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Abstract: Background: The effects of diabetes on the cardiovascular system as well as in the kidney
are profound, which include hypertrophy and fibrosis. Diabetes also induces oxidative stress, at least
in part due to the uncoupling of nitric oxide synthase (NOS); this is a shift in NO production toward
superoxide production due to reduced levels of the NOS cofactor tetrahydrobiopterin (BH4). With
this in mind, we tested the hypothesis that BH4 supplementation may prevent the development of
diabetic cardiomyopathy and nephropathy. Methods: Diabetes was induced in Balb/c mice with
streptozotocin. Then, diabetic mice were divided into two groups: one group provided with BH4

(sapropterin) in drinking water (daily doses of 15 mg/kg/day, during eight weeks) and the other
that received only water. A third group of normoglycemic mice that received only water were used
as the control. Results: Cardiac levels of BH4 were increased in mice treated with BH4 (p = 0.0019).
Diabetes induced cardiac hypertrophy, which was prevented in the group that received BH4 (p < 0.05).
In addition, hypertrophy was evaluated as cardiomyocyte cross-sectional area. This was reduced
in diabetic mice that received BH4 (p = 0.0012). Diabetes induced cardiac interstitial fibrosis that
was reduced in mice that received BH4 treatment (p < 0.05). We also evaluated in the kidney the
impact of BH4 treatment on glomerular morphology. Diabetes induced glomerular hypertrophy
compared with normoglycemic mice and was prevented by BH4 treatment. In addition, diabetic
mice presented glomerular fibrosis, which was prevented in mice that received BH4. Conclusions:
These results suggest that chronic treatment with BH4 in mice ameliorates the cardiorenal effects of
diabetes,, probably by restoring the nitroso–redox balance. This offers a possible new alternative to
explore a BH4-based treatment for the organ damage caused by diabetes.

Keywords: nitric oxide synthase uncoupling; sapropterin; diabetic nephropathy

1. Introduction

Diabetes mellitus is one of the most common chronic diseases worldwide, and con-
tinues to increase in numbers and significance, with characteristics of an epidemic, as
modern lifestyles lead to reduced physical activity and increased obesity [1]. Diabetic
cardiomyopathy is the manifestation in the myocardium of the alterations produced by
the altered homeostasis of glucose metabolism, independent of coronary artery disease [2].
This cardiomyopathy is initially characterized by diastolic dysfunction and cardiac hy-
pertrophy, with preserved ejection fraction. As diabetes progresses, systolic dysfunction
and reduced ejection fraction develop. This process of cardiac deterioration in diabetes
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includes altered metabolism, inflammation, and oxidative stress, which result in apoptosis
and fibrosis that further deteriorate the myocardium [3–6]. In addition, altered calcium
handling was characterized in the diabetic cardiac myocytes. The reduced capacity of
the sarcoplasmic reticulum Ca2+ pump SERCA2 results in a diminished storage capacity
of Ca2+, which impairs cardiac contractility. Importantly, it also alters cardiac relaxation,
which is evidenced in the diastolic dysfunction [7].

Diabetic nephropathy is another of the main complications of diabetes. In advanced
stages, it is characterized by urinary albumin excretion [8]. It begins with a series of cellular
and molecular changes that lead to morphological alterations, first in the glomerulus, then,
in more advanced stages, in the tubules and interstitial space [8]. Glomeruli undergo
hypertrophy, with a thickening of the basal membrane and basal tubular membrane, with
a progressive accumulation of extracellular matrix components [9]. These ultrastructure
changes are responsible for the functional alterations observed in diabetic nephropathy,
such as proteinuria, hypertension, and, finally, renal failure. After hyperglycemia is chroni-
cally established, oxidative stress is one the main biochemical alterations that occur in the
kidney [10,11], leading to a proinflammatory state [11].

Current treatments for the cardiorenal complications of diabetes are based on the
control of blood glucose levels, mainly with metformin and sulfonylureas in type 2 diabetes
mellitus and insulin mainly in type 1 diabetes [12]. More recently, clinical trials evaluating
the organ target damage such as cardiac and renal complications with the use of di-peptidyl
peptidase-4 (DPP4) inhibitors, glucagon-like peptide (GLP1) receptor agonists, and sodium-
glucose co-transporter 2 (SGLT2) inhibitors have shown promising results [13–16]. At
the preclinical level, pharmacological strategies are now directly focusing on end-organ
damage processes such as fibrosis, inflammation, and oxidative stress [3].

In diabetes, several sources may contribute to the observed oxidative stress, such as
xanthine oxidoreductase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases,
mitochondria, and uncoupled nitric oxide synthases (NOS) [17]. A direct consequence of
the increased production of reactive oxygen species (ROS) is the uncoupling of nitric oxide
synthase [18]. This is due to the oxidation of tetrahydrobiopterin (BH4), an essential cofactor
for NOS activity. When NOS is uncoupled, its activity is redirected toward the production
of superoxide, instead of NO, further contributing to the oxidative process [19]. Because
BH4 oxidation may also occur in oxidative states in the kidney, this leads to endothelial NOS
uncoupling, which generates endothelial dysfunction in the kidney vasculature, including
the glomerular capillaries, and afferent and efferent arterioles [20].

We tested the hypothesis that in diabetes, tetrahydrobiopterin supplementation leads
to the recoupling of nitric oxide synthase 1 (NOS1), preventing cardiac remodeling and the
advance of diabetic nephropathy, two of the main complications of chronic diabetes.

These findings in the diabetic heart and kidney represent a potential translational
tool with therapeutic value. The proposed investigation may have a translational im-
pact and contribute to the basic knowledge of NOS uncoupling in the setting of diabetic
cardiomyopathy.

2. Methods
2.1. Experimental Model and Protocol

Diabetes was induced in Balb/c mice (n = 30, male, 30–40 g) with the intraperitoneal
injection of three doses (100, 100, and 200 mg/kg) of streptozotocin (Sigma, St. Louis,
MO, USA) in 10 mM citrate buffer, pH 4.5. The control group received an injection of
citrate. Then, diabetic mice were divided into two groups: one group provided with BH4
(sapropterin, Inpheno, InnoPharmax, Inc., Taipei City, Taiwan, Lot # 6P001) in drinking
water (daily doses of 15 mg/kg/day, during eight weeks), and the other received only water.
A third group of normoglycemic mice that received only water were used as the control.
The protocol was approved by the Bioethics Committee of Universidad de Talca (# 2015-087-
DG). Mice were kept in the animal facility of the institution, at room temperature (22 ◦C),
under a 12 h light/dark cycle.
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2.2. Sample Collection and Storage

At the end of the eight weeks, animals were induced anesthesia with ketamine
90 mg/kg and 10 mg/kg xylazine. Then, a midline incision was made and blood was
obtained from the cava vein. After blood withdrawing, the heart and kidney were extracted.

2.3. Plasma Biochemical Measurements

For plasma biochemical measurements, we used a brain natriuretic peptide (BNP)
Kit ELISA mouse (Elabscience Biotech Co., Ltd., Wuhan, China). Plasma glucose was
determined using a kit from Valtek (Santiago, Chile). Insulin was determined using an
ELISA from EMD Millipore, Billerica, MA, U.S.A.

2.4. Histological Analyses

Cardiac and renal sections were obtained for pathology analysis. For this, hearts
and kidneys were fixed in Bouin solution. Then, pieces of the organs were dissected,
dehydrated in alcohol-xylol solutions and included in Paraplast. In a microtome, 5 µm
sections were obtained and mounted in 0.1% polylysine-treated slides. After this, sections
were rehydrated and prepared for hematoxylin–eosin, Masson’s trichrome, and periodic
acid Schiff’s staining.

Glomerular pathological analysis was performed by a blinded investigator, scoring the
degree of fibrosis, glomerular hypertrophy, and mesangial expansion according to previous
reports [21–24].

2.5. TUNEL Assay

Cardiac sections were probed with a Click-iT™ TUNEL Colorimetric IHC Detection
Kit (Catalogue N◦ C10625, Thermo Fisher Scientific Inc., Carlsbad, CA, USA), for detection
of apoptotic cells, as previously described [25,26].

2.6. Confocal Microscopy

Cardiac and renal sections were prepared for confocal microscopy, as previously
described [27]. Renal sections were stained with anti-α-smooth muscle actin or F4/80
(Santa Cruz Biotechnology, Dallas, Texas, USA), followed by fluorescein isothiocyanate
conjugated (FITC) antimouse (Jackson Inmunoresearch, West Grove, PA, USA). Nuclei
were counterstained with propidium iodine (100 µM). Cardiac sections were probed for
F4/80 to detect macrophages. Images were obtained with an LSM700 confocal microscope
(Carl Zeiss, Jena, Germany).

2.7. Tetrahydrobiopterin (BH4) Quantification

Plasma and cardiac BH4 were determined as previously described [25,28] using a
differential oxidation of biopterins protocol. Briefly, samples were submitted either to
acidic or basic conditions (pH 3 or 9). Then, samples were oxidized with iodine. BH2 and
BH4 contents were quantified by HPLC using HPLC (Perkin Elmer series 200, Waltham,
MA) with fluorescence detection with excitation at 350 nm and emission at 450 nm.

2.8. Western Blot

Cardiac proteins were prepared as previously described for Western blot analysis [29].
Cardiac homogenates (30 µg) were mixed with loading buffer and summited to SDS-
PAGE in 7.5% gels. Then, proteins were electro-transferred to nitrocellulose membranes.
After blocking with Tween-buffered saline solution supplemented with 5% nonfat milk,
membranes were incubated overnight at 4 ◦C with specific antibodies antinitrotyrosine
(Badrilla, Leeds, U.K.). For NOS, SDS-PAGE was performed in nonreducing conditions of
the loading buffer, and electrophoresis was run with the chamber immersed in ice. After
electro-blotting, nitrocellulose membranes were incubated with anti-NOS1 antibody (Cell
Signaling, Danvers, MA, USA) or NOS3 (BD Biosciences, Franklin Lakes, NJ, USA).
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2.9. Statistical Analysis

Data are presented as means ± SEM, compared using ANOVA (normally distributed
data) or Kruskal–Wallis test (nonparametric data) with Tukey’s or Dunn’s post hoc tests for
comparisons between groups. A value of p < 0.05 was considered statistically significant.

3. Results

Three groups of mice were used: a group of normoglycemic mice, a group of streptozot
ocin-induced diabetic mice, and a third group of diabetic mice that received sapropterin
(BH4) in drinking water, for eight weeks. At the end of the experimental period, mice
were euthanized, and blood and organs were collected. Morphometric and blood pa-
rameters are presented in Table 1. These data confirmed the presence of hyperglycemia
and reduced insulin levels in streptozotocin-treated mice. Additionally, cardiac hypertro-
phy was appreciated. Of these parameters, only cardiac hypertrophy was prevented by
sapropterin treatment.

Table 1. Morphometric and plasmatic parameters of control, diabetic and diabetic mice treated with
tetrahydrobiopterin (BH4). BNP; brain natriuretic peptide. ANOVA followed by Tukey as post-hoc
test. * p < 0.05 vs. control, ** p < 0.005 vs. control.

Control Diabetics Diabetics + BH4 p Value

n 9 9 10
Body weight (g) 40.7 ± 1.3 36.8 ± 1.0 34.0 ± 1.3 * 0.0026
Heart weight (g) 0.157 ± 0.010 0.161 ± 0.007 0.139 ± 0.003 0.0616

Heart weight/tibia
length (g/mm) 7.57 ± 0.39 8.59 ± 0.34 * 7.39 ± 0.16 0.0495

Insulin (ng/mL) 1.09 ± 0.30 * 0.29 ± 0.12 0.21 ± 0.08 0.0037
BNP (pg/mL) 227.9 ± 25.3 ** 96.1 ±13.5 66.6 ± 12.6 0.0495

Glucose (mg/dL) 137 ± 7.7 * 316 ± 69.7 247.3 ± 29.7 0.0132

Next, we evaluated plasma levels of BH4 (Figure 1). These were reduced in diabetic
mice compared with those in normoglycemic controls, and increased toward normal in mice
treated with sapropterin (39.1 ± 5.7 control, 12.5 ± 5 diabetic mice, and 22.9 ± 8.4 pmol/L
in diabetic mice treated with BH4, p < 0.05), as well as the ratio between BH4 and its
oxidized form BH2: 3.6 ± 1 control, 1.1 ± 0.6 diabetic mice, and 12.7 ± 4.1 in diabetic mice
treated with BH4, p < 0.05 diabetic mice vs. diabetic mice + BH4. Intracardiac (intra-atrial)
levels of BH4 were significantly increased in sapropterin-treated mice (8.8 ± 2.2 control,
9.6 ± 4.7 diabetic mice, and 209.7 ± 99.9 pmol BH4 mg/protein in diabetic mice + BH4,
p = 0.0019).

Next, we evaluated the impact of sapropterin treatment on cardiac oxidative stress
(Figure 2). For this, we evaluated the levels of nitrotyrosine on intracardiac proteins by
Western blot. This assay showed a significant increase in the content of nitrated proteins in
diabetic mice compared with that of normoglycemic controls (p < 0.001), and this content
was reduced in sapropterin-treated mice. In addition, we evaluated the levels of NOS1
presented as the dimer or monomer. Under reduced levels of BH4, NOS was unable to
stabilize as a dimer and, as a consequence, was found in its monomeric form. Using
SDS-PAGE under nonreducing conditions, the forms could be appreciated by Western
blotting. This analysis showed that in our conditions, both the monomer and dimer of
NOS1 were present. The NOS1 dimer and monomer levels were similar in the control
and diabetic hearts. Nevertheless, the treatment with sapropterin increased the levels
of dimer to monomer in diabetic hearts (p < 0.05). In the case of NOS3, the presence
of the monomer was almost indistinguishable from that of the dimer. Neither of these
constitutively expressed NOS showed changes in their expression levels (p > 0.05). These
data suggested that sapropterin treatment was able to reduce intracardiac oxidative stress,
probably independent of changes in NOS1 activity.
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Figure 2. Oral administration of sapropterin reduces the intracardiac levels of oxidative stress.
(A) Western blot analysis of nitrotyrosine in cardiac protein extracts from control, diabetic mice, and
diabetic mice that received sapropterin (BH4) in drinking water. (B) Western blot for the levels of
NOS1 and NOS3 in homogenates from control, diabetics and diabetics mice that received sapropterin
(BH4) in drinking water. * p < 0.05, ***, p < 0.001. ns = not significant.
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3.1. Cardiac Remodeling

Diabetes induced cardiac hypertrophy, evaluated as the ratio of heart weight/tibia
length, which was prevented in the group that received BH4: (7.6 ± 1.03 g/mm con-
trol, 8.6 ± 0.63 g/mm diabetic mice, and 7.38 ± 0.5 g/mm diabetic mice + BH4, p < 0.05,
Table 1). In addition, hypertrophy was evaluated as cardiomyocyte cross-sectional area
(Figure 3). This area was reduced in diabetic mice that received BH4 (1190 ± 460 µm2 con-
trol, 1194 ± 389 µm2 diabetic mice, and 1106± 375 µm2 diabetic mice + BH4, p = 0.0012). In
addition, we evaluated cardiac fibrosis, which is also a hallmark of diabetic cardiomyopathy,
by Masson’s trichrome staining. Diabetes induced cardiac interstitial fibrosis, which was
reduced in mice that received BH4 treatment (2.2 ± 1.1% control, 4.12 ± 1.6% in diabetic
mice, and 2.16 ± 1.2% in diabetic mice + BH4, p < 0.05).
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3.2. Apoptosis and Inflammatory Cells

Because there is significant cardiac damage in chronic diabetes, both apoptosis and the
presence of inflammatory cells has been described in the diabetic myocardium. Apoptosis
was evaluated as the presence of TUNEL-positive cells in cardiac sections (Figure 4A).
Diabetes induced an increase in the percentage of TUNEL+ cardiomyocytes compared with
normoglycemic hearts, but this increase was not modified in the hearts from sapropterin-
treated mice. We also evaluated the presence of infiltrative inflammatory cells by im-
munofluorescence of F4/80, a cell surface marker that is present in macrophages (Figure 4B).
Diabetic hearts showed an increase in the number of macrophages present in the my-
ocardium compared with normoglycemic controls. This number was significantly de-
creased in the hearts of sapropterin-treated mice.
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(A), representative images of TUNEL positive cells in cardiac sections obtained from control, diabetic
and diabetic mice that received BH4. Arrows indicate TUNEL positive nuclei. (B), representative
confocal microscopy immunofluorescence images of F4/80 (green) in cardiac sections from control,
diabetic and diabetic mice treated with sapropterin (BH4). Asterisk * p < 0.05, *** p < 0.001 compared
to the group indicated by brackets. ANOVA followed by Tukey post hoc test. Scale bar indicates
30 µm. ns = not significant.

3.3. Renal Changes

Next, we evaluated the impact of sapropterin treatment on diabetic nephropathy,
evaluating glomerular morphology (Figure 5).

Diabetes induced glomerular hypertrophy compared to normoglycemic mice and
was prevented by BH4 treatment (0.79 ± 0.08 mm2 in control, 1.12 ± 0.1 in diabetic and
0.98 ± 0.15 mm2 glomerular tuft size in diabetics + BH4, p = 0.0004).

In addition, diabetic mice presented glomerular fibrosis, evaluated by Masson’s
trichrome staining, which was prevented in mice that received BH4: 1.01 ± 0.25 in control,
2.25 ± 0.29 in diabetics and 1.46 ± 0.33 score units in diabetics + BH4 (p < 0.0001). Next,
we evaluated mesangial expansion, which was increased in diabetic mice compared to
controls, but was not reduced by sapropterin treatment (96.1± 10.7% control, 145.7± 10.4%
diabetics, 143.5 ± 17.6% diabetics treated with sapropterin, p < 0.05 diabetics vs. control).

Next, we evaluated the degree of macrophage infiltration and the expression of α-
smooth muscle actin. Macrophage infiltration was evaluated by immunofluorescence
staining of the cell surface marker F4/80 (Figure 6). Renal sections of control normoglycemic
mice did not show the presence of infiltrating inflammatory cells, neither in the glomeruli
nor in the peritubular interstitium. On the contrary, F4/80-positive cells were extensively
found in the peritubular space of diabetic mice. This infiltration was dramatically reduced
in the diabetic kidneys from mice treated with sapropterin.
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Figure 5. Renal morphological changes of diabetes are ameliorated by oral administration of BH4.
Left panel, representative images of hematoxylin–eosin staining in renal sections from kidneys
of control, diabetic, and diabetic mice that received BH4. Middle panel, representative Masson’s
trichrome staining for collagen IV. Right panel, periodic acid-Schiff (PAS)-stained renal sections from
kidneys of control, diabetic, and diabetic mice that received BH4. * p < 0.05; ** p < 0.01; *** p < 0.001
vs. the groups indicated by brackets. Bar indicates 50 µm. ns = not significant.

In addition, we evaluated the presence of myofibroblasts as a marker of initial fibrosis
(Figure 7). For this, renal sections were analyzed for α-smooth muscle actin (α-SMA). As
expected, in the kidneys from normoglycemic control mice, there was no evidence of the
presence of myofibroblasts in the peritubular space. On the contrary, the renal sections of
diabetic mice showed the presence of these cells in the peritubular space mainly. Kidneys
from sapropterin-treated mice showed almost no signal for α-SMA.

These results suggested that sapropterin treatment reduced macrophage infiltration
and peritubular fibrosis in the diabetic kidneys. Overall, these results suggested that
chronic treatment with BH4 in mice ameliorates the cardiorenal effects of diabetes, probably
by restoring the nitric oxide production. This offers a possible new alternative to explore a
BH4-based treatment for the organ damage of diabetes.
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Figure 6. Renal tubular macrophage infiltration is prevented by oral administration of BH4 to
diabetic mice. Representative confocal images of renal sections probed for F4/80 (green), a marker of
macrophages, in normoglycemic control, diabetic, and diabetic mice treated with sapropterin (BH4).
Middle panel, corresponding section counterstained with propidium iodide (P.I., red) for nuclei.
Right panel, merge of both F4/80 and P.I: signals. Images were obtained at 40×magnification. Scale
bar indicates 10 µm.
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Figure 7. Renal tubular fibrosis was prevented by oral administration of BH4 to diabetic mice.
Representative confocal images of renal sections (medulla) enriched in tubules probed for alpha
smooth muscle actin (α-SMA, green), a marker of myofibroblast, in normoglycemic control, diabetic,
and diabetic mice treated with sapropterin (BH4). Middle panel, corresponding section counterstained
with propidium iodide (P.I., red) for nuclei. Right panel, merge of both α-SMA and P.I: signals. Images
were obtained at 40×magnification. Scale bar indicates 10 µm.

4. Discussion

Our present results showed that oral administration of sapropterin (BH4) for one
month to diabetic mice was able to ameliorate some pathological changes in both the
heart and kidneys, two of the main organ targets of diabetes. Notably, BH4 administration
reduced cardiac hypertrophy and fibrosis, while preventing glomerular hypertrophy in the
kidney. These effects were associated with the reduction in oxidative stress, but apparently
independent of NOS1 recoupling. Previous reports have shown that eNOS uncoupling is
an important source of ROS in the diabetic kidney [30–34].
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Reduced levels of tetrahydrobiopterin were attributed to the reduced expression
of guanosine5′-triphosphate cyclohydrolase I (GTPCH), a rate-limiting enzyme in the
synthesis of BH4 [35]. Experiments where GTPCH was overexpressed then reverted the
phenotypes associated with diabetic nephropathy [32] and cardiomyopathy [36,37].

In the diabetic heart, NOS uncoupling has emerged as an important source of ROS [36–39],
in a way that appears as an important therapeutic target to prevent the development of
diabetic cardiomyopathy. Our results agree with those obtained by recent studies regard-
ing the role of NOS1 uncoupling in the heart, which indicate that BH4 supplementation
or genetic modifications that lead to the increased intracellular production of BH4 has a
beneficial impact on the left ventricular function of diabetic mice. This effect is achieved
by improving intracellular calcium handling, hence left ventricular systolic and diastolic
mechanics. Interestingly, some of the positive effects of BH4 supplementation in the diabetic
heart appear to be independent of NOS recoupling [39]. Our results are consistent with
those findings because we did not observe significant recoupling of NOS1 in the diabetic
heart after BH4 treatment, although we observed reduction in cardiac oxidative stress. It
was suggested that this protective effect may be exerted by a metabolic action of NOS1,
increasing the expression of insulin-independent glucose transporters (GLUT-1), which
improved myocardial energetics [39]. In addition, it was also shown that BH4 exerts its ben-
eficial effects in diabetic cardiomyopathy by activating peroxisome proliferator-activated
receptor-γ coactivator 1-α (PGC-1α) signaling by interacting with calcium/calmodulin-
dependent protein kinase kinase 2 (CaMKK2). These effects are also independent of NOS1
activity [40].

It was described in a model of cardiac hypertrophy by transverse aortic constriction
that BH4 supplementation inhibits macrophage infiltration in the myocardium, probably by
reducing the inflammatory signaling [41]. Interestingly, this protection is also independent
of NOS uncoupling, which is consistent with a role of BH4 in macrophages biology. The
exact mechanism through which BH4 mediates these anti-inflammatory effects remains to
be determined, but it has been reported that BH4 is important for the macrophage functions,
dependent and independent of iNOS [42,43].

We also observed a reduction in the number of macrophages present in the dia-
betic myocardium after treatment with BH4. Nevertheless, we did not evaluate the ori-
gin of these macrophages. The recent literature indicates the presence of at least four
types of macrophages in the heart, with one being the infiltrating-monocytes-derived
macrophages [44–46]. Particularly, a study using streptozotocin-induced diabetes in mice
showed that cardiac macrophages producing interleukin 1β play an important role in the
generation of arrhythmias in the diabetic heart [47]. A recent study documented that BH4
deficiency in macrophages increased the production of interleukin 1β and the inflammatory
profile of these cells [48].

In the context of the diabetic patient, it is relevant to consider both the development
of cardiomyopathy and nephropathy. Here, we showed that BH4 treatment was able to
prevent the cardiac damage associated with the initial stages of diabetic cardiomyopathy,
reducing macrophage infiltration, fibrosis, and hypertrophy, and similar effects were
observed in the kidney at the glomerular and tubular levels. Interestingly, even though
we observed a general beneficial effect of BH4 supplementation on renal morphology
in diabetic mice, BH4 mesangial expansion was not modified. This is consistent with a
previous report that suggested that BH4 may induce mesangial proliferation [49]. Plasma
BH4 concentration was postulated as a predictor of renal function in diabetic patients [50].

Fibrosis has been identified as a common factor in cardiorenal syndrome [51,52], which
is a reciprocal interaction between cardiac and renal dysfunction in several pathological
states, including diabetes [53,54]. Here we verified that fibrosis affected both organs and
was prevented by BH4 administration.

Importantly, sapropterin, a form of BH4, is available and approved for use in humans
in phenylketonuric patients [55]. This opens the possibility that this drug may be considered
for use in diabetes clinical trials.
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5. Conclusions

The results of the present study indicated that chronic oral administration of sapropterin
(BH4) in mice ameliorates the morphological changes produced by diabetes in the heart
and the kidney, probably by reducing oxidative stress, reducing inflammation, and the
fibrotic processes that occur in the myocardium and at the glomerular and peritubular
space in the kidney. This offers a possible new alternative to explore a BH4-based treatment
for the organ damage caused by diabetes.
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