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Abstract: Introduction: Obstructive sleep apnea (OSA) is a worldwide breathing disorder that has
been diagnosed globally in almost 1 billion individuals aged 30–69 years. It is characterized by
repeated upper airway collapses during sleep. Telomerase reverse transcriptase (TERT) is involved in
the prevention of telomere shortening. This prospective, observational study aimed to investigate
the relationship between single nucleotide polymorphisms (SNPs) of TERT and the severity of OSA,
taking into account hypertension and diabetes prevalence. Methods: A total of 149 patients with
OSA were diagnosed using one-night video-polysomnography based on the American Academy
of Sleep Medicine guidelines. The TERT SNPs and telomere length (TL) were detected using real-
time quantitative polymerase chain reaction. Results: Statistical analysis showed that there is no
relationship between the rs2853669 and rs2736100 polymorphisms of TERT, and the severity of OSA
(p > 0.05). Moreover, no relationship between TL and the severity of OSA was observed. The G
allele in the locus of rs2736100 TERT was associated with hypertension prevalence and was more
prevalent in hypertensives patients (46.00% vs. 24.49%, p = 0.011). The prevalence of hypertension
was higher in patients with the C allele in the locus of rs2853669 than in patients without this allele
(50.79% vs. 30.23%, p = 0.010). Moreover, a lower prevalence of diabetes was observed in homozygotes
of rs2736100 TERT than in heterozygotes (5.63% vs. 15.38%, p = 0.039). Conclusion: This study showed
no relationship between OSA and TERT SNPs. However, SNPs of the TERT gene (rs2736100 and
rs2853669) were found to affect arterial hypertension and diabetes prevalence.

Keywords: TERT; single nucleotide polymorphism; telomerase; obstructive sleep apnea; diabetes;
hypertension

1. Introduction

Obstructive sleep apnea (OSA) is one of the most common respiratory system diseases.
Its prevalence is continuously increasing, affecting nearly 1 billion adults aged 30–69 years
worldwide [1]. OSA patients encounter repeated upper airway collapses, leading to oxygen
desaturation, numerous arousals, and sleep fragmentation, which may influence the aging
process [2]. The number of apnea and hypopnea episodes, arousals, and time during the
night spent with an oxygen saturation level of less than 90% contribute to the alteration
of cellular communication, deregulation of nutrient sensing, mitochondrial dysfunction,
and genomic instability in OSA patients [3]. Snoring, apneas, and sleepiness are the main
symptoms of OSA although fatigue, shortness of breath and choking, erectile dysfunction,

Biomedicines 2022, 10, 2755. https://doi.org/10.3390/biomedicines10112755 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10112755
https://doi.org/10.3390/biomedicines10112755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-3787-0344
https://orcid.org/0000-0001-8366-0239
https://orcid.org/0000-0003-4077-7538
https://orcid.org/0000-0003-4953-7143
https://orcid.org/0000-0002-9740-011X
https://orcid.org/0000-0003-1283-8460
https://doi.org/10.3390/biomedicines10112755
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10112755?type=check_update&version=2


Biomedicines 2022, 10, 2755 2 of 10

trouble concentrating, and even insomnia are reported in some patients [4]. OSA leads to
cardiovascular conditions such as arterial hypertension, stroke, coronary artery disease,
heart failure, and arrhythmias [5]. About 40% of OSA patients also suffer from hypertension.
However, about 50% of hypertensive patients [6] and 72–80% of patients with resistant
hypertension meet the criteria for OSA (apnea–hypopnea index, AHI > 5) [7]. Endothelium
dysfunction, systemic inflammation, and oxidative stress are common in both OSA and
hypertension, promoting biological aging as well [8]. Diabetes also commonly co-occurs with
OSA [9]. Intermittent hypoxia, which is a central feature of OSA, elicits a proinflammatory
response in visceral adipose tissue and contributes to insulin resistance [10]. Therefore, OSA
has been shown to cause or worsen metabolic syndrome [11].

Telomerase reverse transcriptase (TERT), encoded by the TERT gene, is a specialized
reverse transcriptase composed of a catalytic protein (reverse transcriptase, TERT) and
telomerase RNA components (TERC) [12]. It plays a vital role in maintaining telomere
and chromosomal integrity and stability [13]. Several studies showed that single nu-
cleotide functional polymorphisms (SNPs) in the TERT gene may affect its expression and
telomerase activity [14]. SNPs at loci encoding TERT and TERC have been shown to be
correlated with telomere length (TL) and an increased risk of age-related diseases and
mortality [15–18]. TERT rs2736100 and TERC rs12696304 are two well-researched SNPs
affecting telomerase expression and TL [19–22].

However, data on the relationship between SNPs of TERT and OSA are scarce in the
literature. Therefore, this study aimed to evaluate the role of TERT SNPs (rs2736100 and
rs2853669) in OSA, taking into account hypertension and diabetes prevalence. The null
hypothesis was that the genetic variant of TERT varies between OSA patients and healthy
controls, as well as between hypertensive and normotensive patients and between diabetic
and nondiabetic patients.

2. Materials and Methods
2.1. The Study Design

This prospective, observational study was carried out on patients admitted to the
Department and Clinic of Internal, Occupational Diseases, Hypertension, and Clinical
Oncology of Wroclaw Medical University. One-night video-polysomnography was con-
ducted in the Sleep Laboratory of Wroclaw Medical University using Nox-A1 (Nox Medical,
Reykjavik, Iceland).

A total of 149 patients were enrolled in this study (44.67% male and 55.33% female).
Average age and body mass index (BMI) was 49.00 ± 15.07 and 28.96 ± 5.05, respectively.
Overweight (BMI > 25), diabetes mellitus, arterial hypertension, and ischemic heart disease
were diagnosed in 46.30%, 11.40%, 39.59%, and 5.37% of individuals, respectively.

The group size was determined using a sample size calculator. The selection conditions
were as follows: population size 3 million, fraction size 0.1, maximum error 5%, significance
level 0.05. The required minimum size of the study group was 139. During the analyzed
period, 149 patients at Sleep Lab were examined, hence the final size of the study group.

Patients who met the following inclusion criteria were included in this study: will-
ingness to participate, clinically suspected OSA, and age > 18 years old. The exclusion
criteria were as follows: severe mental disorders, which prevent them from undergoing
polysomnography, intake of drugs that can affect the breathing and/or neuromuscular ac-
tivity, active malignancy, respiratory and/or cardiac insufficiency, and active inflammation.

All participants provided informed consent to participate in the study, and the study
was approved by the Ethics Committee of Wroclaw Medical University (ID KB 525/2020)
and conducted following the Declaration of Helsinki.

Diagnosis of OSA was made based on the American Academy of Sleep Medicine
(AASM) standards. All participants underwent one-night polysomnography. The following
parameters were recorded: sleep and respiratory data such as sleep latency, wake after sleep
onset, rapid eye movement (REM) latency, sleep efficiency, total sleep time, and the ratio of
N1 (sleep stage 1), N2 (sleep stage 2), N3 (sleep stage 3), and REM (REM sleep stage), along
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with the video and audio recording of the sleep episode. Respiratory events were recorded
using a nasal pressure transducer, and oxygen saturation was measured using a finger
pulse oximeter. Following the one-night polysomnography, a certified polysomnographist
assessed automatic 30-s epochs of polysomnograms, and the epochs were classified based
on the standard criteria for sleep by the AASM 2013 Task Force. Respiratory events were
documented as follows: the absence of airflow (>90%) for ≥10 s was scored as an apneic
event, whereas a reduction in the amplitude of breathing by ≥30% for ≥10 s with a ≥3%
decline in the blood oxygen saturation level or arousal was scored as a hypopnea. The
respiratory effort was assessed using respiratory inductance plethysmography belts around
the thorax and abdomen. A single modified electrocardiogram lead II was used to assess
the ECG. On the day after polysomnography, blood samples of the patients were collected
at 7.00 a.m. by venipuncture.

Arterial hypertension, ischemic heart disease, and diabetes mellitus were recorded based
on medical history. All patients were weighed and measured on admission to the ward.

2.2. DNA Extraction

Genomic DNA was isolated from 200 µL of peripheral blood taken on EDTA using the
NucleoSpin Blood (MACHEREY-NAGEL GmbH & Co. KG, Dueren, Germany) based on
the manufacturer’s instructions. DNA concentration and purity were quantified using a
DeNovix (DeNovix Inc., Wilmington, DE, USA). The isolated DNA was subjected to TERT
genotyping and the evaluation of TL.

2.3. TL Quantification

The average TL was measured in the DNA samples of 149 patients. The DNA samples
were diluted with nuclease-free water to a concentration of 5 ng/µL, and the TL was measured
using a real-time quantitative polymerase chain reaction (qPCR) on a LightCycler480 II Real-
Time PCR system (Roche Diagnostics International, Rotkreuz, Switzerland) using qPCR assay
kits (ScienCell’s Absolute Human Telomere Length Quantification qPCR Assay Kit, Carlsbad,
CA, USA), according to the manufacturer’s instructions. Two consecutive reactions were
performed for each of the DNA samples: the first for amplification of the single-copy reference
(SCR) gene and the second for the telomeric sequence. The SCR primer set is used to recognize
and amplify the 100-bp region on human chromosome 17 and serves as a reference for data
normalization. The qPCR conditions were as follows: 95 ◦C for 10 min, followed by 32 cycles
of 95 ◦C for 20 s, 52 ◦C for 20 s, and 72 ◦C for 45 s. Data were analyzed according to the
manufacturer’s instructions. All reactions were run in duplicate.

2.4. Genotyping of TERT Gene Polymorphisms

The SNPs within the TERT gene were chosen based on results from the SNP Function
Prediction tool of the National Institute of Environmental Health Sciences (NCBI Database)
website and other auxiliary databases (https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.
html; https://www.ncbi.nlm.nih.gov/snp/; https://www.ensembl.org/index.html). The
following criteria were used: change in RNA and/or amino acid chain, potential splicing
site and/or miRNA binding site, and minor allele frequency in Caucasians above 10%.

Based on the above criteria, two SNPs were selected for the study: TERT rs2736100
(G > T), located in intron 2, and TERT rs2853669 (T > C), located at −245 bp (Ets2 binding
site) in the promoter region. These two SNPs were determined using LightSNiP typing
assays (TIB MOLBIOL, Berlin, Germany). Both assays were based on qPCR. Amplifications
were performed on a LightCycler480 II Real-Time PCR system (Roche Diagnostics Interna-
tional AG, Rotkreuz, Switzerland) according to the manufacturer’s instructions. The PCR
conditions were as follows: 95 ◦C for 10 min, followed by 45 cycles of 95 ◦C for 10 s, 60 ◦C
for 10 s, and 72 ◦C for 15 s. The PCR was followed by one cycle of 95 ◦C for 30 s, 40 ◦C for
2 min, and gradual melting from 75 ◦C to 40 ◦C.

The two TERT polymorphic variants were detected in patients and controls using
LightSNiP typing assays (TIB MOLBIOL, Berlin, Germany) by real-time PCR amplifications

https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html
https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html
www.ncbi.nlm.nih.gov/snp/
www.ensembl.org/index.html
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with melting curve analysis. The reactions were performed on a LightCycler 480 II Real-
Time PCR system (Roche Diagnostics International, Rotkreuz, Switzerland) following the
manufacturer’s instructions.

2.5. Statistical Analysis

Statistical analysis was carried out using the statistical package “Dell Statistica 13.1”
(Dell Inc., Round Rock, TX, USA). The arithmetic means and SDs of the estimated pa-
rameters were calculated for the quantitative variables. The distribution of the variables
was evaluated using Lilliefors and Shapiro–Wilk W tests. For independent quantitative
variables with normal and nonnormal distribution, Student’s t-test and Mann–Whitney U
test were used, respectively. Based on these results, qualitative variables were expressed as
percentages. The results at p < 0.05 were considered statistically significant.

3. Results

The participants were classified into two groups: the study group (patients with
OSA) and the control group (patients without OSA). OSA was diagnosed in 100 patients
(67.11%). Mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30), and severe OSA (AHI ≥ 30)
were diagnosed in 35 (23.48%), 29 (19.46%), and 36 (24.16%) patients, respectively. In
49 (32.89%) participants, OSA was excluded (AHI < 5). The average TL was 2.98 ± 1.07 kB.
All parameters observed using polysomnography are presented in Table 1.

Table 1. Polysomnographic data of the study sample and telomere length.

Parameter Mean Minimum Maximum SD

AHI (n/h) 18.50 0.2 100 20.54
ODI (n/h) 17.56 0.1 88.40 19.28
SL (min) 21.86 1 112.60 20.23

WASO (min) 52.29 1.00 195.50 44.75
SE (%) 82.69 52.40 98.30 10.28

NREM 1 (%of TST) 4.75 0.1 36.10 4.79
NREM 2 (% of TST) 46.73 4.30 78.70 11.43
NREM 3 (% of TST) 26.00 2.60 54.90 10.82

REM (% of TST) 22.23 4.10 41.30 7.57
MEAN SpO2 (%) 93.08 83.30 97.30 2.43

SD—standard deviation; AHI—apnea–hypopnea index; ODI—oxygen desaturation index; SL—sleep latency;
WASO—wake after sleep onset; SE—sleep efficiency; NREM– sleep stage 1; NREM2—sleep stage 2; NREM3—sleep
stage 3; REM—rapid eye movement sleep stage; MEAN SpO2—mean oxygen saturation.

A negative linear correlation was observed between TL and age (r = −0.18, p = 0.028);
however, no statistically significant correlation was found between TL and polysomnogra-
phy parameters. Moreover, no statistically significant correlation or differences were found
between TL and the diagnosis and severity of OSA.

Then, the relationship between the SNPs of TERT and OSA was evaluated. The
prevalence of the TERT SNPs among the study participants is presented in Table 2.

Table 2. The prevalence of TERT SNP in the entire study group.

TERT rs2736100 TERT rs2853669

Genotype n % Genotype n %

TG 78 52.34 TT 86 57.72
TT 49 32.89 TC 52 34.90
GG 22 14.77 CC 11 7.38

Allele Allele
T 127 85.23 C 63 42.28
G 100 67.11 T 138 92.62
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No statistically significant differences between the TERT SNPs and more frequent OSA
diagnoses were observed among the study participants. The prevalence of the TERT SNPs
with the respect to the AHI value (patients with confirmed vs. excluded OSA) is presented
in Table 3. Whether the TERT SNPs affect the severity of OSA was also evaluated. No
relationship was observed between the nucleotide system of both polymorphisms and the
incidence of mild, moderate, and severe OSA. The effect of TERT SNPs on TL was not found.

Table 3. The prevalence of the TERT SNP’s in patients with and without OSA. Statistically significant
differences are indicated by boldface (p < 0.05).

TERT rs2736100 TERT rs2853669

Genotype AHI ≥ 5 AHI < 5 Average telomere
length [kB] Genotype AHI ≥ 5 AHI < 5 Average telomere

length [kB]

TG 55 (70.51%) 23 (29.49%) 2.97 ± 1.03 TT 58 (68.24%) 27 (31.76%) 3.01 ± 1.10

TT 28 (58.33%) 20 (41.67%) 2.93 ± 1.14 TC 36 (69.23%) 16 (30.77%) 2.97 ± 1.10

GG 16 (72.73%) 6 (27.27%) 3.08 ± 1.09 CC 5 (45.45%) 6 (54.55%) 2.70 ± 0.68

The relationship between arterial hypertension, diabetes mellitus and ischemic dis-
eases, and TERT SNPs were studied. The information about these disorders was obtained
based on medical history. In addition, the mean BMI values in patients with the studied
polymorphisms were compared.

First, the patients were compared based on the rs2736100 SNP, in which significant
differences between the TERT SNP and arterial hypertension diagnoses were observed.
However, no statistical differences between polymorphisms and other diseases were found.
All details are presented in Table 4.

Table 4. The prevalence of arterial hypertension in the rs2736100 SNPs of the TERT gene. Statistically
significant differences are indicated by boldface (p < 0.05).

Allele Hypertensives Normotensives Diabetics Non-Diabetics BMI Value Ischemic Disease Non-Ischemic Disease

TG 37 (47.44%) 41 (52.56%) 12 (15.38%) 66 (84.62%) 28.69 ± 4.36 6 (7.69%) 72 (92.31%)
TT 12 (24.49%) 37 (75.51%) 3 (6.12%) 46 (93.88%) 30.47 ± 6.99 2 (4.08%) 47 (95.92%)
GG 9 (40.91%) 13 (59.09%) 1 (4.55%) 21 (95.45%) 27.38 ± 3.45 0 (0.00%) 22 (100%)

Moreover, the results showed that patients with the G allele more commonly suffer
from arterial hypertension than patients without the G allele (Table 5). Other alleles were
not found to influence the prevalence of disorders. While analyzing the differences between
patients based on homozygotes and heterozygotes of rs2736100, a homozygous nucleotide
system was found to decrease the prevalence of arterial hypertension and diabetes mellitus.
All details are presented in Table 6.

Table 5. The prevalence of arterial hypertension among patients carrying the G allele in the locus
of rs2736100.

Hypertensives Normotensives p Value

G allele − 12 (24.49%) 37 (75.51%) p = 0.011
G allele + 46 (46.00%) 54 (54.00%)

Table 6. The prevalence of the disorders in patients with the rs2736100 SNP of the TERT gene,
taking into account the presence of homozygotes. Statistically significant differences are indicated by
boldface (p < 0.05).

Hypertensives Normotensives Diabetics Non-Diabetics BMI Value Ischemic Disease Non-Ischemic Disease

Homozygous (+) 21 (29.58%) 50 (70.42%) 4 (5.63%) 67 (94.37%) 29.29 ± 6.02 2 (2.82%) 69 (97.18%)
Homozygous (−) 37 (47.44%) 41 (52.56%) 12 (15.38%) 66 (84.62%) 28.69 ± 4.37 6 (7.69%) 72 (92.31%)
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Then, the prevalence of the studied disorders was compared based on the rs2853669
SNP. Statistically significant differences were observed between the rs2853669 SNP and
arterial hypertension alone. No relationship was found between other disorders and the
rs2854669 SNP. All details are presented in Table 7.

Table 7. The prevalence of arterial hypertension in the rs2853669 SNPs of the TERT gene. Statistically
significant differences are indicated by boldface (p < 0.05).

Allele Hypertensives Normotensives Diabetics Non-Diabetics BMI Value Ischemic Disease Non-Ischemic Disease

TT 26 (30.23%) 60 (69.77%) 8 (9.30%) 78 (90.70%) 29.40 ± 5.87 3 (3.49%) 83 (96.51%)
TC 27 (51.92%) 25 (48.08%) 8 (15.38%) 44 (84.62%) 28.47 ± 4.11 5 (9.62%) 47 (90.38%)
CC 5 (45.45%) 6 (54.55%) 0 (0.00%) 11 (100%) 27.80 ± 2.68 0 (0.00%) 11 (100%)

Patients with the C allele in the rs2853669 SNP were more commonly diagnosed with
arterial hypertension than those without it (Table 8). No relationships between other alleles,
homozygotes, and the prevalence of the other studied disorders were observed.

Table 8. The prevalence of arterial hypertension among patients with the C allele in the locus of
rs 2853669.

Hypertensives Normotensives p Value

C allele − 26 (30.23%) 60 (69.77%) p = 0.010
C allele + 32 (50.79%) 31 (49.21%)

Finally, no relationship was observed between the mean values of BMI and the TERT SNPs.

4. Discussion

Located on chromosome locus 5p15.33, TERT plays a role in the lengthening and
preservation of telomeres. In the present study, two well-studied SNPs—rs2853669 in the
TERT promoter and rs2736100 located within intron 2 of TERT—were investigated in a
group of patients with high OSA risk. OSA is considered an aging disease, especially
related to accelerated vascular aging. In the course of OSA, the accumulation of functional
and structural changes in vessels, including arterial stiffening, increased carotid intima–
media thickness, as well as carotid diameter enlargement, is an important contributor to
cardiovascular diseases. The primary mechanism of accelerated vascular aging in OSA is
complex and includes intermittent hypoxia, sympathetic activation, and systemic inflam-
mation [23]. Yagihara et al. classified participants in their study into a group of patients
treated with CPAP (continuous positive airway pressure) and a control group treated with
a nasal dilator and reported that the age of patients with OSA judged by appearance was
lower in the group treated with CPAP compared with the control group [24].

Previous studies reported that the TERT variant rs2736100 is associated with TL
and multiple disease risks, including colorectal cancer, myeloproliferative neoplasms [21],
primary glomerulonephritis/end-stage renal disease [25], decreased idiopathic pulmonary
fibrosis, combined pulmonary fibrosis, and emphysema syndrome [26]. The presence of
the C allele in the locus of the rs2736100 SNP of the TERT gene is associated with longer
telomeres, whereas the presence of the A allele is associated with shorter telomeres. The
meta-analysis showed that cancer was positively associated with the C allele and that
noncancerous diseases were negatively associated with the C allele [27].

To the best of our knowledge, this is the first study investigating the role of rs2736100
and rs2853669 genetic variants in OSA. Although no relationships were observed be-
tween OSA and the TERT SNPs, an association between hypertension and TERT gene
polymorphism was observed, as well as an association between diabetes and TERT gene
polymorphism. Hypertension is a common age-related disease that increases the risk
of cardiovascular diseases, including atherosclerosis, coronary heart disease, stroke, and
chronic kidney disease [8]. In patients with essential hypertension, a shorter leukocyte TL
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coupled with a lower expression of telomerase genes was reported previously. However,
no differences in the genotype of rs2736100 and rs12696304 SNPs were reported between
normotensive and hypertensive patients [28]. Feng showed that homozygous GG was
associated with atherosclerosis risk [29]. Hypertension and diabetes are risk factors for
atherosclerosis development. Thus, the findings of the present study are in agreement
with these observations. The results of the present study showed that the G allele of the
rs2736100 SNP was associated with hypertension and diabetes prevalence and that it was
more prevalent in hypertensive patients; however, no statistical differences were observed
in the T allele. In addition, differences were found in the rs2853669 SNP, taking into account
the presence of the C allele in its locus. (50.79% vs. 30.23%, p = 0.010).

OSA is commonly associated with diabetes, with prevalence ranging from 23% to
86% [30]. However, comorbid OSA is observed between 30% [31] and 80% [32] of people
with diabetes. Other common comorbidities of diabetes include heart disease, stroke,
cancers, dementia, kidney disease, and depression [33]. The aging process in diabetes is
associated with alterations in glucose metabolism, including both relative insulin resistance
and islet cell dysfunction, thus leading to impaired glucose intolerance and/or postprandial
hyperglycemia [34]. A previous study demonstrated that the incidence of type 2 diabetes
was increased in carriers of the CC SNP (rs2853669) of the TERT gene [35]. Goswami
showed that the TC genotype plays a protective role against the development of type 2
diabetes [36]. The present study showed a decreased prevalence of diabetes in homozygotes
of the rs2736100 SNP of the TERT gene (5.63% vs. 94.37%, p = 0.039). Thus, the results of
the present study are in agreement with those of previous studies.

TL was also evaluated in a patient with OSA. Telomeres are DNA regions of variable
length at the end of chromosomes that protect the chromosome and prevent DNA from
degradation [37,38]. A part of telomeric DNA is lost during cell division. Therefore,
TL is an indicator of biological aging [38,39]. Goglin et al. [40] reported the correlation
between mortality rate and TL. Telomeres are often referred to as a “molecular clock of
aging” because of their progressive shortening due to aging [41]. TL may be affected by
various factors, such as gender [42], psychological stress [43], nutritional factors [44,45],
physical activity, and TERT activity. Individuals with a short TL were at an increased
risk of cardiovascular diseases, myocardial infarction, heart failure, and stroke [46–50].
Intermittent hypoxia also directly affects TL [51]. The activity of HIF-1 (hypoxia-inducible
factor, a heterodimer composed of subunits α and β) is found to be increased in OSA
patients [52–55]. The overactivation of HIF-1 leads to overexpression of TERT, an increased
level of telomerase, and telomere stabilization [56–58]. The data on the association between
TL and OSA are contradictory. Many studies have reported LTL shortening in OSA [59–63];
however, a few studies have reported telomere lengthening [64–66].

In this study, no significant relationship between the TERT gene polymorphisms and
average BMI values was observed. Shen et al. [67] reported no effect modifications between
the variant alleles and breast cancer risk in subgroups stratified by cigarette smoking, BMI
status, and family history.

No correlation between TL and OSA, hypertension, diabetes, or ischemic heart disease
was observed in the present study; however, a positive linear correlation between TL and
age was found. These observations may be attributable to the bidirectional effect of OSA
on telomeres depending on the disease’s onset, severity, and duration. Initially, an increase
in the HIF-1 telomerase activity protects telomeres, but when the oxidative stress and the
inflammatory state reach the threshold level, telomere shortening begins. However, this
hypothesis needs further research. The following are the limitations of the present study:
the subgroup of diabetes was small, and ambulatory blood pressure monitoring was not
conducted; however, this is beyond the scope of the study.
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5. Conclusions

1. No association between OSA and TERT SNPs was observed.
2. The SNPs of the TERT gene (rs2736100 and rs2853669) were found to affect arterial

hypertension prevalence.
3. The prevalence of type 2 diabetes was decreased in homozygotes of the rs2736100

SNP of the TERT gene.
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