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Abstract: The Hippo pathway regulates and contributes to several hallmarks of prostate cancer
(PCa). Although the elucidation of YAP function in PCa is in its infancy, emerging studies have shed
light on the role of aberrant Hippo pathway signaling in PCa development and progression. YAP
overexpression and nuclear localization has been linked to poor prognosis and resistance to treatment,
highlighting a therapeutic potential that may suggest innovative strategies to treat cancer. This review
aimed to summarize available data on the biological function of the dysregulated Hippo pathway
in PCa and identify knowledge gaps that need to be addressed for optimizing the development of
YAP-targeted treatment strategies in patients likely to benefit.
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1. Introduction

The life-prolonging, widely used, and approved therapies for prostate cancer (PCa)
are based on targeting androgen signaling, bone targeting with radiopharmaceuticals, and
chemotherapy. Nonetheless, the clinically relevant targets in PCa management have not
changed over the years, and current treatment options have already reached their potential.
Refinement in existing strategies will likely result in incremental improvement in survival
rates, but major advances in therapy will likely require novel treatment approaches founded
on an alternative biological basis [1,2]. In line with this are the encouraging observations
reported with immune checkpoint blockade in select subsets [3], as well as with the use of
PARP inhibitors in cancers with DNA damage repair alterations [4,5]. However, despite
the marked lengthening of overall survival (OS), cure rates in men with metastatic PCa
remain low [6]. The long-term goal of therapy is to shift from the prevailing treatment
paradigm to a curative paradigm. To achieve this transition the understanding of alternative
mechanism(s) that result in the emergence of resistance to therapy will be required.

A growing amount of research suggests that the Hippo pathway is part of a network
of interlinked signaling pathways that regulate cell transformation, proliferation, invasion,
migration, metastasis, and ultimately cancer progression. Increasing our understanding of
and identifying the relevant nodes in the dynamic molecular cascade of the Hippo pathway
might unveil tumor vulnerabilities that could be therapeutically exploited. Sufficient
observations exist to suggest that the key mediator of the Hippo pathway, Yes-associated
protein (YAP), is implicated in the emergence of resistance to treatment in PCa. In this
review article, we summarize the emerging evidence linking YAP to PCa development and
resistance to treatment.
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1.1. YAP Protein and Hippo TAZ–YAP Signaling Pathway under Physiological Conditions

YAP was initially identified in the late 1990s [7] in Drosophila melanogaster by screen-
ing for loss-of-function mutations resulting in organomegaly, due to increased cell prolifer-
ation. However, research interest on elucidating its role remained poor until 2005, when
it was realized that it was an ortholog of Drosophila Yorkie, the nuclear mediator of the
Drosophila Hippo pathway [8]. The Hippo signaling cascade is an evolutionarily highly
conserved pathway in mammals regulating organ growth by limiting cell proliferation
under high cellular density environmental conditions [9–13]. Recent advances in genome
and proteomic sequencing technologies combined with novel bioinformatic tools have
successfully uncovered the key components of the Hippo pathway and prioritized research
projects have focused on delineating the cross-links with other molecular pathways.

YAP is a 488 amino acid phosphoprotein that acts as a transcriptional co-regulator.
Structurally, YAP protein and its paralogue protein TAZ contain a proline-rich, WW domain,
which consists of two conserved tryptophan residues separated by 20–23 amino acids [14].
The WW domain of YAP/TAZ recognizes and binds to PPXY motif (proline/proline/any
amino acid/tyrosine) found in a variety of proteins, known to control YAP/TAZ localiza-
tion and function. Although YAP and TAZ share similar amino-acid sequences (~60%), the
latter contains one WW domain while YAP contains two. This feature, among others, un-
derlines the fact that there are also fundamental differences between the two molecules [15],
reflecting distinct functional properties [16], as well. Moreover, YAP contains a TEAD-
binding domain [17] and a C-terminal PDZ-binding motif [18,19], which binds to zonula
occludens 1/2 and Na+ /H+ exchange regulatory cofactor proteins and is necessary for its
nuclear localization [20–23]. As a transcriptional co-regulator having both co-activator and
co-repressor capabilities, YAP is one of the nuclear-effector factors of the Hippo signaling
pathway [24,25].

The Hippo pathway in Drosophila consists of a protein network, including two
serine/threonine kinases Hippo (Hpo) [26–28] and Warts (Wts) [29], the adaptor proteins
Salvador (Sav) and Mob (Mats) [30,31], a transcriptional co-activator Yorkie (Yki), and
the transcriptional factor Scalloped [32,33]. Yki is inhibited by the Hippo cascade and is
considered the principal functional component of the Hippo pathway [8]. Remarkably,
multiple mammalian homologs correspond to a single drosophila protein, pointing out the
great complexity of the human Hippo pathway [34].

The core kinase cascade of mammalian Hippo pathway comprises of upstream Ste20-
like kinases MST1/2 (Hpo in drosophila), scaffold protein SAV1 (Salvador homolog), large
tumor suppressor kinases LATS1/2 (Wts homologues), and protein kinases MOBKL1A
and MOBKL1B (Mats homologs), also referred to as MOB1. These proteins create a kinase
cascade leading to nuclear localization of YAP and TAZ (Yki homologs). The Hippo kinase
cascade is triggered either by TAO kinases TAOK1/2/3 [35], which phosphorylate MST1/2
and cause its activation or by MST1/2 autophosphorylation [36,37]. Both SAV1 and MOB1
function as co-activators of MST1/2 and LATS1/2, respectively. SAV1-bound MST1/2 phos-
phorylate and activate MOB1-bound LATS1/2 kinases which in turn phosphorylate YAP,
promoting cytoplasmic localization and inhibiting nuclear translocation [37–40]. Coinciden-
tally, other kinases, such as MAP4K, WNT, PI3K, and G-protein-coupled-receptor family
kinases have been reported to phosphorylate and activate LATS1/2 [41–46]. Activated
LATS1/2 phosphorylate YAP at five sites (S61, S109, S127, S164, S381) and TAZ at four sites
(S66, S89, S117, S311) [47,48]. Phosphorylated YAP (on the serine 127 site) are secluded in
the cytoplasm by binding to 14–3–3 protein and degraded by the ubiquitin–proteasome
pathway, leading to inhibition of the downstream transcriptional programs [34,49,50].
Therefore, the Hippo pathway represents a dynamic signaling network, with YAP/TAZ
under constant phosphorylation and dephosphorylation. Indeed, there is evidence that
YAP is shuttling between nucleus and cytoplasm and may be partially nuclear or partially
cytoplasmic [51,52]. Moreover, as YAP/TAZ are co-regulators and do not comprise DNA-
binding domains, they require a binding partner protein to regulate gene transcription.
The primary transcriptional partners of YAP/TAZ are the TEAD family of transcription
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factors (Scalloped ortholog), but YAP also associates with other DNA-binding proteins,
such as SMAD family transcription factors, RUNX1/2, ErbB4, TBX5, and p63/p73 [53–55].
For example, YAP/TAZ bind to TEAD, inducing expression of a variety of target genes
implicated in cell proliferation and migration (e.g., AREG, CTGF, Cyr61, FGF1, AXL, BMP4,
PD-L1) [56]. When YAP/TAZ are absent, VGLL4 protein (transcription cofactor vestigial-
like protein 4) binds to TEAD and restrains target gene expression [57]. Thus, when the
Hippo pathway is “switched on”, phosphorylation of YAP/TAZ results in inhibition of
tissue growth and cell proliferation. On the contrary, when the pathway is “switched off”,
YAP/TAZ are dephosphorylated and translocate into the nucleus (Figure 1).
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Figure 1. Hippo YAP/TAZ signaling pathway in early PCa. When the Hippo pathway is switched
ON, phosphorylation of Mst1 and Lats1 by Merlin and MAPK leads to phosphorylation of YAP/TAZ
that forms a complex with 14–3–3 protein in the cytoplasm. VGLL4 binds to TEAD binding promoters
thus, blocking the expression of genes important for proliferation, migration and tumorigenesis.
In the OFF condition, in early prostate tumor cells, Lats1/2 is dephosphorylated due to various
mechanisms such as degradation of Mst1/2 by Hsp27, complex formation of Lats1/2 with Par3 and
Merlin and dissociation of Lats1/2 and KIBRA complex by Par3. Due to blocking of physiological
kinase cascade of the Hippo pathway, unphosphorylated YAP/TAZ enters the nucleus and act as
co-regulator of TEAD transcription factors leading to expression of target genes.

Concluding, the Hippo signaling pathway governs activity of the transcriptional
co-activators, YAP/TAZ, and thus expression of genes involved in cell proliferation and
migration. Therefore, under physiological conditions, the Hippo pathway regulates tissue
homeostasis, organ size, and regeneration.

1.2. YAP Protein and Hippo TAZ–YAP Signaling Pathway in Cancer

Given the fact that, under canonical conditions, YAP is involved in cell proliferation,
stem cell regulation, and organ development and regeneration, it is expected that Hippo
pathway is implicated in tumorigenesis. Indeed, immunohistochemical analysis of a wide
variety of tumor samples revealed that YAP overexpression is a common feature among
multiple neoplasms, including colon, pancreatic, hepatocellular, gastric/esophageal, ovar-
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ian, brain, breast and lung cancer [58]. Moreover, expression of YAP has been linked with
poor clinical outcomes. A meta-analysis by San et al. revealed that YAP overexpression is
associated with worse disease-free survival (DFS) and overall survival (OS) in large datasets
of patients with different types of solid tumors, including ovarian, endometrial, breast,
colon and hepatocellular carcinomas [59]. Similarly, recent reports have demonstrated the
association of YAP/TAZ overexpression and poor prognosis in non-small cell lung cancer
(NSCLC) [60,61], colorectal [62,63], gastric [64,65], esophageal [66], breast [67], liver [68],
urothelial [69], and endometrial cancer [70,71]. Notably, as nuclear localization of YAP
serves as a surrogate for activated Hippo pathway, high nuclear YAP expression correlated
better with shorter survival [59]. Further establishing the functional relevance of elevated
YAP levels in cancer, nuclear YAP is more common in neoplastic tissues than cytoplasmic
YAP, which is found in 85% of normal tissues [72–74]. In line with these observations,
a growing amount of evidence supports that YAP can exert both pro-tumorigenic and
tumor suppressor effects depending on the cellular localization and YAP’s interacting
partners [75].

Although the Hippo pathway is frequently dysregulated in a wide variety of human
malignancies, mutations in YAP or other nodal components were considered rare, except
for NF2. Loss of function NF2 mutations are linked with the development of type 2 neurofi-
bromatosis, a disorder characterized by increased risk of developing malignant and benign
tumors in the nervous system [76]. However, as genome sequencing techniques are evolv-
ing, detection accuracy and sensitivity have both improved and more genetic aberrations
are being identified. Under this prism, the recent evaluation of more than 9000 samples
from different tumor types revealed a relatively high rate of YAP/TAZ gene amplification
in squamous cell carcinomas, mostly head and neck and gynecologic tumors. Furthermore,
mutations in YAP or TAZ were rare, but functionally important. Interestingly, YAP1/TAZ
gene fusions have also been described in several rare malignancies, including porocar-
cinomas, epithelioid hemangioendotheliomas, ependymomas and meningiomas. These
fusion proteins include YAP1-TFE3, TAZ/CAMTA1, YAP1-MAMLD1, YAP1-MAML2, and
YAP1-NUTM1 gene fusion [77–79]. These fusion proteins have been shown to permanently
localize in the nucleus and thus avoid degradation, leading to excessive activation of the
Hippo pathway signaling [80], which is unresponsive to the LATS-mediated negative
feedback loop.

Since genetic abnormalities are probably responsible for a small portion of increased
YAP expression and activity in human cancer, the Hippo pathway’s tumorigenic capacity
builds upon its ability to orchestrate multiple biological processes through a variety of
molecular mechanisms, including direct activation of oncogenic transcriptional factors,
crosstalk with other signaling pathways and inducing pro-tumorigenic changes in the
tumor microenvironment [81,82]. In fact, it enables the acquisition of certain properties by
the malignant cells, most of which are defined as Hallmarks of Cancer [83]. Foremost, its
role in promoting cell proliferation via overexpression of various genes involved in cell
cycle regulation, DNA repair and replication, is well established [13,84]. However, YAP also
contributes to carcinogenesis through enhancement of tumor cell metastatic potential by
unlocking cell plasticity, promoting epithelial-to-mesenchymal transition [85] via induction
of ZEB1/2 expression and by inducing angiogenesis via upregulation of the VEGF pathway
signaling [86]. Furthermore, it mediates resistance to treatment via inhibition of apoptosis
through TEAD-mediated stimulation of anti-apoptotic gene expression [32] and reduction
of anoikis, a type of cell death that occurs when cells detach from the extracellular matrix
and is considered a barrier to metastasis [31,34,87,88]. Inversely, disruption of YAP–TEAD
interaction with verteporfin restored apoptotic death and inhibited cell proliferation [89].
Recently, YAP has been reported to coordinate a transcriptional cell reprograming leading
to an extensive metabolic rewiring that is crucial for continuously supplying the energy
and nutrients needed to maintain a high rate of proliferation [90]. This deregulation of
cellular energetics is mediated by increased expression of metabolic enzymes and nutrient
transporters and altered mitochondria functionality, to impact fatty acid, glucose and
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glutamine metabolism [91]. There are ample data supporting the premise that increased
YAP activity is linked with the establishment of a tumor promoting chronic inflammatory
response [92]. Kim et al. reported that hyperactivation of the Hippo pathway in murine
models increased the expression of markers of inflammation and led to hepatocellular
carcinoma (HCC) development. Silencing YAP gene expression significantly reduced
hepatic inflammation and inhibited HCC formation [93]. Finally, the YAP–TEAD complex
promotes the recruitment of immunosuppressive MDSCs in the tumor microenvironment
via upregulation of the CXCL5-CXCR2 signaling. Indeed, targeting YAP-1 has been shown
to restore immune destruction of tumor cells, further potentiating the effectiveness of
immunotherapy [94].

In conclusion, the Hippo pathway, being at the core of several hallmarks of cancer
(Figure 2), potentially represents a nodal vulnerability that should be therapeutically
targeted.
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YAP expression and Hippo TAZ–YAP signaling pathway regulate several hallmarks
of cancer by different mechanisms in various cancer types. The pathway is implicated
in cell proliferation, apoptosis, vasculogenesis, invasion, and metastasis. It also interacts
with growth suppressors, nucleosome remodeling, and histone deacetylase complexes and
under certain conditions induces senescence. Mutations in different components of the
pathway have been found functionally important for tumorigenesis. Moreover, increasing
evidence suggests a cross talk between YAP and immune system cells that may further
result to immune system regulation during cancer. Additionally, different inflammatory
factors, gene mutations and epigenetic factor reprogramming during cancer have been
found to alter the Hippo TAZ–YAP signaling pathway function. In black the hallmark
capabilities, in green the enabling characteristics and in magenta the emerging hallmarks
of cancer.
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1.3. Aberrant Activation of YAP/TAZ in PCa

The PCa cell addiction to YAP hyperactivation and resultantly the biological relevance
and clinical significance of the Hippo signaling pathway dysfunction has been confirmed
by several studies. There is a growing amount of evidence that YAP mediates PCa initiation,
progression, metastasis, transition to castration resistant disease state, and resistance to
treatment. YAP overexpression and increased nuclear localization is a common feature
among PCa tissue specimens across various disease states [34,95]. However, the underlying
molecular mechanisms that govern the dysregulation of the Hippo pathway in PCa have
not been fully elucidated.

1.4. The Role of Hippo Pathway in PCa Initiation

Zhang et al. reported that ectopic YAP expression triggered malignant transformation
and increased cell proliferation, in vitro, in immortalized prostate epithelial cells. Mech-
anistically, they showed that YAP induces PCa formation in an androgen independent
manner, via promoting AKT and MEK-ERK pathway signaling [96]. It is hypothesized
that YAP overexpression may lead to constitutive cell proliferation, by bypassing con-
tact inhibition, a process that arrests cell growth when they come into contact. Similarly,
Sheng et al. studied YAP1 expression in 62 tissue samples from tumor, tumor-adjacent
normal tissue, and benign prostatic hyperplasia and found that cancer cells express higher
levels of YAP1 than non-neoplastic cells [97]. However, it should be noted that other studies
have reported low levels of YAP by IHC in PCa samples. In an early study investigating
the relationship between YAP and PCa, Hu et al. analyzed YAP staining in 66 tumors
and reported decreased YAP expression in tumor cells relative to hyperplastic or normal
prostate tissue [98]. Nevertheless, Wang et al. reported that although YAP expression
is high in basal cells, luminal cells of the normal prostate tissue do not stain positively
for YAP. This observation may account for the contradictory results among the various
studies. Moreover, they provided a possible link between YAP and PCa tumorigenesis
in a Pten/Smad4 deficient in vivo model via induction of an immunosuppressive tumor
microenvironment [99].

Furthermore, there is growing evidence that the Hippo pathway is involved in cell
polarity loss. Epithelial cells require cell polarity to retain their columnar structure and
functionality. Loss of cell polarity, tissue disorganization and uncontrolled cell prolif-
eration are hallmarks of cancer [100]. The partitioning deficient (PAR) complex, which
includes Par3, Par6, and atypical protein kinase C (aPKC), the crumbs complex, and the
scribble complex have all been identified as the main evolutionarily conserved polarity
complexes [101,102]. Specifically, Par3 loss is implicated in the emergence of high-grade
prostatic intraepithelial neoplasia (HGPIN), a well-established pre-malignant lesion, by
promoting prostatic epithelial cell growth, symmetrical basal cell division and randomizing
spindle orientation in luminal cells. In the same study, using knockout mouse models they
showed that Par3 loss can inhibit the Hippo pathway via dissociation of Par3/merlin/Lats1
complex. Interestingly, whereas Par3 or Lats1 loss alone can inactivate the Hippo pathway,
deletion of either gene can only cause a high-grade PIN but not an invasive–malignant
phenotype. Collectively, a combination of Par3 loss and Hippo pathway blockade by
co-deletion of Par3 and Lats1 can promote development of PCa [103].

ETS-regulated gene (ERG) overexpression is another mechanism that has been pro-
posed to induce malignant transformation of normal prostate epithelial cells. ERG is a
member of the E-26 transformation-specific (ETS) family of transcription factors with di-
verse functions, such as regulation of cell proliferation, differentiation, vasculogenesis and
apoptosis [104]. Abberant ERG overexpression is driven by a translocation and specif-
ically the gene fusion on chromosome 21q22 between the 5′ untranslated region of the
androgen-regulated gene TMPRSS2 (acting as a promoter) and the coding sequence of
ERG [105]. ETS translocation variant 1 (ETV1) induces YAP activation through a coop-
eration with lysine specific demethylase (JMJD2A). ETV1 facilitates the recruitment of
JMJD2A to the YAP1 promoter, altering the histone lysine methylation in prostate cancer
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cells. Overexpression of JMJD2A leads to the formation of PIN in mice, which can progress
to malignancy [106]. More specifically, ERG seems to promote YAP and TEAD transcription
activity and thus induce YAP-target gene protein expression. Immunoprecipitation studies
in human luminal-type PCa cells have shown that ERG binds to the promoter of YAP gene,
eventually leading to YAP protein expression. In a fundamental study by Nguyen et al.,
ERG-mediated YAP overexpression in the prostate of healthy mice led to the development
of age-related PCA [107], thus linking Hippo pathway dysregulation to PCa initiation.

1.5. The Role of Hippo Pathway in PCa Progression and Metastasis

YAP activates the transcriptional activity of various target genes implicated in pro-
liferation, migration, and invasiveness, thus enabling PCa progression through multiple
molecular mechanisms. In addition, higher expression of YAP is associated with poor
prognosis and shorter patient survival [95]. To this end, several studies have demonstrated
YAP’s effect on the acquisition of an aggressive PCa cell phenotype via various in vitro
experiments, including cell proliferation, migration, and anchorage-independent growth
assays. Zhao et al. silenced YAP and TAZ expression using RNA interference protocols in
PCa cell lines PC-3 and DU-145 that have increased metastatic potential. They reported that
YAP/TAZ knockdown inhibited both proliferation and cell migration/invasion suggesting
the Hippo pathway as an important regulator of PCa progression [87]. Zhang et al. indi-
cated that YAP expression is a potent contributor to the emergence of PCa metastasis. More
specifically, they showed that YAP overexpression promotes cell motility and invasion
in LNCAP cells through an androgen-independent activation of the androgen receptor
(AR) signaling [96]. Moreover, mRNA analysis in PCa patients has revealed significant
lower LATS1/2 levels in metastatic compared with clinically localized tumor samples.
Thus, suppression of LATS1/2 expression may contribute to YAP-mediated induction of
metastasis [87]. On the other hand, Liu et al. focused on the role of TAZ. They reported that
TAZ can enhance an invasive PCa phenotype by facilitating the interaction between E26
transformation-specific (ETS) transcription factors and the SH3 domain-binding protein 1
(SH3BP1). Both ETS and SH3BP1 are well-established TAZ target genes [108]. Corroborat-
ing the abovementioned data, Collak et al. linked YAP overexpression with extraprostatic
extension in patient samples. They also found higher YAP gene copy number in metastatic
tissue compared with matched samples from the primary tumor [109]. Further supporting
these data, Lee et al. demonstrated an increased YAP expression in the lymph nodes
compared with the primary tumor in orthotopic murine models of human PCa. They
hypothesized that differential biophysical cues in the metastatic TME may augment YAP
expression in metastases. YAP, but not TAZ, knockdown decreased cellular motility. Finally,
they identified extracellular matrix (ECM) stiffness, shear stress, and the ROCK–LIMK–
cofilin signaling axis as major regulators of the YAP-induced migration through interaction
with TEAD that results in altered expression of multiple genes involved in chemotaxis,
invasion, and adhesion [110].

Indeed, numerous studies imply that the Hippo pathway is involved in environmental
sensing, a crucial process during the metastatic cascade. Interestingly, YAP-driven altered
cancer cell gene expression governs the interaction between the mechanical forces of the
TME and the migrating PCa cells at the metastatic niche. Cells from bone metastases
proliferate and migrate more readily on high-stiffness substrates by inducing YAP/TAZ
nuclear localization, whereas cells derived from lymph nodes proliferate and migrate more
readily on low-stiffness substrates by forming clusters with high expression of CD44. Thus,
YAP may dictate not only the metastatic potential of PCa cells, but the site of metastasis
as well [111]. To this end, Tenascin C, a protein secreted by endothelial cells that have
undergone endothelial-to-osteoblast transition, increases the metastatic capability of PCa
cells in a YAP-dependent manner [112]. Recent data have pinpointed ECM as an important
regulator of epithelial cell polarity and provided evidence that dislocalization of polarity
proteins, such as dysregulation of Par3, is linked to metastasis [113–116]. Increased Par3
expression promotes PCa metastasis by inactivating the Hippo pathway through the
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formation of a noncanonical Par3/aPKC/KIBRA complex. Par3 causes the detachment of
kidney and brain-expressed protein (KIBRA) from its typical complex (KIBRA/NF2/FERM
domain-containing protein 6 (FRDM6)) and sequentially KIBRA forms a complex with
atypical protein kinase C (aPKC). As a result, KIBRA cannot interact with LATS1, leading to
LATS1 dephosphorylation and therefore YAP activation [117]. Finally, PCa cells have been
reported to secrete a variety of extracellular chaperones, named according to their molecular
weight, with HSP90, HSP70, and HSP27 being the most widely studied. HSP27 stimulates
ubiquitin-mediated degradation of MST1 that results in reduced phosphorylation of LATS1
and MOB1. As a consequence, YAP is not phosphorylated and its nuclear localization
drives PCa progression and increases aggressiveness [118].

1.6. The Role of Hippo Pathway in Castration-Resistant Growth in PCa

Androgen-deprivation treatment (ADT) has been proven effective for early-stage
hormone sensitive disease, but PCa eventually progresses to an androgen-independent
state, leading to bone and soft tissue metastases. Despite recent therapeutic advances,
metastatic castration-resistant PCa (mCRPC) remains incurable. This is not surprising
given the absence of biomarkers to guide the selection of patients and monitor treatment
efficacy or develop more effective therapeutic strategies. Thus, an integral component of
efforts mounted to improve clinical outcome of patients with PCa is the understanding
of the mechanisms usurped by the cancer to escape addiction to androgens. To this end,
several lines of research are being investigated to better understand the biological processes
implicated in the emergence of resistance to ADT and progression to CRPC. The main
premise being considered is that sustained androgen receptor (AR) signaling remains
the main driver of CRPC. Nonetheless, at a cellular level, complex interactions between
several signaling pathways governed by central molecular nodes as well as the role of
the TME have also been considered to function towards the establishment of CRPC and
maintain pro-tumorigenic, both AR-dependent and AR-independent, signaling. Among
the multiple mechanisms that have been described, the Hippo pathway seems to represent
a key regulator of the expression of many transcriptional factors in the setting of CRPC.
Thus, YAP has been traced at the roots of CRPC pathogenesis and drug resistance.

Interestingly, the Hippo pathway has been shown to interact with the AR and therefore
modulate its activity regardless of the presence of androgens in the TME. Co-
immunoprecipitation studies have confirmed that YAP co-localizes with AR in the nu-
cleus, acting as a co-activator that regulates AR-target gene expression, both in androgen-
dependent and androgen-independent PCa cell lines. In particular, MST1 signaling was
suggested to directly inactivate and prevent nuclear localization of YAP, independently
from LATS status. Attenuation of MST1 activity led to YAP activation, which in turn
induced the expression of AR-targeted genes, despite androgen deprivation and treatment
with AR-inhibitor enzalutamide. Thus, YAP can promote castration-resistant PCa progres-
sion [119]. Indeed, RT-qPCR and western blot analysis have revealed high YAP expression
in an AR-null, mimicking CRPC, PC3 cell line [97]. Further confirming these observa-
tions, our group showed relatively increased YAP protein expression in AR-independent
compared to AR-dependent cell lines [120]. Despite the obvious limitations of in vitro
studies, Zhang et al. suggested that YAP overexpression per se might be sufficient to
transform PCa cells from an androgen-sensitive to a castration-resistant state. Moreover,
they demonstrated that, during this transition, YAP expression was transcriptionally in-
creased, which in turn increased the expression of the AR-targets PSA, NKX3.1, PGC-1, and
KLK2, implying that YAP increases AR transcriptional activity in an androgen-depleted
environment [96]. Notably, MYB proto-oncogene like 2 (MYBL2) overexpression was
found to induce YAP expression and nuclear localization via RhoA activation mediated
by Rac GTPase-protein 1 (RACGAP1). This led to the emergence of resistance to ADT
in androgen-sensitive LNCaP cells. Blocking this upstream MYBL2 signaling, either by
sh-RNA or treatment with an RhoA or YAP inhibitor, reversed the CRPC phenotype and
decreased tumor growth in a castrated mouse model [121]. Furthermore, YAP induces
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the expression of downstream transcription factors SOX2 and Nanog, well-established
core stem cell pluripotency regulators. Jiang et al. demonstrated that activation of these
pathways promotes the de-differentiation of PCa cells to stem/progenitor-like cells (PCSC),
thereby contributing to the development of CRPC [122]. Similarly, cellular myelocytomato-
sis (c-Myc) overexpression can bypass androgen dependency and stimulate PCa growth
in castrated conditions. As c-Myc is another YAP-regulated gene, YAP activation results
in up-regulation of c-MYC. C-MYC regulates, among others, the expression of enhancer
of zeste homolog 2 (EZH2), an enzymatic component of Polycomb repressor complex 2
(PRC2), an important regulator of cell growth, survival, and differentiation. EZH2 has
been reported to act towards progression to CRPC by inducing expression of genes (ERG,
DAB2IP and E-cadherin) linked with androgen independence [123,124]. Interestingly,
Xu et al. reported that EZH2 participates as a co-activator in AR-associated complexes to
support CRPC growth both in vitro and in mouse models [125], supporting constitutive
activation of AR signaling, even in the absence of androgens.

Apart from resistance to ADT and YAP-mediated emergence of CRPC, several lines of
research have linked YAP overexpression to resistance to therapy in PCa. Matsuda et al.
studied YAP expression in a tissue microarray with 203 cores from 70 patients with high-risk
localized PCa that underwent radical prostatectomy after receiving neoadjuvant treatment
with complete androgen blockade plus docetaxel. Immunohistochemistry (IHC) analysis
revealed strong nucleus-localized YAP staining in resistant tumors, with higher YAP protein
expression compared with treatment-naïve or treatment-responsive tumors, suggesting that
the Hippo pathway mediates resistance to chemotherapy [126]. More recently, increased
YAP activity was detected, in vitro, in enzalutamide-resistant (Enza-R) cells. Indeed, YAP
protein expression and transcriptional activity, accessed as expression of downstream target
genes, were significantly higher in the Enza-R cells compared with LNCaP parental cells.
Further confirmation with in vivo experiments showed that YAP and its transcriptional
partner (COUP-TFII) were identified in the extracellular vesicles (EVs) isolated from sera
of patients with disease progression after treatment with enzalutamide [127]. Finally, our
group reported that a YAP/TBX5 mediated increase in FGFR-FGF pathway activity is
implicated in resistance to treatment with cabozantinib in both hormone-sensitive and
castration-resistant disease states. IHC evaluation of trans-iliac bone marrow biopsies,
obtained at baseline and after six weeks under cabozantinib treatment from patients with
PCa, revealed relative increases in expression levels of pFGFR1, YAP, and TBX5, therefore
supporting the activation of the Hippo pathway as part of the molecular mechanism of
acquired resistance to VEGF/MET-targeted treatment [120].

1.7. Targeting YAP in PCa

Growing interest in targeting the Hippo pathway is fueled by the above-described
data that demonstrate its fundamental role in promoting PCa initiation, disease progression,
stem cell function, metastatic potential, development of CRPC, and resistance to treatment.
Nevertheless, to date there is a distinct lack of drugs that effectively target YAP with a
proven clinical benefit for cancer patients (Table 1). Due to the intrinsic characteristics and
complexity of signaling, targeting YAP has been quite challenging.

In fact, for the time being, direct YAP inhibition is considered impossible. This is
no surprise, taking into account the recently elucidated YAP protein structure indicat-
ing that YAP is small with a considerable shallow surface, containing one WW and one
TEAD-binding domain [128]. Therefore, few regions within YAP might be susceptible to
therapeutic targeting and development of small molecules that can bind to YAP is burden-
some. Thus, YAP has been deemed “undruggable”. An alternative strategy would be to
decrease YAP mRNA levels via gene therapy, as recently tested for treating ischemic car-
diomyopathy [129]. However, sufficient observations exist to suggest that total inhibition of
YAP activity might not be beneficial, as it might result in increased tumor growth through
upregulation of WNT signaling [130]. In line with this are reports showing that a 50%
decrease in YAP by heterozygous deletion of YAP is sufficient to prevent tumor formation
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in genetically engineered mouse models [131]. Although such an approach would the limit
potential adverse effects, it should be noted that, thus far, this strategy has not been tested
in humans and is considered experimental.

Beyond direct YAP inhibition, many research efforts have focused on indirect target-
ing through impairing YAP stability and nuclear localization, targeting upstream Hippo
signaling, or disrupting YAP-transcriptional factor interaction.

The oncogenic effect of YAP is mediated via its dephosphorylated form, while phos-
phorylated YAP (p-YAP) interacts with 14–3–3, promoting cytoplasmic YAP sequestration.
Thus, several drugs can attenuate YAP activity by inducing YAP phosphorylation and
preventing YAP nuclear translocation. Dasatinib and pazopanib can effectively inhibit
YAP’s nuclear translocation by increasing its proteasomal degradation [132]. A recent
study demonstrated that stimulation of muscarinic receptors 1 and 3 results in YAP overex-
pression through FAK pathway activation. Therefore, the use of FAK inhibitors increased
p-YAP levels and decreased YAP activity and PCa cell growth in vitro [133]. Testing this hy-
pothesis in vivo, multiple trials are currently ongoing examining the use of FAK inhibitors
either as monotherapy or combined with docetaxel in CRPC. Our group has also shown
that XAV-939, a tankyrase (TNKS) inhibitor, suppressed YAP in PC3 cells by increasing
its translocation from the nucleus to the cytoplasm. This effect was not mediated through
phosphorylation of YAP, as levels of p-YAP remained unchanged during treatment [120].
Following the increased appreciation of Hippo pathway’s role in PCa, several drug re-
purposing programs aimed to identify alternative strategies to impair YAP function via
screening existing drug libraries. Statins, used for treating hypercholesterolemia, inhibit
the 3-hydroxy-3-methyl-glutaryl-coenzymeA (HMG–CoA) reductase and thereby prevent
HMG–CoA conversion to mevalonate. A product of the mevalonate cascade is geranylger-
anyl pyrophosphate, an enzyme that is vital for activation of Rho GTPases. Notably, Rho
GTPases increase the phosphorylation rate of YAP and inhibit nuclear accumulation [134].
Interestingly, a growing amount of data from large prospective observational studies link
use of statins with a reduced risk of PCa [135]. In line with this, a recent retrospective
study that included almost 250,000 Canadian men showed that not only statins but all
lipid-lowering drugs are associated with a reduced risk of metastatic PCa and PCa mortality,
supporting a possible cholesterol-based mechanism to regulate YAP [136]. Similarly, some
evidence implies that individuals taking the AMPK agonist metformin or of the dipeptidyl
peptidase-IV (DPP4) inhibitor sitagliptin, both drugs widely used to treat hyperglycemia,
have a lower risk of PCa [137]. In vitro studies have confirmed their ability to directly
phosphorylate YAP and thus inhibit its transcriptional activity [138]. However, it should
be noted that these associations identified with observational studies may not indicate
causal inference. Prospective randomized trials should be conducted to provide convincing
evidence and validation for the observational results.

An alternative strategy would be to target upstream effectors of the Hippo pathway.
HSP27 has been shown to promote the proteasomal degradation of ubiquitinated MST1.
As a result, HSP27 overexpression inhibited downstream the phosphorylation of YAP and
induced its nuclear localization [118]. Apatorsen (OGX427) is a second-generation phospho-
rothioate antisense HSP27 inhibitor, which was recently evaluated in a randomized phase
II trial in patients with metastatic CRPC. The combination of apatorsen with prednisone
demonstrated encouraging results by doubling the proportion of patients experiencing a
PSA decline >50% compared with prednisone alone [139]. Similarly promising results have
been observed in preclinical models through targeting IKBKE. IKBKE is a non-canonical
I-kappa-B kinase, overexpressed in a subset of patients with PCA, that can modulate AR
expression via the Hippo pathway. More specifically, IKBE has been reported to phosphory-
late and inactivate LATS1/2, leading to YAP activation. On the contrary, IKBKE inhibition
results in an increase in LATS1/2 expression, thus promoting YAP cytoplasmic retention
and subsequent degradation. In fact, IKBKE inhibitors suppressed tumor growth in mouse
xenograft models of CRPC, suggesting that this strategy warrants further clinical evalua-
tion [140]. Drug-discovery programs focused on Hippo-targeting have identified RAF-1
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and ALK as MST2 and LATS inhibitors. ALK inhibition increased LATS activity and levels
of p-YAP in vitro [141]. Furthermore, alectinib, a novel ALK inhibitor, significantly reduced
tumor cell growth in a neuroendocrine ALK F1174C-expressing PCa model [142]. Contrar-
ily, despite the initial enthusiasm generated by the activity of RAF-1 expression inhibitors
in vitro, a randomized phase II trial in patients with CRPC reported no benefit [143].

Given that YAP lacks DNA-binding activity and can only act as a co-activator of other
transcription factors, inhibition of this interaction represents an alternative approach to
indirectly target the Hippo pathway. As TEAD is the main transcriptional partner of YAP,
research efforts have been mounted to impair YAP–TEAD complex formation. Moreover,
targeting downstream of the YAP–TEAD complex represents an appealing vulnerability
within the last steps of the Hippo pathway compared with upstream molecules that are
more interconnected with other molecular pathways. Verteporfin (VP) is a small lipophilic
benzoporphyrin derivative, used for the photodynamic therapy of macular vascular de-
generation. Liu-Chittenden et al. reported that VP selectively binds YAP, changes its
structure and disrupts YAP–TEAD interaction [144]. As a result, VP inhibits YAP-mediated
PCa cell (PC3) growth and colony formation, without light activation [145]. An actively
recruiting phase I clinical trial involving patients with recurrent PCa is currently testing
this approach (NCT03067051). Since targeting the YAP–TEAD network represents an in-
triguing therapeutic opportunity, with minimal off target adverse effects, drug discovery
programs focused on developing selective novel agents that can potently inhibit this inter-
action that is regulated by a protein–protein interaction (PPI). In a pivotal research work,
Zhang et al. described the synthesis of a cyclic peptidomimetic small molecule inhibitor of
YAP–TEAD interaction and confirmed its therapeutic potential in vivo in a hepatocellular
carcinoma xenograft model [146]. Optimization of the research and drug development
process led to the introduction of selective small-molecule inhibitors that selectively block
TEAD auto-palmitoylation, inhibit YAP–TEAD protein binding and impede NF2-deficient
mesothelioma cell proliferation both in vitro and in vivo [147]. Considering that NF2 loss
has been linked with PCa progression and poor prognosis [148], patients with metastatic
NF2-deficient CRPC may be included in an ongoing basket clinical trial evaluating a novel
TEAD inhibitor (NCT04665206). Furthermore, YAP competes with other proteins that can
also bind to TEAD. Interestingly, Vestigial-like 4 (VGLL4) is an antagonist of YAP/TEAD
activity, which can effectively inhibit YAP-driven TEAD expression and suppress PCa
tumor growth when overexpressed [149]. To this end, Jiao et al. managed to develop a
VGLL4-mimicking peptide able to interact with TEAD and thus limit YAP activity in cell
lines of multiple tumor types, including PCa [150]. Thus far, the efficacy of the above-
described strategies has shown promise, but these clinical observations need confirmation
and the development of predictive biomarkers that will lead to a truly-targeted application
of YAP-targeting therapy.

Table 1. Proposed strategies to target the Hippo pathway in prostate cancer.

Target Agent Method of action Reference

Tyr Dasatinib, pazopanib Increase proteasomal degradation
of YAP/TAZ [132]

FAK FAK inhibitors Increase p-YAP levels [133]
Tankyrase XAV-939 Increases YAP’s translocation to cytoplasm [120]

HMG–CoA reductase Statins Inhibit nuclear accumulation of YAP [134,136]
AMPK Metformin Inhibits transcriptional activity of YAP [137,138]
DPP4 Sitagliptin Inhibits transcriptional activity of YAP [137,138]
HSP27 Apatorsen Inhibits nuclear localization of YAP [139]

IKBKE IKBKE inhibitors Increases LATS1/2 expression, promotes
cytoplasmic retention of YAP [140]

ALK Alectinib Increases LATS activity and p YAP levels [142]
YAP Verteprofin Disrupts YAP/TEAD interaction [144]

TEAD TEAD inhibitor Inhibit YAP–TEAD protein binding [147]
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2. Future Directions

Collectively, various novel and “repurposed” drugs are currently preclinically iden-
tified and may soon be tested in randomized clinical trials. However, knowledge gaps
and inherent limitations of the Hippo pathway have limited our ability to translate the
encouraging preclinical observations into clinically relevant benefits in cancer patients.
Chief among these barriers to progress are the perplexing interplay of the Hippo network
with other molecular pathways in humans and the inability to create preclinical PCa models
that can reflect the complexity of human PCa with fidelity. Moreover, there is no assay to
measure biologically relevant YAP activity in a certain patient, and thus there is, to date, no
biomarker that will predict for clinical relevance of YAP overexpression in patients with
PCa. Improving the understanding of the Hippo pathway and delineating the role of its
core kinases, individually and collectively, will be necessary to better appreciate their role,
elucidate their contribution to PCa growth and progression, and finally select the most
promising therapeutic targets. Further study should also shed light on the mechanism dic-
tating the translocation of YAP to the nucleus providing another target for treatment with
possibly fewer side effects. Conclusively, future research on the Hippo pathway should
include (1) integration of functional genomics analysis data to fully characterize the Hippo
pathway subsets and gain a better understanding of their function in PCa, through both
preclinical and translation research projects and validate experimental observations that
implicate YAP in PCa progression and resistance to treatment; (2) integration of multi-omics
data for the development of biomarker assays in the TME and the peripheral blood of the
patients to efficiently monitor Hippo pathway activation; (3) application of these biomarker
assays to stratify patients by their “Hippo pathway status” and selection of those for whom
YAP is “driving” PCa progression; (4) development of novel strategies to efficiently target
YAP-driven PCa progression in small biologically informed proof-of-principle clinical stud-
ies that employ biomarker-enrichment strategies and test the clinical relevance of targeting
the Hippo pathway while increasing confidence in the chances of a successful phase III trial;
(5) international collaborations in an effort to involve larger cohorts and diversified PCa
patient populations in launching randomized clinical trials that will evaluate the impact of
these strategies on PCa patient survival.

3. Conclusions

Converging clinical and experimental observations suggest that YAP is a driving force
of PCa initiation and progression, contributing to resistance. The findings account for
the interest in the potential impact of persistent YAP expression on treatment efficacy. To
monitor YAP clinically, we must understand its role in PCa models that accurately reflect
the complexity of human PCa and estimate the utility of a candidate marker of YAP activity
in tissue and blood. Furthermore, elucidating the role of key components of the Hippo
pathway may lead to the development of specific treatment strategies that exploit the
unique vulnerabilities of YAP-mediated resistance to treatment.
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