective
properties that can reduce pathogenic factors associated with various neurological disorders. The
current investigation aimed to investigate the neuroprotective potential of β-BA at oral doses of 5, 10,
and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally)
in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP,
at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1
and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical,
and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our
results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity,
and neurochemical alterations. β-BA, when taken with vitamin E, improved behavioural dysfunctions
such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities.
Pharmacological treatments with β-BA improved and restored ETC complexes enzymes I, II, and V
levels in brain homogenates. β-BA treatment also restored neurotransmitter levels in the brain while
lowering inflammatory cytokines and oxidative stress biomarkers. β-BA’s neuroprotective potential
in reducing neuronal death was supported by histopathological findings in the striatum and cortex.
As a result, the findings of this research contributed to a better understanding of the potential role of
natural phytochemicals β-BA in preventing neurological illnesses such as HD.

Keywords: β-Boswellic acid (β-BA); Huntington’s disease (HD); mitochondrial ETC-complexes;
3-nitropropionic acid (3-NP); neuroprotection

1. Introduction

Huntington’s disease (HD) is a fatal neurological disease that is autosomal, dominantly
inherited, fully penetrant, and characterized by progressive chorea, motor and mental
issues, cognitive impairment, aggression, and weight loss [1]. It is believed that the Htt
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genes, which are responsible for HD, have spread worldwide [2]. According to the global
prevalence rate in 2017, 14 people per 100,000 are affected by HD each year, with a gender-
related prevalence ratio of 13 women to 14 men. The prevalence rate was determined to be
66,787 after research was conducted in 2020 in eight different countries [3,4].

Huntington’s disease (HD) is characterised by an abnormally high amount of polyglu-
tamine (poly Q) in the huntingtin (Htt) protein due to a triple repeat of cytosine, adenine,
and guanine (CAG). CAG is typically repeated 35 times; however, in HD patients, the
frequency rises from 36 to 39 times. CAG repetition is caused by a huntingtin (mHtt)
gene mutation [5]. HD is a multisystem disorder because it affects the striatum, basal
ganglia, cerebral cortex, and hippocampus [6]. The striatum and the cortex both suffer from
the degeneration of neurons, followed by HD [7]. The brain’s striatum loses GABAergic
medium spiny neurons (MSN), and the cortex experiences neurodegeneration, which alters
mitochondrial function, inflammatory markers, oxidative stress, and neurotransmitters [8].
The specific mechanism by which neurons die in HD is unknown. HD causes damage to the
brain’s thalamus, hypothalamus, subthalamic nucleus, substantia nigra (SN), and cerebellar
nuclei [9,10]. Patients with HD may encounter cognitive problems; behavioural changes are
frequently the most unpleasant feature of the disorder for patients and relatives [11]. Motor
symptoms like “restlessness” and chorea, an irregular involuntary movement originating
from the Greek word “dance,” are the most obvious HD symptoms [12]. HD is distin-
guished by quick, abrupt, irregular, unpredictable, and non-stereotypical movements [13].
The mitochondrial neurotoxin 3-NP inhibits succinate dehydrogenase, a TCA cycle enzyme,
and the electron transport chain enzyme irreversibly [14,15]. Endogenously produced
superoxide and hydroxyl free radicals can damage lipids, proteins, and DNA, altering
brain structure, function, neurotransmitter, and inflammatory levels [16]. Reactive oxygen
species (ROS) have been identified as potential mediators of neuronal cell death in HD [17].
Systemic administration of 3-NP results in CNS lesions that selectively target MSN in the
striatum, reflecting HD’s spatial and neuronal selectivity [18].

The neurotoxin 3-NP impairs cognition and induces motor abnormalities such as
dystonia, involuntary jerky movements, torsion spasms, and facial grimaces [19]; it is
useful for determining the neuronal susceptibility and motor impairments associated with
HD [20]. Striatum and brain lesions induced by 3-NP, together with increasing lactate
levels, increased NMDA-receptor activation in rats, and this effect can be mitigated by
employing NMDA-receptor antagonists [21]. Several investigations have linked 3-NP
toxicity to increases in striatal hydroxyl (OH-) and superoxide (O2•-) free radical gen-
eration and oxidative damage indicators in the CNS [22]. Oxidative stress and NMDA
enhance neuroinflammation and raise or activate proinflammatory markers (TNF-α and
IL-1β) [23]. Increased DNA fragmentation and decreased apurinic or apyrimidinic en-
donuclease synthesis [24,25] indicate that older rats are more vulnerable to the oxidative
stress generated by 3-NP. Following 3-NP injection, striatal glutathione (GSH), catalase
(CAT), and superoxide dismutase (SOD) levels were reduced, indicating deficiencies in
antioxidant mechanisms [26].

The bark of the Boswelliaserrata tree, usually found in the Burseraceae family, is used to
make the gummy dry oleo-resin exudate. β-BA has been shown to decrease 5-lipoxygenase
(5-LO), topoisomerases, angiogenesis, leukotrienes, and arachidonic acid, all known to
inhibit proinflammatory and inflammatory cytokines [27]. β-BA potentially inhibits ERK
and MAPK to protect the suprachiasmatic nucleus (SCN) following excessive glutamate
release [28] or catalyse oxidation via the cytochrome p450 enzyme [27]. BAs and their
derivatives have also exhibited anticarcinogenic, anti-hyperlipidemic, anti-atherosclerotic,
anti-ulcer, wound-healing, analgesic, and antihyperglycemic activities [29,30]. According to
the research, β-BA can modulate mitochondrial complex dysregulation by decreasing ROS
production in stroke [31], Parkinson’s [32], and cancer [33], which is a major component in
the formation of oxidative stress. In Alzheimer’s disease (AD), β-BA also participates in
neurogenesis by balancing Ach and AchE [34]. Multiple sclerosis (MS) [35] and traumatic
brain injury (TBI) [36] are two conditions wherein BA lowers glutamate levels, which results
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in excitotoxicity and oxidative damage to neuronal cells. Memory is also enhanced by β-BA
because it increases the number of pyramidal cells in the striatum and the cortex [37].

Beta-tocopherol, also known as vitamin E, is an antioxidant that protects against
damage to lipids. Vitamin E has been shown to reduce reactive oxygen species (ROS),
inflammation, and oxidative damage, all of which may contribute to neuronal and neuro-
chemical function recovery [38]. Vitamin E is used as a supplement, therapy, and standard
medicine in various interventions due to its neuroprotective effect on CNS illnesses such as
Alzheimer’s, Parkinson’s, ALS, and stroke [39]. A limited range of medications is available
for managing HD symptoms. All of these findings, together with the lack of pharmacologi-
cal intervention, urge the investigator to conduct an experiment to evaluate the efficacy of
β-BA against 3-NP-induced HD in rats.

2. Material and Methods
2.1. Experimental Animals

The study used male Wistar rats that were 8–9 months old and weighed 220–250 g. The
animals utilised in the experiment were obtained from the Institute’s Central Animal House.
Polycyclic cages with wire mesh tops and soft bedding were used to house the animals.
The animals were kept under controlled conditions with a 12 h light–dark cycle, controlled
temperature (22 ± 2 ◦C), controlled humidity (65–70%), and free access to food and water.
The experimental protocol was approved by Institutional Animal Ethics Committee (IAEC)
as per the guidelines of the committee for the purpose of control and supervision of
experiments on animals (CPCSEA), Government of India (573/PO/Re/S/02/CPCSEA).
Animals were acclimatized to laboratory conditions prior to research.

2.2. Drugs and Chemicals

The 3-nitropropionic acid (3-NP) was purchased from Sigma-Aldrich (St. Louis, MO,
USA). β-BA was provided as an ex gratia sample from BAPEX, Rajasthan. Analytical-
grade versions of all other compounds were also employed in the investigation. Drug
and chemical solutions were freshly prepared before administration to the rats. The
recommended dosage of 3-NP is 10 mg/kg intraperitoneally (i.p.), given for 15 days. The
saline solution contained 5% DMSO and had a pH of 7.4. For oral use, β-BA was dissolved
in water (with 2% ethanol) (p.o.). As a standard drug, vitamin E (Evion® 200 marketed
formulation, manufactured by Merck Limited, New York City, NY, USA, manufacturing
date: May 2018 and expiry date: July 2020) was dissolved in water (with ethanol) and
administered by the oral route (p.o.).

2.3. Experimental Grouping of Animals

The total number of days of the experiment was 15. A total of 42 Wistar male rats aged
8–9 months with a body weight of 220–250 g were required for conducting the protocol
schedule. Rats were placed in polycyclic cages with wire mesh tops along with the soft, ster-
ilized and residue-free wood saving with free food and water access. The animals were kept
under controlled conditions with a 12 h light–dark cycle, controlled temperature (22.2 ◦C),
controlled humidity (65–70%), and free access to food and water. The effect of the cir-
cadian rhythm was minimized by performing experiments from 9:00 a.m. to 1:00 p.m.
The researcher performed an unblinded preclinical study on rats. Animals were randomly
divided into seven groups as follows: Group 1: normal control; Group 2: Beta-BOSWELLIC
ACID (15 mg/kg/day, p.o.) perse; Group 3: 3-NP control (10 mg/kg/day, i.p.); Group 4:
Beta-Boswellic ACID (5 mg/kg/day, p.o.) + 3-NP (10 mg/kg/day, i.p.); Group 5: Beta-
Boswellic ACID (10 mg/kg/day, p.o.) + 3-NP (10 mg/kg/day, i.p.); Group 6: Beta-Boswellic
ACID (15 mg/kg/day, p.o.) + 3-NP (10 mg/kg/day, i.p.); Group 7: Vitamin E (8 mg/kg,
p.o.) + 3-NP (10 mg/kg/day, i.p.) (Figure 1).
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Figure 1. Behavioural and neurochemical data estimation protocol schedule.

2.4. Measurement of Body Weight

Each rat’s body weight was measured on the first and last days of the protocol sched-
ule. Body weight was calculated to evaluate changes in food and water intake in rats
following the administration of 3-NP, along with various dosages of β-BA and conven-
tional medication (vitamin E). Body weight was calculated as the percentage of change in
the body weight of rats from the 1st day of the protocol to the last day, i.e., the 15th day of
the treatment [40].

2.5. Parameters of Behavioral Assessment
2.5.1. Morris Water Maze Test (MWM)

The Morris water maze apparatus was used to assess spatial learning and memory with
cognition by observing rats’ performance efficiency. ELT and TSTQ tasks were conducted
on the 10th, 13th, and last days of the protocol schedule. ELT refers to finding the platform
in an MWM within a certain amount of time (in seconds) by rats. On the last day of the
protocol, a hidden platform was put in a certain quadrant, and the rats were free to swim
in the MWM for 120 s so that the TSTQ task could test how well their memories had been
consolidated [41].

2.5.2. Spontaneous Locomotor Activity (LA)

The actophotometer was used to assess spontaneous locomotor movements and
motor coordination. The LA of each rat was analysed on the 1st and 15th days of the
protocol schedule. The LA was measured for 5 min after the animal was placed in the
actophotometer, and the value was stated as the number of beams crossed by the animal in
5 min [42].

2.5.3. String Test for Grip Strength

A grip strength test was used to assess the ability of the forepaws to grasp and hold a
wire (Hague Ave., Columbus, OH, USA). The grip strength test was performed on the 1st
and 15th days of the procedure schedule. The latency of the rats’ paws to hold the wire
against the researcher’s force was measured in terms of fall time, and the retaining latency
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on the wire was used to measure the rats’ gripping strength. Kilogram-force (KgF) is the
force measurement unit used to quantify grip strength [43].

2.6. Biochemical Assessment of Parameters
2.6.1. Biological Samples Preparation

The animal’s brain was removed with the decapitation method on the sixteenth day of
the protocol schedule. The rat’s brain was cleaned with an ice-cold isotonic saline solution.
Brain slices were homogenized and then put into a cold phosphate buffer solution of
0.1 M (7.4 pH). The homogeneous mixture was centrifuged at 10,500× g for 15 min to
separate the supernatant. The biochemical changes (oxidative stress, neurotransmitter,
neurochemical, cellular, and molecular) that happened in the brain after treatment with
3-NP and different doses of β-BA, in addition to the standard drug, were studied using a
brain sample (supernatant) [44].

2.6.2. Analyse the Enzyme Activity of Mitochondrial ETC Complexes in Rat Brain Homogenate
Post-Mitochondrial Supernatant (PMS) Preparation

The activity and concentration of the mitochondrial ETC-complex enzymes in rat brain
homogenate were assessed by PMS. To prepare PMS, homogenate the entire brain and
centrifuge at 5000 rpm for 20 min at 4 degrees Celsius to extract the supernatant. Pellets
produced during PMS synthesis were combined in a 1:10 ratio with 0.1 M sodium phosphate
buffer (pH 7.4) and gently stirred for 60 min at 4 ◦C. After centrifuging the mixture at
16,000× g for 30 min at 0 ◦C, it was resuspended in the same buffer. Add 250 mmol/L of
additional sucrose to the resuspended pellet. After three rounds of centrifugation, enough
buffer sucrose solution was produced to extract the mitochondrial fraction for further
analysis [45].

Analyse the Enzyme Activity of Mitochondrial Complex-I (NADPH Dehydrogenase)
Protein in Rat Brain Homogenate

The activity of the complex I enzyme was determined by oxidising NADH in an assay
medium at 340 nm for 3 min at 37 ◦C. Rotenone exhibited sensitivity due to the complex I
enzyme when 2 mM rotenone molecule reacted with complex I, and its activity was
expressed in nM/mg protein [46].

Analyse the Enzyme Activity of Mitochondrial Complex-II (Succinate Dehydrogenase/
SDH) Protein in Rat Brain Homogenate

The activity of the complex II enzyme was determined by combining homogenate
gradient fraction (50 L) with sodium succinate solution (0.3 mL) and spectrophotometrically
quantifying the absorbance at 490 nm (Shimadzu, UV-1700, Kyoto, Japan). The results were
calculated using the chromophore molar extinction coefficient (1.36104 M−1 cm−1) and
given as reduced INT. The values were given in nM/mg protein [47].

Analyse the Enzyme Activity of Mitochondrial ETC Complex-V (ATP Synthase) Protein in
Rat Brain Homogenate

Sonication processes were conducted with the help of ice-cold perchloric acid
(0.1 N) utilised on the aliquots of the homogenate aliquots to quickly inactivate the ATPase.
Sonicate the homogenate, and then centrifuge it at 14,000× g for 5 min at 4 ◦C. The super-
natant was collected, then neutralised with 1 N NaOH and preserved at −80 ◦C for further
analysis. The amount of ATP in the supernatant was measured by reverse-phase HPLC
(Perkin Elmer). The standard was dissolved, and the absorbance at 254 nm was used to
make a standard ATP reference solution [48].
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2.6.3. Analysis of Neuroinflammatory Biomarkers
TNF-α and IL-1β Protein Concentration in the Brain

Inflammatory markers such as TNF-α and IL-1β levels in rat brain homogenate were
determined using the ELISA kit from E-EL-R0019/TNF-α and E-EL-R0012/IL-1β Elab-
scienes (Wuhan, China). The activity of inflammatory indicators was represented as pg/mg
protein [49,50].

2.6.4. Analysis of Neurotransmitters
Dopamine Concentration in Rat’s Brain Homogenate

Striatal tissue samples were used to determine the dopamine levels in brain ho-
mogenates. Assess the DA level by using an electrochemical detector (ECD) and high-
performance liquid chromatography (HPLC) (ECD Waters, Milford, MA, USA) in rat brain
homogenates. The mobile phase was buffered with the help of sodium citrate (pH 4.5) and
acetonitrile (87:13, v/v). The preparation of sodium citrate buffer was performed by the
addition of citric acid (10 mM), NaH2PO4 (25 mM), EDTA (25 mM), and 1-heptane sulfonic
acid (2 mM). A voltage of 0.75 V was used to conduct the electrochemical condition of
the experiment and maintain its range from 5 to 50 nA. The separation was performed by
using a 0.89 mL/min flow rate. A sample (20 mL) was manually injected into the injector.
Homogenize the rat brain sample with centrifugation at 12,000× g for 5 min after adding
0.2 M perchloric acid to the homogenising solution. Dopamine levels were expressed in
ng/mg [51].

GABA and Glutamate Concentration in Rat’s Brain Homogenate

The GABA and glutamate concentrations were determined using HPLC connected
to an ECD. A Waters standard system, which includes a high-pressure isocratic pump, a
20 L manual sample injector valve, a C18 re-versed-phase column, and a UV detector,
was used in conjunction with an ECD. The mobile phase was composed of 22% methanol,
25 mM EDTA, and 100 mM anhydrous disodium hydrogen phosphate (pH: 6.5). Ex-
periments were performed with an electrochemical potential of +0.65 V and a range of
sensitivity from 5 to 50 nA. The separation was conducted at a 1.2 mL/min flow rate with
a 40 ◦C column temperature. Manual sample injections (20 L) were performed using a
rheodyne valve injector. The frozen brain samples were thawed and mixed together with
0.2 M perchloric acid on the day of the experiment. Afterwards, the samples were subjected
to 12,000 g of anteroposterior force for 15 min. When the supernatant was filtered through
0.22 m nylon filters and derivatized with OPA/-ME (o-pthalaldehyde/-mercaptoethanol),
it was ready to be injected into the HPLC sample injector. Waters HPLC provided Breeze,
version 3.2, which was used to record and analyse the data. We were able to calculate
the concentrations of the amino acids of interest by extrapolating a standard curve with
a concentration standard of between 10 and 100 ng/mL. Values were given in terms of
ng/mg of protein, and a normal control group was used for comparison [52].

2.6.5. Analysis of Oxidative Stress Parameters
Acetylcholinesterase (AChE) Concentration in Rat’s Brain Homogenate

A test was performed to figure out how much acetylcholine esterase was in the brain
homogenate. A total of 3 mL of phosphate buffer (pH-8) and 0.05 mL of supernatant were
mixed with 0.10 mL of DTNB and 0.10 mL of acetylthiocholine iodide. Spectrophotometry
was used to measure the instantaneous changes at 420 nm, and the amount of AChE in the
supernatant was calculated in terms of M/mg protein [53].

Malondialdehyde (MDA) Concentration in Rat’s Brain Homogenate

The Wills method was used to assess the end product of lipid peroxidation, MDA.
Thiobarbituric acid was used to process the brain homogenate supernatant before 532 nm
spectrophotometric measurement. MDA levels were expressed as nm/mg of protein [54].
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Glutathione (GSH) Concentration in Rat’s Brain Homogenate

This assay was used to quantify the reduced glutathione level in rats’ brains ho-
mogenate after I.P. administration of 3-NP. The cold digestion process was performed
with 1 ml supernatant in 4% sulfosalicylic acid (1 mL) at 4 ◦C for one hour, and then the
collected sample was centrifuged at 1200 rpm for 15 min. In 1 mL supernatant, add 0.2 mL
of DTNB and 2.7 mL phosphate buffer of 0.1 M concentration at pH 8. After the process,
spectrophotometric measurements generated a yellow colour at the immediate level of
412 nm. The level of reduced GSH was expressed as M/mg protein [55].

Superoxide Dismutase (SOD) Concentration in Rat’s Brain Homogenate

The same method was used for epinephrine auto-oxidation at pH 10.4, spectrophoto-
metrically assessing the level of SOD. The procedure began with the addition of 0.8 mL
of pH 10.4 50 mM glycine buffer and 0.02 mL of epinephrine to the 0.2 mL of supernatant.
After 5 min of incubation, the absorbance was taken at 480 nm. The SOD activity was
reported at nM/mg of protein [56].

Catalase (CAT) Concentration in Rat’s Brain Homogenate

The concentration of CAT in rat brain homogenate can be measured by mixing
0.1 mL of supernatant with 1.9 mL of 50 mM phosphate buffer in a cuvette while keeping
the pH at 7. After adding 1.0 mL of a freshly made 30 mM H2O2 solution, the reactions
were started. Spectrophotometric analysis at 240 nm was used to determine the rate of
H2O2 decomposition. The data were presented as micromoles of µM/ H2O2 decomposition
per minute [57].

2.7. Histopathology

Following the end of the experimental procedure, the rats were anaesthetized with a
270 mg/kg i.p. dosage of sodium barbiturates. Decapitate the rats, then carefully separate
their whole brains and wash them in PBS. Whole brains were preserved by being immersed
in PBS containing 4% paraformaldehyde at a pH of 7.4. Afterwards, a microtome was used
to cut sections of brain wax block that were between 4 and 5 mm in thickness. Hematoxylin
and eosin staining and fluorescence microscopy (MOTICAM-Ba310 image plus 2.0, Schertz,
TA, USA) at 100× magnification were used for a morphological study of brain sections
(Cortex and striatum). At 100×magnification, different cell characteristics were seen in a
Moticam, such as the size of the cell, apoptotic cells, inflammatory cells, and vacuolization
in the cortex and striatum [58].

2.8. Statistical Analysis

Using one- and two-way ANOVA with post-hoc tests, the data was analysed and
displayed through the analysed intervention. The data from the several experimental
groups were separated and compared using Tukey’s multi-comparison test and Bonferroni’s
test, respectively. Two-way ANOVA with Bonferroni’s posthoc test was performed to
examine the behavioural changes (body weight, ELT, spontaneous LA, and grip strength)
that occurred in rats after treatment. While neurochemical (estimation of mitochondrial
complex activity, inflammatory biomarkers, neurotransmitter levels, and oxidative stress
indicators) and behavioural alterations were evaluated using one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test for multiple comparisons (TSTQ time). At a p-
value of 0.01, the findings are considered statistically significant. The Kolmogorov–Smirnov
test was utilised to ascertain the normal distribution of the sample size. The statistical
analysis and visualization of the data were performed in the form of mean and standard
deviation (SD) using GraphPad Prism version 5.03 for Windows (GraphPad Software,
San Diego, CA, USA).
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3. Results

The study aimed to investigate the possible protective effect of β-B Ain HD. The thera-
peutic effects were evaluated using initial and final weight differences between animals in
the control, inducing agent, and test control groups. Behavioural parameters like memory
and learning were tested by a Morris water maze (MWM); for motor coordination grip
strength (Rota-rod) model was used; for locomotor activity, an actophotometer was used;
by histopathological examination of the brain tissue, tissue necrosis in the striatum and
cortex was compared.

3.1. β-Boswellic Acid Ameliorates the Decreased Body Weight in 3-NP-Treated Rats

Body weight was measured on the 1st and 15th days of the procedure schedule. Rats
had significantly decreased body weight following chronic 3-NP treatment compared
with the normal and perse groups. Normal and β-BA15 perse groups did not show any
significant changes. Different doses of β-BA (5, 10, and 15 mg/kg) were shown to be
more effective in treating rats than the 3-NP-induced HD group [two-way ANOVA:F
(6, 70) = 123.13, p < 0.01] (Figure 2). In conventional medicine, vitamin E was shown to
significantly improve body weight regulation compared to different doses of β-BA.
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Figure 2. β-Boswellic acid ameliorates the decreased body weight in 3-NP-induced HD in rats. The 
Bonferroni two-way ANOVA post-hoc test was used to express significant statistical data as mean 
± SD (n = 6) and * 3-NP (p < 0.01) versus normal and β-BA perse; # β-BA5 + 3NP, β-BA10 + 3NP, and 

Figure 2. β-Boswellic acid ameliorates the decreased body weight in 3-NP-induced HD in rats.
The Bonferroni two-way ANOVA post-hoc test was used to express significant statistical data as
mean± SD (n = 6) and * 3-NP (p < 0.01) versus normal and β-BA perse; # β-BA5 + 3NP, β-BA10 + 3NP,
and β-BA15 + 3NP (p < 0.01) versus 3-NP; #@ Vitamin E + 3-NP (p < 0.01) versus β-BA5 + 3NP,
β-BA10 + 3NP, and β-BA15 + 3NP.

3.2. Behavioural Parameters

These behavioural (MWM, grip strength, locomotor activity) parameters were used to
explore the neuroprotective effects of β-BA at the doses of 5, 10 & 15 mg/kg, p.o. compared
with vitamin E.

3.2.1. β-Boswellic Acid Ameliorates Spatial Navigation Task in 3-NP Treated Rats

Spatial navigation tasks were conducted on the 10th and 13th days of the trial, ac-
cording to the protocol. These two tasks, the escape latency task and time spent in the
targeted quadrant (TSTQ), were performed by rats for the spatial navigation task. TSTQ
was performed on the 13th day of the protocol schedule, while ELT was performed on the
10th and 13th days. There were no significant differences observed between the normal
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and perse groups. Chronic administration of 3-NP significantly increased ELT time and
decreased TSTQ compared with the normal and β-BA15 perse group. Treatment with
different doses of β-BA (5, 10, and 15 mg/kg) resulted in a substantial improvement in ELT
[two-way ANOVA:F (6,70) = 31.88, p < 0.01] (Figure 3A) and TSTQ [one-way ANOVA:F
(6, 30) = 1.548, p < 0.01] (Figure 3B) in rats compared with the 3-NP-induced HD. Further-
more, compared with the varying doses of β-BA and the standard medicine, vitamin E
showed a considerable role in reducing ELT duration and elevating TSTQ.
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Figure 3. (A): β-Boswellic acid ameliorates ELT on Morris water maze in 3-NP-induced HD in rats.
(B): β-Boswellic acid ameliorates TSTQ on Morris water maze in 3-NP-induced HD in rats. The
Bonferroni Two-way ANOVA and Tukey’s one-way ANOVA post-hoc test was used to express
significant statistical data as mean ± SD (n = 6); * 3-NP (p < 0.01) versus normal and β-BA perse;
# β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01) versus 3-NP; #@ vitamin E + 3NP
(p < 0.01) versus β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP.
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3.2.2. β-Boswellic Acid Ameliorates Locomotor Activity in 3-NP-Treated Rats

On the 1st and 15th days of the experimentation schedule, locomotor activity (LA) was
carried out to quantify the effect on the movement of β-BA alone and in combination with
the standard drug, i.e., vitamin E. Neither the first nor fifteenth day showed any significant
difference between the normal and β-BA15 perse groups. When 3-NP was administered to
rats for the first time on day 1, no major changes were noticed when compared with the
normal and perse groups. However, substantial differences were observed when 3-NP was
chronically given over the course of 15 days. A series of β-BA (5, 10, and 15 mg/kg doses)
showed a significant improvement in the locomotor activity against 3-NP-induced HD in
rats [Two-way ANOVA:F (6, 70) = 97.34, p < 0.01] (Figure 4). On the 15th day of the trial,
conventional medication, i.e., vitamin E, showed a considerable restoration in locomotion
compared to different dosages of β-BA on the 15th day of the trial.
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Figure 4. β-Boswellic acid ameliorates locomotion activity on actophotometer in3-NP-induced HD
in rats. The Bonferroni two-way ANOVA and Tukey’s one-way ANOVA post-hoc test was used to
express significant statistical data as mean ± SD (n = 6); * 3-NP (p < 0.01) versus normal and β-BA
perse; # β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01) versus 3-NP; #@ vitamin E + 3NP
(p < 0.01) versus β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP.

3.2.3. β-Boswellic Acid Ameliorates Grip Strength in 3-NP-Treated Rats

The grip strength task was completed three days after the protocol schedule (1st and
15th). We found no statistically significant differences between the control and β-BA15 perse
groups. On the first day following the administration of 3-NP, no significant differences
were seen when compared with normal and perse. However, during the chronic treatment
of 3-NP, the HD rat’s grip strength significantly decreased on day 15. Grip strength was
significantly enhanced in HD rats after they were treated with a series of doses of β-BA
[two-way ANOVA:F (12, 105) = 686.96, p < 0.01] (Figure 5). When we compared different
doses of β-BA and conventional vitamin E, we found that they improved grip strength.

3.3. Biochemical Parameters
3.3.1. β Boswellic Acid Ameliorates Mitochondrial ETC Complexes Activity in 3-NP
Treated Rats

The activity of mitochondrial enzyme complexes (Complex I, II, and V) in rat brain
homogenates was quantified at the end of the protocol schedule. No discernible differences
were seen between the normal and β-BA15 perse groups. Mitochondrial enzyme activity
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was shown to significantly decrease following repeated 3-NP treatment. A substantial
increase in mitochondrial enzyme complex I [One-way ANOVA:F (6, 30) = 0.5016, p < 0.01]
(Figure 6A), complex II [One-way ANOVA:F (6, 30) = 0.7639, p < 0.01] (Figure 6B) and
complex V [One-way ANOVA:F (6, 30) = 0.4812, p < 0.01] (Figure 6C) activity was seen in
HD rats after treatment with varying dosages (5, 10, and 15 mg/kg) of β-BA. Treatment
with a standard drug, such as vitamin E, has been shown to boost mitochondrial enzyme
activity and stop mitochondria from becoming dysfunctional.
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Figure 5. β-Boswellic acid ameliorates grip strength during grip strength task 3-NP-induced HD
in rats. The Bonferroni two-way ANOVA and Tukey’s one-way ANOVA post-hoc test was used to
express significant statistical data as mean ± SD (n = 6); * 3-NP (p < 0.01) versus normal and β-BA
perse; # β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01) versus 3-NP; #@ vitamin E+ 3NP
(p < 0.01) versus β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP.
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Figure 6. (A–C): β-Boswellic acid ameliorates mitochondrial ETC complexes activity in brain ho-
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< 0.01) versus normal and β-BA perse; # β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01) 
versus 3-NP; #@ vitamin E + 3NP (p < 0.01) versus β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP. 
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Figure 6. (A–C): β-Boswellic acid ameliorates mitochondrial ETC complexes activity in brain ho-
mogenates of 3-NP-induced HD in rats. The Bonferroni two-way ANOVA and Tukey’s one-way
ANOVA post-hoc test was used to express significant statistical data as mean ± SD (n = 6); * 3-NP
(p < 0.01) versus normal and β-BA perse; # β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01)
versus 3-NP; #@ vitamin E + 3NP (p < 0.01) versus β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP.

3.3.2. β-Boswellic Acid Ameliorates Inflammatory Markers (TNF-α,& IL-1β) Level in 3-NP
Treated Rats

We estimated the level of inflammatory markers (TNF-α and IL-1β) in the rat brain
homogenates at the end of the treatment schedule. No statistically significant differences
were found in either the normal or the perse group. When rats were given 3-NP for an
extended period of time, inflammatory markers increased in comparison to the control and
perse groups; however, when the animals were given β-BA, TNF-α [one-way ANOVA:F
(6, 30) = 0.6244, p < 0.01] (Figure 7A) and IL-1β [one-way ANOVA:F (6, 30) = 0.1916,
p < 0.01] (Figure 7B) levels were significantly reduced and improved in a dose-dependent
manner. In rats with 3-NP-induced HD, standard drugs (like vitamin E) helped restore
signs of inflammation.
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Figure 7. (A,B): β-Boswellic acid ameliorates inflammatory markers level in brain homogenates of
3-NP-induced HD in rats. The Tukey’s one-way ANOVA post-hoc test was used to express significant
statistical data as mean ± SD (n = 6); * 3-NP (p < 0.01) versus normal and β-BA perse; # β-BA5 +
3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01) versus 3-NP; #@ vitamin E + 3NP (p < 0.01) versus
β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP.

3.3.3. β-Boswellic Acid Ameliorates Neurotransmitter Levels (Dopamine, Glutamate, and
GABA) in 3-NP Treated Rats

According to the protocol schedule, neurotransmitter levels were quantified in the
brain homogenates of rats at the end of the protocol. There was no difference observed in
the normal and β-BA15 perse groups. On the other hand, the chronic administration of
3-NP showed a significant decrease in dopamine (DA) and GABA levels while increasing
glutamate levels in HD rats. However, a dose-dependent treatment of β-BA significantly
alleviates DA [One-way ANOVA:F (6, 30) = 0.2963, p < 0.01] (Figure 8A) and GABA levels
[One-way ANOVA:F (6, 30) = 1.016, p < 0.01] (Figure 8C), whereas it decreases glutamate
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levels [One-way ANOVA:F (6, 30) = 1.327, p < 0.01] (Figure 8B) of 3-NP treated rats.
Standard treatment played a key role in restoring the level of neurotransmitters in rats that
had been affected by 3-NP.
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Figure 8. (A–C): β-Boswellic acid ameliorated neurotransmitter levels in brain homogenates of
3-NP-induced HD in rats. The Tukey’s one-way ANOVA post-hoc test was used to express sig-
nificant statistical data as mean ± SD (n = 6); * 3-NP (p < 0.01) versus normal and β-BA perse;
# β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01) versus 3-NP; #@ vitamin E + 3NP
(p < 0.01) versus β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP.

3.3.4. β-Boswellic Acid Amelioratesoxidative Stress (AChE, MDA, Reduced GSH, SOD,
and CAT) Parameters in 3-NP Treated Rats

At the end of the protocol, the levels of oxidative indicators in rat brain homogenates
were measured; these included the enzyme acetylcholinesterase (AChE), as well as mal-
ondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase
(CAT). No significant differences were found between the normal and β-BA 15 perse
groups. However, significant differences were seen after the administration of 3-NP. β-
BA also reduced AChE [one-way ANOVA: F (6, 30) = 1.175, p < 0.01] (Figure 9A), MDA
[one-way ANOVA: F (6, 30) = 0.5999, p < 0.01] (Figure 9B), GSH [one-way ANOVA:F
(6, 30) = 1.003, p < 0.01] (Figure 9C), SOD [One-way ANOVA:F (6, 30) = 1.195, p < 0.01]
(Figure 9D), CAT [one-way ANOVA:F (6, 30) = 1.274, p < 0.01] (Figure 9E) level in a
dose-dependent manner in 3-NP-induced HD in rats. Compared with the various doses
of β-BA, the standard medicine vitamin E efficiently regulated the modulated level of
oxidative markers.
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treated rats revealed properly sized, intact pyramidal-shaped neuronal cells with a clearly 
visible cell nucleus without vacuolization and a continuous cell membrane without haem-
orrhage. After a prolonged i.p. injection of 3-NP to develop HD in rats, histopathological 
alterations were detected. The histological examination of a brain segment treated with 3-
nitropropionic acid (cortex and striatum) revealed many neuronal spaces with fuzzy bor-
ders and haemorrhages in cerebral tissues. In contrast, the putamen and caudate revealed 
localized neurodegeneration and necrosis, cell feature loss, and pyramidal shape loss.  

β-BA15 mg/kg, p.o. supplementation significantly attenuated 3-NP-induced histo-
logical alteration as compared to β-BA5 mg/kg, p.o. and β-BA10 mg/kg, p.o. supplemen-
tation. When treated with 3-NP 10 mg/kg + β-BA5 mg/kg, p.o., caudate, and putamen 
showed focal neurodegeneration and necrosis with a loss of cell details, shape, and size. 
The caudate and putamen showed focal mild degenerative changes in treatment with 3-
NP 10 mg/kg + β-BA10 mg/kg, p.o. The caudate and putamen showed mild focal gliosis 
in treatment with 3-NP 10 mg/kg + β-BA15 mg/kg, p.o. (Figure 10). 

Figure 9. (A–E): β-Boswellic acid ameliorates the oxidative stress parameters in brain homogenates
of 3-NP-induced HD in rats. The Tukey’s one-way ANOVA post-hoc test was used to express
significant statistical data as mean ± SD (n = 6); * 3-NP (p < 0.01) versus normal and β-BA perse;
# β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP (p < 0.01) versus 3-NP; #@ vitamin E + 3NP (p < 0.01)
versus β-BA5 + 3NP, β-BA10 + 3NP, and β-BA15 + 3NP.

3.4. Histopathological Analysis
Effect of β-Boswellic Acid on 3-NP Induced Histopathological Changes in Rat Brain

Histological sections of the cortex and striatum from normal, β-BA- and vitamin E-
treated rats revealed properly sized, intact pyramidal-shaped neuronal cells with a clearly
visible cell nucleus without vacuolization and a continuous cell membrane without haem-
orrhage. After a prolonged i.p. injection of 3-NP to develop HD in rats, histopathological
alterations were detected. The histological examination of a brain segment treated with
3-nitropropionic acid (cortex and striatum) revealed many neuronal spaces with fuzzy bor-
ders and haemorrhages in cerebral tissues. In contrast, the putamen and caudate revealed
localized neurodegeneration and necrosis, cell feature loss, and pyramidal shape loss.

β-BA15 mg/kg, p.o. supplementation significantly attenuated 3-NP-induced histologi-
cal alteration as compared to β-BA5 mg/kg, p.o. and β-BA10 mg/kg, p.o. supplementation.
When treated with 3-NP 10 mg/kg + β-BA5 mg/kg, p.o., caudate, and putamen showed
focal neurodegeneration and necrosis with a loss of cell details, shape, and size. The
caudate and putamen showed focal mild degenerative changes in treatment with 3-NP
10 mg/kg + β-BA10 mg/kg, p.o. The caudate and putamen showed mild focal gliosis in
treatment with 3-NP 10 mg/kg + β-BA15 mg/kg, p.o. (Figure 10).
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Figure 10. (A–N): β-Boswellic acid ameliorates the histopathological changes in the brain’s striatum
and cortex region after administration of 3-NP in rats to induce HD. The goal of this experiment
was to analyse histopathological information of the striatum and cortex sections by using H- and
E-stain. After 3-NP delivery into a rat’s brain, striatal and cortical sections revealed the characteristic
morphological alterations associated with HD: uneven, flattened cells; cells devoid of nucleus and
membrane; bleeding; apoptosis; degeneration; gliosis; and vacuolization of cells. The red arrow
represents neuronal cell degeneration, and apoptotic cells are shown with the blue arrow; cortical
bleeding is shown with the yellow arrow; gliosis is shown with the green arrow; cell vacuolization
is shown with the orange arrow, especially in the cortical section of the brain, and the black arrow
displays the form of the cell. (A) This diagram depicts a typical, randomly assigned group of six
rats characterized by a high neuronal cell density and a pyramidal shape. (B) It did not show a big
difference between the β-BA perse group and the normal group in shape or cell density. (C) Schematic
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representation of the 3-NP-treated group, which had uneven and flattened cells, cells lacking a
nucleus and membrane, haemorrhage, apoptosis, gliosis and vacuolization of the cell (cortical region).
(D–F) Diagrams demonstrated that, when compared with the 3-NP-treated group, β-BA 5, β-BA 10,
and β-BA 15 significantly reduced irregular and flattened cells, cells without nucleus and membrane,
bleeding, apoptotic degeneration, gliosis and vacuolization of a cell (cortical region). (G) As shown
in the diagram, the β-BA 5, β-BA 10, and β-BA 15 groups had a lower rate of restoring neurons than
the vitamin E. (A magnification scale of 100× was used for morphological studies of brain sections
such as the cortex and striatum).

4. Discussion

Our hypothesis stated that -BA has a neuroprotective effect as a CAG triplet repeat
inhibitor in 3-NP-induced HD rats by lowering mHtt gene expression and preventing
neurodegeneration in medium spiny neurons (MSN). Neurochemical and behavioural
alterations were seen after i.p. treatment of 3-NP to rats. We determined that this was due
to the neurodegeneration of GABAergic medium spiny neurons (MSN) and CAG repetition
in the striatum and cortex.

β-BA is a terpenoid composed of a pentacyclic chain of carbon chains [59]. -BA was
synthesised using the herb Boswellia serrate [46]. β-BA has previously been found to be neu-
roprotective against streptozotocin-induced Alzheimer’s disease, to aid in mitochondrial
malfunction recovery, and to regulate behavioural and neurochemical abnormalities [60]. In
ALS rats, acetyl-11-keto-beta Boswellic acid improved body weight, memory and cognition,
locomotion, and muscle incoordination [61,62]. Clinical data and research revealed that
frequent weight loss occurs in the later stages of HD, resulting in chronic fatigue syn-
drome [63]. In juveniles and adults, 3-NP mimics and produces HD-like behaviour (weight
loss, muscular wasting, and skeletal muscle atrophy) [64]. β -BA protects neurochemicals
from damage by regulating inflammatory cytokines, neurotransmitters, and oxidative
stress [65,66]. Moreover, in current investigations, vitamin E was used as a therapeutic
intervention because of its antioxidative effects, and it also helps with neuroprotection [67].
According to our research findings, long-term treatment of 3-NP-induced HD resulted in
decreased rat body weight. The return to a normal weight was assisted by both β-BA and
vitamin E.

CAG repetition may cause muscle incoordination, muscle wasting, and skeletal mus-
cle atrophy in HD patients [68]. Degeneration and lesion formation in rat cortical and
striatal neurons delayed muscle movement and impaired coordination [69]. Chronic 3-NP
injection promoted mitochondrial dysfunction, disrupting neurotransmitters that influ-
ence motor and muscular activity [21,70]. In our experiment, HD-induced rats treated
with β-BA and 3-NP improved their locomotor activity and gripping muscle strength in a
dose-dependent manner.

3-NP is a mitochondrial toxin [71,72] that inhibits succinate dehydrogenase (ETC
complex II) function, leading to mitochondrial failure and an increase in the CGA repeating
cycle, which results in the putamen and caudate neurodegeneration [73–75]. Neurodegener-
ation [76] and mitochondrial failure [77] affect morphology, behaviour, and neurochemistry.

The mitochondrial deficit may result in ROS, which increases oxidative stress [78,79]
and lowers antioxidants, resulting in the progression of brain inflammation and proinflam-
matory cytokines, as well as the deterioration of HD [80]. The neurotoxin 3-NP changes
rats’ neurochemistry, behaviour, and morphology after intraperitoneal administration. The
neurotoxin 3-NP investigates HD using an animal model [81]. In this work, rats were fed
3-NP daily for 14 days to induce HD-like symptoms. Cognitive and motor impairment
are clinical symptoms of Huntington’s disease [82]. Frontostriatal loop neurodegeneration
increases glutamate levels, decreasing short-term working memory and causing abnormal-
ities in learning behaviour [83]. Mitochondrial toxin 3-NP produces neurodegeneration
in the frontostriatal loop, resulting in cognitive and memory deficits [84]. Our findings
suggest that β-BA may benefit rats suffering from memory and cognitive impairments
caused by long-term exposure to 3-NP.
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Mitochondria are essential in the control of ROS generation and neuroprotective
properties [85]. Mitochondrial malfunction increases ROS production and causes neuronal
injury [86]. The neurotoxin 3-NP inhibits the activity of the ETC complexes I, II, and
V [87,88]. The neurotoxin 3-NP may promote inefficient energy generation and accelerate
disease progression. In the process of our investigation, we found that 3-NP caused HD to
be produced in the brains of rats. Additionally, the mitochondrial ETC complexes I, II, and V
enzyme levels were also determined in rat brain homogenates. Whereas β-BA and vitamin
E significantly restored the ETC-complex enzyme level in brain homogenate samples.
Proinflammatory cytokines (TNF-α, IL-1β) were activated in response to neurodegeneration
and neurotoxicity, increasing the likelihood of disease [89]. Damage to GABAergic MSN
caused by 3-NP (as reported in [19,90]) led to increased proinflammatory cytokines. We
revealed that a high dose of β-BA significantly reduced the level of proinflammatory
cytokines in 3-NP-exposed rats.

Patients with HD may experience changes in their levels of DA, glutamate, and
GABA due to neurodegeneration caused by MSN [91]. The neurotoxin 3-NP changes
neurotransmitter levels in rats and individuals with Parkinson’s disease [92]. We found that
giving rats 3-NP generates neurotransmitter alterations comparable with those observed in
HD patients, where a current investigation found that β-BA and vitamin E contributed to
restoring the neurotransmitter levels.

Clinical findings show that HD patients have increased oxidative stress (AChEs and
MDA) due to reduced antioxidant levels (GSH, SOD, and CAT) related to excessive ROS
production [93]. Mitochondrial dysfunction is closely connected to aberrant ROS gener-
ation [94]. As previously stated, the mitochondrial toxin 3-NP modulates the amount of
oxidative stress [95]. In our investigation, i.p. injections of 3-NP affected the levels of
oxidative biomarkers in the striatum, and the cortex was restored by β-BA.

Degeneration of MSN neurons could be seen in the striatum and cortex of HD patients.
In HD-induced rats’ brains, H- and E-staining revealed morphological abnormalities,
apoptotic cells, cells losing nucleus and membrane, degenerative neurons, and gliosis [96].
The neurotoxin 3-NP caused neurodegeneration and was found in HD patients [97,98].

According to the findings of our research, administering high dosages of β-BA could
reverse the histopathological change in 3-NP-toxicated HD rats. Based on the results of
our research and the statistics, we believe that high-dose β-BA may be a more effective
treatment for HD in further studies. However, the underlying technique must be confirmed
using knock-in and knock-out procedures. Cellular and molecular marker studies such
as Western blot and immunohistochemistry will almost definitely confirm these findings.
According to our findings, conventional medications worked better when paired with
beta Boswellic acid and could be used to treat Huntington’s disease. We also proposed
an additional study to better understand the relationship between prescribed drugs and
HD treatments.

5. Conclusions

In this investigation, we revealed that β-BA exhibited a dose-dependent neuroprotec-
tive effect compared with the conventional treatment of vitamin E after 3-NP i.p. injection-
induced lesions and neurodegeneration in rats’ brains. Based on our histological findings,
we concluded that a dose-dependent administration of β-BA acid could slow the progres-
sion of neurodegeneration as well as morphological change in the striatum and cortex.
The neurotoxin 3-NP caused neurobehavioral dysfunctions, including motor and cognitive
abnormalities, which could be reversed with β-BA therapy, providing additional protection
against developing HD-like symptoms. Our findings strongly suggested that β-BA could
reduce cytokine production while restoring mitochondrial ETC-complex enzymes, neuro-
transmitter imbalances, and antioxidant potential. In addition, β-BA has a role in restoring
neurobehavioral, neurochemical, cellular, and disease-causing processes regulated by the
striatum and the cortex region of the brain. All of these findings suggest that β-BA has
clinical potential as a treatment for the pathogenesis of HD.
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ACh Acetylcholine
AChE Acetyl cholinesterase
AD Alzheimer disease
ALS Amyotrophic lateral sclerosis
ANOVA Analysis of variance
ATP Adenosine triphosphate
β-BA Beta Boswellic acid
BG Basal Ganglia
CAG Cytosine, adenine, guanine
CAT Catalase
CNS Central nervous system
DA Dopamine
DNA Deoxyribonucleic acid
DTNB 5,5′-dithiobis-(2-nitrobenzoic acid)
ECD Electron capture detector
EDTA Ethylenediaminetetraacetic acid
ELISA Enzyme-linked immunosorbent assay
ELT Escape latency test
ETC Electron transport chain
GABA Gamma-amino butyric acid
GP Globus pallidus
GSH Glutathione
HD Huntington diseases
H2O2 Hydrogen peroxide
HPLC High-Performance Liquid Chromatography
Htt Huntigtin gene
LA Locomotor activity
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5-LO 5-lipoxygenase
MDA Malondialdehyde
MAPK Mitogen-activated protein kinase
mHtt Mutated huntigtin gene
MSN Medium spiny neurons
MWM Morris water maze
NMDA N-methyl-D-aspartate
3-NP 3-Nitropropionic acid
PD Parkinson’s disases
Poly Q Polyglutamine
O2• Superoxide
OH Hydroxyl ion
ROS Reactive oxygen species
SLA Spontaneous locomotor activity
SN Substantianigra
SOD Superoxide dismutase
TCA Trichloroacetic acid
TH Tyrosine hydroxylase
TL Transfer latency
TNF-α Tumour necrosis factor-α
TSTQ Time spent in the target quadrant zone
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