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Abstract: The impact analysis of deep learning models for COVID-19-infected X-ray images is an
extremely challenging task. Every model has unique capabilities that can provide suitable solutions
for some given problem. The prescribed work analyzes various deep learning models that are used
for capturing the chest X-ray images. Their performance-defining factors, such as accuracy, f1-score,
training and the validation loss, are tested with the support of the training dataset. These deep
learning models are multi-layered architectures. These parameters fluctuate based on the behavior of
these layers, learning rate, training efficiency, or over-fitting of models. This may in turn introduce
sudden changes in the values of training accuracy, testing accuracy, loss or validation loss, f1-score,
etc. Some models produce linear responses with respect to the training and testing data, such as
Xception, but most of the models provide a variation of these parameters either in the accuracy or the
loss functions. The prescribed work performs detailed experimental analysis of deep learning image
neural network models and compares them with the above said parameters with detailed analysis of
these parameters with their responses regarding accuracy and loss functions. This work also analyses
the suitability of these model based on the various parameters, such as the accuracy and loss functions
to various applications. This prescribed work also lists out various challenges on the implementation
and experimentation of these models. Solutions are provided for enhancing the performance of these
deep learning models. The deep learning models that are used in the prescribed work are Resnet,
VGG16, Resnet with VGG, Inception V3, Xception with transfer learning, and CNN. The model is
trained with more than 1500 images of the chest-X-ray data and tested with around 132 samples of
the X-ray image dataset. The prescribed work analyzes the accuracy, f1-score, recall, and precision of
these models and analyzes these parameters. It also measures parameters such as training accuracy,
testing accuracy, loss, and validation loss. Each epoch of every model is recorded to measure the
changes in these parameters during the experimental analysis. The prescribed work provides insight
for future research through various challenges and research findings with future directions.

Keywords: CNN; CT; X-ray; MRI; COVID-19; resnet; VGG16; Xception; InceptionV3

1. Introduction

The universal spreading and mutation of the COVID-19 pandemic has resulted in
havoc, with the loss of millions of lives. The fundamental issue is that the clinical and
medical care divisions are researching this epidemic spread. As a result, it is necessary
to consider the study of the hypothetical situation which is not limited to working with
the next step for the sufferers, but also for the reduction of the tainted persons. The MRI
assessment approach is the most common one because it is cost effective, speedy and has
no constraints with the space issues.

It plays a vital part in corona patient screening and illness strength detection. MRI
scans can help us to evaluate the strength of the lungs of the patient since the coronavirus
attacks the respiratory epithelial cells. The most efficient approach for detecting these
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components through MRI has been an area of concern. The convolution of the brain
neural network made significant progress in recognizing the images, notably with realm
of assistive clinical decision-making innovation. Brain networks have been successfully
applied to identify viral fever from MRI, with achievement of the exhibitions that are
superior to those of the radiologists. We are segregating COVID-19 instances from non-
COVID-19 cases using the neural network models. The primary goal is to use a profound
model for achieving better precision of arrangement using X-ray and CT images. With the
objective of analysis, there are huge datasets of the COVID-19 scan reports, and X-rays
are available on the internet. The database was obtained from the internet source for
the evaluation of this problem. The training and test samples were prepared from the
datasets with separate databases. COVID-19 and non-COVID-19 people’s chests images are
included in both databases. The X-ray database has 67 entries. The COVID-19 dataset has
345 COVID-19 images with a comparable quantity of non-COVID-19 images, but the CT
filter dataset has 345 COVID-19 images with a similar quantity of non-COVID-19 images.
To begin the evaluation, images are resized to an aspect ratio of 50:50 from their original
size. To assess the model’s adequacy, the irregular sub-sampling or holdout approach is
used. In addition, this result shows higher consistency when layers in the CNN-based deep
model are altered. Various evaluation metrics, such as accuracy in training and testing and
loss measured due to training and validation, were used to vigorously and meticulously
examine the system. The advantages of these measurements are not completely resolved on
varied proportions of preparing and testing data, considering distinct layers in the in-depth
model for better accuracy.

1.1. Existing System

The radiologist critically examines the X-ray images and presents the reports to the
specialist. The arrangement of the radiographer is the time-consuming task, and also the
reports may be deferred. Because they are finished manually with human intervention, at
some point, manual mistakes are prone to occur while composing the reports, and also
the delay in the reports could create major issues pertaining to the diagnostic process.
Furthermore, the experimental efforts of the radiologist would be extremely difficult, and
also the results obtained may not be accurate.

Demerits of the Existing Systems

• Requirement of a profound radiologist to propose the MRI result.
• If the radiologist is not available, then the postponement of the report could lead to

further complications.
• The medical clinic needs to physically have the radiologist present, and this leads to

additional costs in the treatment process.

1.2. Proposed System

The proposed system makes use of the CT report of the COVID-19 admissions. Medical
practitioners diagnose these medical images using their clinical processing and interpre-
tation. Different physicians give different analyses and interpretations of these scanned
images with different clinical interpretations. Moreover, images which are acquired at
different time slots are much harder to predict in one shot. Additionally, the responsibility
of the translation of a med-image is extremely hard. which leads to exhaustion for the
medical practitioners working in this regard. With this scenario, we have the highest
priority requirement on information and communication technology (ICT) for the fastest
and superior prediction of the disease and timely evaluation and generation of the reports.
In order to achieve this, we need image classification for the study of COVID-19 images to
predict the disease faster and more accurately using the deep image classification methods.
The proposed system provides the opportunity with the experiment analysis of the various
deep neural network imaging models and provides proper insight for future researchers to
work further in the similar systems.
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Merits of the Proposed System

• Minimal dependency on the availability of the radiologists in hospitals (reducing the
human effort).

• Usage of modern machine and deep learning techniques for better efficient and
accurate diagnosis.

• Incurred cost as well as the overhead can be reduced.

1.3. Contributions of the Proposed Work

• This proposed work performs experimental analysis of the various image deep learn-
ing models.

• Based on the observations, we perform the comparative analysis of the model with
various parameters.

• We identify the potential strengths and weaknesses of each model through the evalua-
tion of the test samples.

• We identify and propose the suitability of these models in the corresponding areas of
application based on the experimental analysis and the evaluations.

The remainder of the work is mentioned below. Section 2 describes a literature survey
about existing methods used in COVID-19 diagnosis. The system architecture and its
components are discussed in Section 3. Different modules of the convolution neural
network and various stages of the pre-processing in detail are described in Section 4.
Section 5 discusses the experimental analysis. A comparative analysis of various models
through various factors is presented in Section 5. Section 6 describes the challenges, research
findings. Finally, Section 6 provides the conclusion with future directions.

2. Materials and Methods
Literature Survey

Zhang et al. [1] discussed the implementation of a framework which takes in the input
as chest X-ray image data. This framework rendered an accuracy of 96.0% for detecting
coronavirus-positive cases and an efficiency of 70.650% for coronavirus-negative cases.
Wang Yunlu et al. [2] discussed a novel way for carrying out the mass screening of indi-
viduals who had unintentionally contracted coronavirus. This is used to differentiate the
breathing patterns. An original, fresh, and reliable respiratory simulation (RS) model is
presented in this work to bridge the space of an enormous prepared dataset and insufficient
real data from current reality, which includes the characteristics of respiratory symptoms.
They used bidirectional neural networks such as the gated recurrent unit (GRU) network
and attentional instrument (BI at GRU) to detect six clinically important respiratory in-
stances (Tachypnea, Eupnea, Biots, Cheyne-Stokes, Bradypnea, and Central-Apnea). With
94.5%, 94.4%, 95.1%, and 94.8%, the testing findings reveal six distinct respiratory patterns.
Jiang Z Jiang et al. [3] proposed a mechanism to monitor the health of those who wear
coverings by observing the respiratory system’s characteristics. This gadget combines an
Android handset with FLIR (forward-looking infrared) technology and a thermal imaging
camera. Pre-separating foundations and clinical objectives helps to identify those potential
coronavirus infected patients in real situations. They used a combination of warm and RGB
recordings from deep learning design-based cameras to conduct the wellbeing assessment
in this study. They first used aspiratory information investigation strategies to identify
people wearing masks; then, they used a BI at GRU work on pneumonic infection results to
obtain the well-being screening result; and finally, they achieved 83.7 percent precision in
identifying the respiratory medical issue of a sick patient. Imran Ali et al. [4] developed a
mobile application-adaptable screening method for COVID-19 differentiation that is based
on artificial intelligence (AI). In two minutes or less, the portable COVID-19 App updates
the AI-based mists in the cloud that produce hack noises. A hack is typically a crucial
symptom of more than 30 illnesses connected to non-COVID-19. If hacked alone is used to
study COVID-19 infection, it becomes a staggeringly difficult multidisciplinary problem. A



Biomedicines 2022, 10, 2791 4 of 20

accuracy of 88.76% is achieved when morphological bearing changes are examined with
differences from hack respiratory.

Brown Chloe et al. [5] suggested developing Android or iOS applications in order
to gather coronavirus sound data over the publicly available sound breathing pattern of
around 200 coronavirus benefits out of 7000 new clients. The authors discussed various
generic ranges and three important sets of coronavirus applications with the insight of
hack and breath sound. Here, the distinctions between COVID-19 and normal patients,
as well as between COVID-19 -positive and non-COVID-19 asthmatic patients, are made,
accomplishing 0.8 accuracy for around 200 patients. Another method which combines hack
and breath rendered 82% closeness for around 30 patients. Hassan Abdelfatah et al. [6]
developed a framework to assess coronavirus patients with a recurrent neural network
model. This work highlighted the importance of the recurrent neural network for SSP to
specifically identify the illness. LSTM was employed to evaluate the acoustic characteris-
tics of the patient’s voice, respiration, and hack during the early screening and diagnosis
of the COVID-19 infection. The accuracy of the model was poor from the evaluation of
test cases on the hack and breath data of various patients. Serrurier et al. [7] used the
“COUGHVID” publicly published dataset for the COVID-19 side effect hack research. More
than 20,000 hacker accounts are publicly sponsored, reflecting a wide range of point orien-
tation, age, and geographic areas. To prepare the classifier, they accumulated a succession
of 121 hack noises and 94 no-hack sounds, including voice, laughter, stillness, and various
foundation cries. They used self-detailed status elements (25 percent of recorded sounds
had solid qualities, 25 percent had COVID-19 values, 35 percent had suggestive worth, and
15 percent had an unrevealed status). The percentage of participants who tested positive
for COVID-19, those who had COVID-19 symptoms, and those who were in good health
were 7.5 percent, 15.5 percent, and 77 percent, respectively. To extract tests from non-
COVID-19 and COVID-19, Alsabek, M. B. et al. [8] suggested a large model that combines
mel-frequency cepstral coefficients (MFCCs) and SSP (speech signal processing); it tracks
down the individual link with the obtained values of the coefficients of the relationship.
The results provide similarity between different respiratory sounds and coronavirus hack
sounds in MFCC, despite the fact that the MFCC discourse is stronger between COVID-19
samples and samples that do not include COVID-19. Additionally, these findings are
transient, and coronavirus detection allows the possibility of the removal of the voices of
patients for the research. With the obtained sound samples from the Zulekha medical center
in Sharjah, they were able to obtain information about COVID-19-contaminated patients.
During the process of capturing the flags of discourse, the patient must be sitting with
their head straight in a peaceful manner. A mobile phone is used to gather the information
which contains three different accounts for the speakers. This record affects the nature of
the sound. The voice information is hacked down from individual speaker.

In general, most COVID-19-infected patients have sustainability in the egregious
weakness of their breathing capabilities. Mahmoud Al Ismail [9] developed a model to
detect coronavirus infection through the vocal folds. The authors speculated that by looking
at the progressions on the folds of the vocals, the marks of the COVID-19 infection could
be discerned. The intention was to corroborate this theory and numerically illustrate
the developments noticed to support the discovery of coronavirus infection over voice
signal. The authors constructed vocal overlay swaying designs from recorded speech
using a robust framework model for vocal crease wavering and the recently developed
ADLES computation. On an experimentally chosen dataset, trial findings on COVID-19
positive and negative participants displayed distinctive examples of vocal overlap motions
connected to COVID-19. For this investigation, Merlin Inc., a private company in Chile,
used information collection that was clinically managed. The collection included reports of
512 individuals who had COVID-19 testing, with either optimistic or pessimistic results.
This observation was performed on 10 females and 9 males. Five women and four men were
tested for the coronavirus; the others were negative. The productivity of deliberate relapse
on widened vowels and their mixtures is 91.20 percent. Several COVID-19 hack recording
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datasets have been compiled by various groups, and these datasets have been used to
create AI models for COVID-19 recognition, according to Chaudhari Gunavant’s [10]
research into publicly supported hack sound examples that have been gathered globally
on mobile devices. These datasets also come from a variety of sources, including the
extraction of information from public media interviews and clinical condition information
gathering. When combined with the COVID-19 infection report, that had been applied for
the AI calculation, it correctly predicts coronavirus disease ranging from 77.1% region of
convergence accuracy (75.2–78.3%). Additionally, this AI calculation can add up to clinical
samples from South Asia and publicly supported samples from Latin America without
really planning to use the relevant cases. To identify the COVID-19 side effects, Laguarta
Jord [11] built a model across the sound account hacks. It enables a solution to pre-screen
the samples of the sound without incurring national expense. It successfully predicts the
COVID-19 positive side effect from hack noises with 97.1% accuracy and distinguishes
asymptomatic cases in light of the hack hints of 5320 chosen datasets with 100% exactness.
As a result of the presence of COVID-19 side effects, such as the upper aggravation versus
lower respiratory irritation plot, Quartieri Thomas [12] developed a system that comprises
voice processing and demonstrating policies. It needs the intricate synchronization of
neuromata by detecting the sound of the breathing systems inside of the various processes
involved in respiratory systems. Pre-openness of the COVID-19 (pre-COVID-19) and post-
COVID-19 are well-developed verifications that are provided by the expert evaluation
with the voice gatherings of five patients. This suggested method presents a possible
limit in terms of flexible and continuous evaluation to demonstrate the patient movement
components, taking into account settings for preemptive counseling. Jing Han et al. [13]
presented an inquiry of the coronavirus-related information by taking into account four
boundaries: (i) rest quality, (ii) seriousness, (iii) uncomfortability, and (iv) uneasiness. The
researchers and analysts from Cambridge University and Mellon University mailed off the
“Crown voice identify App” and “Covid sounds application” used by the writers to gather
data. Following information handling, these people obtained 378 complete pieces; from this
basic evaluation, they selected 260 accounts for further analysis. These 256 sound samples
were collected from 50 COVID-19-infected patients; for later review, the driving forces are
switched over at a speed of 0.016 MHz. ComParE and eGeMAPS, two acoustic capabilities
that both achieved 69% precision, were taken into consideration in this assessment. In
this proposal and subsequent investigation, Kota Venkata Sai Ritwik et al. [14] looked for
indications of the COVID-19 sickness. In order to extract the key points of the COVID-19
discourse from the norm, a two-class classifier was used. The small amount of YouTube
video data that were collected demonstrated that an SVM classifier can achieve 88.6%
exactness and 92.7% F1-score on this dataset. Further research revealed that the two
classes can be distinguished from the rest by particular phone classes more effectively
(stops, mid vowels, and nasals). In order to study COVID-19, Wang et al. [15] developed
a non-proprietary model and comprehended sizable reference data known as COVID-19
X-rays of 13,975 patients. This approach not only promised more notable experiences
of COVID-19 fundamental elements, but also distinguished significant information from
the examined images. Their analysis produced an accuracy of 93.3% for the COVID-19
dataset. X-beam and CT filter image datasets were subjected to Maghdid’s method [16]
thorough convolutional neural network (CNN) application and the use of AlexNet. They
identified 94% accuracy (particularly 88%) for CNN and 98% accuracy (explicitness 96%) for
AlexNet. CNN-based techniques were applied by Apostolopoulos and Mpesiana to a small
dataset of clinical images. A total of 1427 X-beam photos, including 224 COVID-19 images
that were confirmed, were included in their dataset. They each had the highest levels of
explicitness (96.46%), awareness (98.66%), and precision (96.78%). In their COVIDX-Net
proposal, Hemdan, Shouman, and Karar [17] analyzed 50 chest X-beam images with 25
COVID-19 cases using seven unique profound CNN models. They obtained a 90% accuracy
and 91% F-score from their calculation. Using X-beam and CT filter images, Islam M.
et al. [18] conducted a number of tasks using deep learning approaches to distinguish
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COVID-19 patients. Using sophisticated learning algorithms, their calculation contained
contaminated districts and determined the starts to finishes for COVID-19. Additionally,
they used inception residual recurrent CNN with transfer learning and obtained 98.78%
precision in CT pictures and 84.67% testing exactness from X-beam images. In a similar
work, [19], the authors combined image processing and ML over the X-ray and CT-image
datasets, and the accuracy range was from 89 to 99%. The electronic medical records
(EMR) of a patient are confidential data which cannot be accessed, and machine learning
algorithms require data for training their model. The federated machine learning model
renders an effective solution while dealing with data privacy. Abdul Salam et al. [20]
discussed the efficiency of federated learning by analyzing chest X-ray images from COVID
patients in Keras and TensorFlow models. COVID-19 has affected us severely, and one
of the protective ways is to wear a mask in public. Mohamed Loey et al. [21] discussed
a hybrid model which combines deep and machine learning techniques for face mask
detection. The feature extraction is performed using resNet, and the classification process
is performed by implementing decision trees, support vector machine (SVM), and the
ensemble algorithm. Different datasets were used for the training and testing of the model,
and the authors concluded that the SVM classifier achieved the maximum accuracy. In
a similar research, Rehman A. et al. [22] and Sweta Bhattacharya et al. [23] reviewed the
possibilities and challenges of combining DL and ML techniques for COVID-19 detection.
Kwekha-Rashid et al. [24] studied the implications of applying various ML applications
over the COVID-19 dataset. Upon extensive survey, the authors concluded that supervised
learning produced better accuracy than the unsupervised learning algorithms.

3. System Architecture

The above architecture shown in Figure 1 describes the learning process of the deep
neural network with the input, hidden layer and the output layer. The output layer is
connected to the SMOTE (synthetic minority oversampling technique). This technique
allows the increase in the number of instances in a dataset in a balanced way. This is
a statistical modeling technique in Python. After the training, the architecture is ready
to analyze the chest X-ray images and classifies them into three major classes, such as
the COVID-19-infected, pneumonia-infected and normal images. The chest X-ray images
contain more features; these features train the system using the deep learning neural
networks. The various models used in the work are Inception V3, VGG16, Xception,
ResNet, CNN and ResNet with VGG. Based on the correctness of the classification of the
image in three major categories, including COVID-19, non-COVID-19 and pneumonia, we
determine the accuracy of these deep learning models. Based on the training efficiency,
the accuracy and loss values of the above-mentioned models can be evaluated as normal
or the fluctuating values. The above architecture provides one such test case with the
ResNet model.

Figure 1. Architecture of the proposed system with a sample scenario of Resnet model.
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3.1. Module Description
3.1.1. Data Pre-Processing and Augmentation

Each image must be pre-processed according to the deep brain network that is being
used. There were two major advancements: resizing and standardizing. As suggested by
their described architecture, different neural networks require images of differing sizes.
ResNet18, DenseNet121, and MobileNetV2 demand images to be 224 × 224 pixels in size,
but InceptionV3 and Exception require images to be 229 × 222 pixels in size. The individual
models standardize each of the images as well. A sufficient preparation of a neural net
necessitates a large amount of data. Increased access to information addresses this problem
by making the best use of the current data. It helps the model avoid over-fitting the current
dataset by allowing it to grow in size (usage of SMOTE).

3.1.2. Convolution Neural Networks

In 1989, CNN was first used for transcribed postal division acknowledgment. This
network follows the feed-forward mechanism. The primary advantage of CNN compared
with the predecessors is the capability of detecting significant pieces with little to no
human intervention. On the information image, a series of convolution and pooling
activities are performed, followed by a single or more fully related layers. The resultant
layer is dependent on the tasks that are being completed. The result layer for multi-class
characterization is a softmax layer. The most significant challenge with more depth CNNs is
vanishing slopes, which may be overcome by leveraging the lingering networks described
in the next section.

3.1.3. Transfer Learning

A model built for a single task is used as the starting point for the learning pro-
cess and then applied with transfer learning for multi diversity. As a result, rather than
going through the protracted process of preparation with arbitrarily introduced loads, pre-
prepared models are used as the starting point for a few clear tasks in transfer learning. As a
result, it aids in the preservation of important assets required to build neural network mod-
els to address these issues. To improve the understanding of exchange learning, researchers
employed space, task, and minimal probability to suggest a framework. Preparing a deep
learning-based model for clinical finding-related concerns is computationally expensive
due to a lack of a suitable dataset, and the results achieved are also insufficient. In this
work, pre-constructed deep learning models were used, which were recently prepared on
the ImageNet dataset. This plethora of pre-made models was also calibrated for pneumonia
order [25].

3.1.4. Training Images Using an Algorithm

The fundamental advantage of CNN in comparison with its predecessors is that it is
capable of identifying crucial highlights with little or no human intervention. ConvNets are
more spectacular than AI computations, and they are also more computationally efficient.
In light of their identified properties, these mathematical traits are subsequently grouped
into mathematical clusters. These exhibitions are then put in various hubs around the
organization and subjected to various levels of focus depending upon the information
provided. The CNN models are used for the topographical characterization in a variety
of organizations that require information to be organized quickly and securely. It almost
acts as a conduit, removing residue and separating the image parts. The image data are
subjected to a series of convolution and pooling operations, which are followed by single
or several totally related layers. The resultant layer is dependent on the actions being
carried out. A random seed is fixed during the preparatory interaction to make the results
repeatable and compelling. For the COVID-19 disease location, the feature order is used.
The harmful materials are removed from the human body and replaced with sound lung
images. When the lungs are healthy and there is no order, the results are solid, but when
there is a disease that produces dark spots on a dim scale, it reveals the type of infection
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and its characteristics. A couple of clusters with mathematical modeling come together to
form a group. Depending on the dataset provided, it is either a sound or an infected lung if
the mathematical clusters match. Grouping is a simple but crucial method that produces a
valid result and is used to implant infected sites.

4. Results

There are various deep image neural networks that are compared and analyzed with
the test chest X-ray images against the trained neural network models. The different models
under study are discussed below.

4.1. Resnet with VGG

This section explains VGG with Resnet. The current approach correctly identified
52.56% of normal cases and 94.02% of infected cases. However, the proposed model
identified normal cases 69.66% of the time and infected cases 98.29% of the time. For the
normal cases, this algorithm performs 17.10% better and for the infected cases, 4.27% better.

The loss function gradually decreases with the increase in the training epochs, but the
validation loss is variable and unstable through the sample analysis process. The efficiency
of the training and testing algorithms increase gradually, as there is an increase in the epochs.
This shows the possible alternatives for the measurement of COVID-19-affected images
and non-COVID-19 images during the preliminary analysis of the dataset. Figures 2 and 3
show the gradual increase in the training and testing efficiency, as the number of epochs for
the training sample increases the accuracy function, which is in general measured between
a value varies from 0 to 1, as the training and testing epoch sample reaches around 1–15.
The value of both training and testing accuracy almost becomes closer to 1. Thus, these
factors indicate that the pre-processing is successful and also the training efficiency and
the testing efficiency of the proposed system are improved through pre-processing and
sample analysis of the dataset. The loss function also diminishes, but the validation loss is
non-uniform, even if there is an increase in the training accuracy, shown in Figure 4, and
the testing accuracy.

Figure 2. Graph comparisons for the loss vs. validation loss parameters.
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Figure 3. Evaluation of the testing accuracy.

Figure 4. Evaluation of the training accuracy.

This could be a challenge during the model evaluation and model analysis process
and can affect the accuracy and F1-score under measurement. In the next step, we develop
the models through definition, initialization of attributes and evaluation. In the next section
of the paper, we perform the comparison analysis of the models with relevant attributes
required for the comparison with final prediction of the suitability of the same. The results
obtained for each epoch is tabulated with relevant parameters in Table 1.
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Table 1. Parameters of the Resnet with VGG experimental analysis.

Loss Validation Loss Training Accuracy Testing Accuracy

0.432 0.59632 0.5843 0.454724

0.42123 0.54212 0.58772 0.5723

0.39224 0.52479 0.59431 0.617332

0.37233 0.52556 0.59213 0.7643

0.352322 0.565712 0.61212 0.82433

0.32241 0.583232 0.6221 0.832435

0.312013 0.583632 0.63211 0.85674

0.29012 0.59632 0.67321 0.86543

0.241009 0.45632 0.6731 0.8667

0.1997 0.51632 0.7683212 0.8665

0.1992 0.62532 0.788276 0.87665

0.198892 0.59632 0.86843 0.86789

0.19222 0.60541 0.893271 0.89445

0.19123 0.615931 0.8932 0.9133

0.191232 0.679632 0.8974 0.91776

4.2. Convolutional Neural Networks

The dataset is validated into three classes, which are normal, pneumonia and COVID-
19. These classes were trained with 175 samples per epoch, and 10 such epochs were
analyzed for the performance of various factors of measurement, which are tabulated in
Table 2. Although the training accuracy dropped a bit toward the end, the validation
accuracy remains constant. The loss function is reduced during the training process, but
the validation loss was variable throughout the training process. The other techniques
for training image datasets must be evaluated before making a conclusive remark on the
final prediction of the suitable training and modeling algorithm. The convolutional neural
network is the fundamental solution for the COVID-19 X-ray analysis. The other techniques
and their implementations will be discussed in the successive sections.

Table 2. Result Analysis of CNN.

Parameter Values

Accuracy 0.9586

loss 0.1105

Validation loss 0.2133

Validation accuracy 0.9425

Figure 5 shows the response of the CNN model for training, and the loss is a gradient
function here, which is unpredictable. This makes it unsuitable for scientific and clinical
research applications. Figure 5 shows the analysis for validation loss and validation
accuracy. The validation accuracy is constant, and the validation loss is variable, making
this model unsuitable for critical applications.



Biomedicines 2022, 10, 2791 11 of 20

Figure 5. Evaluation of the training and testing accuracy for CNN.

4.3. Xception with Transfer Learning

Xception with transfer learning uses 30 epochs, and each epoch processes 75 samples
each; the final tabulation is listed below in Table 3. The accuracy achieved at the end of the
30th epoch is 97.16%. This model provides better accuracy compared with the CNN, and it
produces the result with fewer iterations. This is due to the transfer learning of Xception
learning, which provides enhanced accuracy with fewer iterations. The behavior of the
model is much better compared to CNN since the loss function decreases gradually as
the training increases. The results are tabulated, and the figures are plotted below for the
accuracy and loss function.

It is evident that both the train loss and the validation loss decrease as the number
of epochs increases, and training and the validation accuracy increase when the number
of epochs increases. Table 3 shows the result analysis of the Xception algorithm with the
transfer learning with various factors of measurement. The results in Figure 6 show that
there is a gradual increase in training and testing accuracy and a systematic decrease in
training and the validation loss. This predictable and trusted nature of the result makes
the Xception suitable for the imagery application with the minimum trusted performance,
and the behavior of the model is guaranteed to deliver the desired performance without
much deviation.

Table 3. Result analysis of the Xcpetion model.

Precision Re-Call F1-Score Support

Normal 0 0.8 0.88 87

Pneumonia 1 0.99 0.94 101

Accuracy 0.92 188

ROC-AUC Score 0.895299145

F1 Score 0.937880633
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Figure 6. Evaluation of the training accuracy for Xception model.

4.4. VGG16 Model

Table 4 presents the result analysis of the VGG16 deep image learning model. The
VGG16 algorithm provides 200 epochs for the training of the model. The result analysis
is performed for the learning accuracy, loss, validation loss and F1-score. The value of
accuracy is measured as 93%, and the F1-score is measured as 0.93.

Table 4. Result analysis of the VGG16 model.

Precision Re-Call F1-Score Support

Normal 0 0.80 0.88 87

Pneumonia 1 0.99 0.94 101

Accuracy 0.93 188

F1 Score 0.93

The accuracy plot increases gradually, but the loss function takes a spike at intervals
during the training process. Figure 7 shows that the loss function of the VGG16 algorithm.
This model is not suitable for the research or any other critical applications since the
validation loss shows a major spike in the middle. However, the generic loss uniformly
decreases with the increase in the training samples. Both the training and validation
accuracy increases with the increase in the training process, which is also evident from the
Figure 8. Thus, this model is suitable for the experimental research but not for the scientific
critical research and development.

Figure 7. Cont.
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Figure 7. Evaluation of the loss and validation loss in VGG16.

Figure 8. Evaluation of the training and testing accuracy in VGG16.
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4.5. ResNet

Table 5 shows the result analysis of the ResNet model with 50 epochs. This uses
34 sub-samples for the analysis of the training efficiency and the loss function for training
and validation. The accuracy is measured to be 82% with an F1-score of 0.82, which
is lesser when compared with all other types of image classification techniques. The
validation accuracy increases constantly, and the validation loss is variable here. Training
loss is negligible.

Table 5. Result analysis of the ResNet model.

Precision Re-Call F1-Score Support

Normal 0 0.91 0.82 87

Pneumonia 1 0.74 0.82 101

Accuracy 0.82 188

F1 Score 0.82

4.6. Inception V3

Table 6 shows the result analysis for the Inception V3 algorithm with 15 epochs and
148 samples per epoch. This model performed with 15 epochs with 148 samples processed
at each epoch. This model provide the highest amount classification accuracy at around
0.9688, with an F1-score of 0.9688.

Table 6. Result analysis of the Inception V3 model.

Precision Re-Call F1-Score Support

Normal 0.92 0.99 0.96 87

Pneumonia 0.99 0.93 0.96 101

Accuracy 0.96 188

F1-Score 0.9688

This model may be preferred for research labs, engineering projects, etc., since the
accuracy is greater, and it can perform the classification with the desired accuracy as per
the need of the target application. For visualization of the classification process, we may
prefer ResNet with VGG or Xception models.

The detailed descriptions about the various models used in deep image neural net-
works are discussed below in Table 7. The models of the convolutional neural network
for deep image neural modeling are termed into a broad category called Imagenet, which
was earlier developed in 2012. Earlier Alexnet was developed in 2012, VGG and Inception
were developed in 2014, and Resnet was developed in 2015. Resnet has only a 3.6% error
rate, which is less than all the models. The models of Imagenet are trained with 1.2 million
images with 50,000 images for validation and 100,000 images for testing. The goal of image
net is to define 1000 image object features for an image that is used in day-to-day life.
The main hyperparameters for tuning these models are F1-score, training and validation
accuracy, and training and validation losses, which are measured and tabulated above. The
comparative analysis of all the features is discussed in the next chapter.
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Table 7. Various deep learning models used with required details.

S.NO Model Name Description Neural Structure Demerits and Merits Contributors

1 Inception V3 Multi-level feature
extraction mode

It performs neural
convolutions of 1 × 1,
3 × 3 and 5 × 5 before
the weights are
transferred to the next
layer

Weights of the Inception
is smaller than VGG 16
and resent

Szegezy et al.

2 Xception

Replacement of
standard Inception
model with depth wise
separable convolutions

Same as Inception with
depth-wise separable
convolutions

Smallest serialization
of weight Francois Collet

3 VGG

Simple in nature with
4096, where the
reduction is done by
max-polling.

3*3 convolution layers
with with softmax
classification at
the output

Training the model is
very complex.
Pre-training is required
for large models.
Network architectural
weights are quite large

Simonyaan and
Zisserman

4 Resnet

Accuracy is improved by
mapping of the identity.
The versions of this
network are identified
by weighted layers

Extremely deep neural
networks trained
with SGD

The model is deeper
than VGG 16 but the size
is very small because it
takes the average of
polling rather than fully
connected layers

Kaimeng He

5. Discussion
5.1. Comparative Analysis of the Various Deep Neural Network Models

Various algorithms, such as Inception V3, Xception, VGG16, CNN, ResNet and ResNet
with VGG, are tested for the comparative analysis. The results are obtained for four major
parameters such as precision, recall, F1-score and support. The comparisons are plotted for
the above-mentioned algorithms in a graph, taking these parametric values into the Y-axis
with the corresponding comparison factors in the X-axis. In the above-stated algorithms,
ResNet with VGG provides the highest accuracy with the fewest epochs (15 epochs). This
method provides the best of all accuracy and the F1-score as 0.9827 for the infected cases.
However, for normal cases, it offers an accuracy around 0.6966. However, the overall
accuracy drops because of the loss of accuracy in the detection of the X-ray of the normal
cases. Considering the second algorithm CNN, the overall test samples were run and
provided an accuracy of around 0.9586. However, here, the loss function is very minimal
compared to the other methods, such as 0.1102. This method is preferred in cases that we
need decent accuracy with minimal loss. The next experiment analysis was performed
for the Xception model, which provided the accuracy levels of 0.92 and F1 score around
0.94 with minimum training loss. The next model applied for analysis was VGG16. This
model ran around 200 epochs of 34 samples each and provided an accuracy of around 0.93
with an F1-score of 0.93. This method also reduced the training and the validation loss,
as the number of samples is sufficient to estimate the results in 200 epochs. Even though
the iterations for this model are time consuming, it provided a linear reduction in the loss
function as the training of the samples increased. The next method applied here is the
ResNet, which offered non-linear behavior of the loss function. However, the accuracy
did not become reduced, and it was poised at 0.83 during the end of the evaluation of
the test samples. Compared with the other models, Resnet offered the worst performance
in the above-said environment. Finally, Inception V3 provided the best overall accuracy
through the sample analysis of 15 epochs with 148 samples. This model provided 96.88 and
with an F1-score of around 96.88. While other models may be preferred for the imagery,
Inception V3 may be preferred for model evaluation, analysis, research companies, etc. As
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an outset, resNet with VGG is the best companion for the detection of the COVID-19 virus.
In the case that the training samples do not get updated, Xception is the most suitable
for the processing technique for the image dataset. As per the accuracy, Inception V3 is
preferred, and as per the imagery, resNet with VGG and Xception are mostly preferred.
The comparison analysis is performed for the algorithms; the results are listed below in
the comparison chart which brings out a clear idea about the model accuracy, loss function
and F1-score, based on which we hand-pick one algorithm based on the requirement of the
end user.

Figure 9 shows the performance comparison of the COVID-19 detection deep learning
models. This comparison model takes four parameters to compare the efficiency of each
deep learning model based on the values recorded under each parameter. With respect
to the metric accuracy, Inception V3 outperforms all models, with an F1-score of 0.97
and accuracy of 0.9688. So, this model is critical for scientific research and experimental
implementation purposes. CNN comes next with 0.9586, and the rest follow. With respect
to the metric precision, again, the Inception V3 and CNN take a leading step that confirms
the possibility of the scientific and research application of these algorithms. The recall
factor is better in Xception, and it is hence preferred for the imaging applications. The
F1-score is best in both CNN and Inception V3. Looking at various categories, we observe
that CNN and Inception V3 may be the most preferable for the scientific research and
implementation and for the deep neural networks for the creation of deep learning models
for the COVID-19 detection scheme through X-ray imaging. The best of all is Inception V3.
Authors should discuss the results and how they can be interpreted from the perspective
of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

Figure 9. Comparative analysis of all the models of deep neural networks used for COVID-19
X-ray imaging.

5.2. Challenges of the Existing Systems

The following challenges arise during the evolution of the COVID-19 X-ray imaging
systems.

5.2.1. Variation in Mutation of COVID-19 Infection

The COVID-19 virus mutation is the biggest threat to the medical world since it takes
different mutations across different places of the world. Some variations are epidemic, and
some variations are pandemic. The pandemic variations cause severe damage to the human
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community. In 2022, we experienced a range, from the BA-1 to BA-4 types. Fortunately,
these types are not very life threatening. When the mutation happens, the virus changes its
DNA and protein structure and changes into an entirely different genetic formation. This
is the biggest challenge for scientists, doctors and health specialists. This would also be a
biggest challenge to the medical imaging research since the virus changes its dimensions
very frequently.

5.2.2. Regions of Impact of COVID-19 Virus in the Human Body

The previous delta variants of the coronavirus were affecting the lower part of the chest,
causing severe congestion, damage of the lungs and pneumonia fever by compromising
complete lung function, causing mortalities around the world. However, the later minor
variants of the BA type viruses did not create any serious impact on the lower part of the
lungs, since they attacked only the upper part of the lungs, without much causalities or
compromise to the lung function. However, as the imaging perspective, the density of the
infection is almost absent in the lower lung, which creates serious changes in the X-ray
patterns and further analysis in the image acquisition systems. This would increase the
demand for further training of the model with variations in the infection patterns, thus
making the re-training of the deep learning models by increasing the complexity.

5.2.3. Training Efficiency

Since the mutation of virus and the variation of its impact on human body, the vari-
ations required for the imagery analysis become an inevitable factor. The exhaustive
re-training is required in existing deep image neural networking models. This increases the
time complexity. Some models do not guarantee optimal efficiency and accuracy during
the training process. They often exhibit inconsistent behavior during the measurement
of validation loss and training accuracy (CNN). Thus, increasing the training samples or
re-training of these systems would pose a great challenge to the existing models which are
used right now. So, new weight distribution schemes may be required when the mutation
of the virus acquires a major change in the structure.

5.2.4. Hardware and Software Requirements

The evolution of the virus demands updates in medication, imaging, and the training
of models. It also requires updates of the existing hardware and software to understand and
support the variation of the mutation by increasing the processing capacity of the GPU, TUP
processors, storage support and processing support of the software with proper updating
and maintenance. The performance of the models is also based on the availability of the
processing memory and the capacity of the processors. The vendors of these hardware and
software should identify contemporary design strategies and techniques that provide the
utmost support for the smooth processing of these models when the re-training takes place.
Thus, the change in the hardware and software requirements is inevitable for the change in
the virus mutations.The below listed elements are the research findings acquired through
this experimental analysis and comparisons performed on the previous chapters of this
proposed work.

5.3. Research Findings

• The resNet+ VGG and VGG show the sudden variations in the validation loss and
hence make it unsuitable for research and critical application related to medical
imaging. In general, fluctuations in the dataset or improper design of the neural
architecture are the major reasons for the variation in loss and training efficiency. This
may be also due to the overfitting of the algorithm and because of the increase in
the number of layers compared to the original layers required. When we analyze
and observe the above-mentioned factors, we can improve the training efficiency and
reduce loss.
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• CNN also is not very preferable for critical applications since both the training accuracy
and validation loss are unpredictable. The training accuracy may be affected due to
the above-said reasons, and also due to the improper assignment of the learning rate.
The inadequate learning may develop inconsistencies in the training model, which in
turn affect the training and testing of the models by reducing the training and testing
accuracy to the significant levels.

• ResNet is not so preferable because of the low accuracy and the F1-scores. A higher
level of accuracy is required to predict image data, and hence, the size and the number
of features relevant to an image data are very high. The dimensionality variations and
up- or down-scaling may be required for these images when we perform training or
sample analysis of the dataset. When we change such factors, the required classifi-
cation accuracy for the algorithm is required to be very high. Thus, we define that
the ResNet may not be preferable for imagery applications. This can be improved by
re-training the model to the next level.

• Inception V3 is preferable for scientific research and critical applications, since the
accuracy and the F1-scores are high. Since the values obtained are accurate, this
algorithm ensures the proper application of the dataset in the imagery applications
related to medical imaging. For clinical and medical research, if the application needs
more criticality, then using Inception V3 is the best solution.

• Xception is preferred for the imagery applications because of the consistent perfor-
mance of the accuracy and the loss functions. The image dataset is huge and contin-
uous. The training model requires more image vectors for training. These vectors
and features need to train the model for a relatively longer duration of time. For any
system that uses the medical data for training purposes, the response of the system
is required to be uniform, stable and predictable. Xception is one such algorithm
that has a higher stability and uniformly increasing function of accuracy as well as a
decreasing function of loss.

6. Conclusions

Because of the COVID-19 pandemic, profound learning plays a significant impact,
developing the possibility for accurate judgment and response to the outbreak. The work ob-
served the scientific and predictive potential of profound observations on lung radio-graphs
with the presentation of a picture classification technique based on the COVID-19-Net to
classify chest MRI images. The approach focuses on exchange learning, model combining,
and identifying three types of chest MRI images: ordinary, coronavirus, and viral pneumo-
nia. The selection of models ResNet and ResNet with VGG have a significant effect on the
combination of precision and loss functions, gradually increasing their proportion of neural
weight during the preparation cycle. With Inception V3, the model predicted COVID-19
conditions with 96% for the MRI images acquired of the chest. It serves as a resource for
research critical applications health institutions, medical offices, government institutions,
and, shockingly, the global conclusion of the COVID-19 pestilence condition. Every day,
the coronavirus pandemic is becoming more complicated, with a rapid increase in the
number of COVID-19 cases. Hence, fast mass COVID-19 testing may be necessary. This
proposed work provides various measures and provides numerous options for using CNN
models to classify COVID-19-affected patients based on the scan of chest imagery using
MRI. Furthermore, we assume that in the available versions, the Xception net provides
the best-of-all display, and is the most suitable for the purpose. We successfully organized
coronavirus sweeps, demonstrating the potential for using such technologies to automate
the concluding of tasks in the near future. The factor may be evaluated by comparing it
to fresh information that has recently become available. Later on, we may use the mas-
sive dataset of the MRI of the chest for the validation of our suggested model. It is also
recommended that any effective use case of this proposed work could be discussed with
clinical professionals.
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