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Abstract: Medical records generated in hospitals are treasures for academic research and future
references. Medical Image Retrieval (MIR) Systems contribute significantly to locating the relevant
records required for a particular diagnosis, analysis, and treatment. An efficient classifier and effective
indexing technique are required for the storage and retrieval of medical images. In this paper, a
retrieval framework is formulated by adopting a modified Local Binary Pattern feature (AvN-LBP)
for indexing and an optimized Fuzzy Art Map (FAM) for classifying and searching medical images.
The proposed indexing method extracts LBP considering information from neighborhood pixels and
is robust to background noise. The FAM network is optimized using the Differential Evaluation (DE)
algorithm (DEFAMNet) with a modified mutation operation to minimize the size of the network
without compromising the classification accuracy. The performance of the proposed DEFAMNet is
compared with that of other classifiers and descriptors; the classification accuracy of the proposed
AvN-LBP operator with DEFAMNet is higher. The experimental results on three benchmark medical
image datasets provide evidence that the proposed framework classifies the medical images faster
and more efficiently with lesser computational cost.

Keywords: LBP variants; image retrieval; feature indexing; FAM classifiers; DEFAMNet

1. Introduction
1.1. Motivation

Advanced developments in computer hardware, storage technology, and the avail-
ability of intelligent algorithms have provided opportunities for maintaining records, data,
and information in digital form. The information available in the stored data leads to
faster development, improvement, detection, forecasting, analysis, education, and inva-
sions. The challenge at hand is to frame a methodology that can search and retrieve the
required information from these huge digital databases. An overview of a Retrieval System
architecture is depicted in Figure 1. Keywords relevant to requirement information are
presented as queries to a search process. The records in the database are indexed using their
related keywords. The searching process looks for matches in the index of the database
to the query and displays the best matches along with locations of records. Queries for
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the retrieval system, indexing, and the search algorithm adopted for classification and
matching measures play a vital role in deciding the performance.
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Health care is one among various applications of image retrieval systems. The im-
provements and availability of advanced technologies and methods of digital storage
have created a broad scope for adopting Electronic Medical Record (EMR) systems. EMR
systems contain information about the health of an individual [1]. The information in
the medical records includes the patient’s personal details, administrative data, allergies,
vital symptoms, medicinal histories, lab test results, radiology images, diagnoses, medica-
tions, progress details, and follow-up dates. One/many of the pieces of information in the
record shall have a significant feature suitable to be the index for the record and key for
representing the record in the EMR system.

The need is to frame an efficient retrieval system that can extract features to index,
search, and retrieve the records relevant to queries on large image databases. The challenge
is to develop a well-structured system that is on par with techniques like human annotation.
MIR Systems provide a prominent scope for developing and improving the services in the
field of medicine. Many MIR systems have been developed and are available. In this paper,
we propose an MIR System adopting LBP-based indexing and a FAM-based classifier with
an efficient retrieval performance.

The main contributions in the proposed are outlined below:

â The framework adopts a novel LBP operator, namely, AvN-LBP.
â The proposed descriptor addresses the issues due to noisy images and includes the

information available in the neighborhood pixels.
â An optimized FAM network is modeled as a Classifier.
â The Deferential Evolution Algorithm (DE) is used for evolving the FAM network,

namely, DEFAM.
â A MIR System, namely, DEFAMNet, to retrieve the required images from medical

databases, is developed, trained, and tested using benchmark databases.
â A modified Mutation operator is implemented during the evolution of the FAM Network.

1.2. Related Work

Visual patterns in images are better represented by Texture. LBP is broadly adopted
by researchers in image classification studies such as face detection, industrial applications,
and pattern recognition. The Texture-based LBP descriptor [2] is an efficient and simple
operator derived from a pre-defined threshold segmentation method. The neighborhood
pixels are compared with a threshold and represented as ‘0’ and ‘1’ and finally converted
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into binary numbers. The computational simplicity and robustness of the LBP operator to
variations in illumination is an undebatable choice for various practical applications. Many
enhanced and modified variants of LBP operators have been developed to overcome the
challenges faced by operators and fit different applications. Modifications are incorporated
either by including the features of other operators or implementing new mathematical
processes for estimating the LBP decimal.

Research articles have provided enough significance to the effectiveness of LBP opera-
tors and their variants. An enhanced LBP operator, EF-ALBP [3], by combining the local
binary pattern with an edge smoothing filter and accumulation function suppresses noise,
preserves edges, and extracts the margins of medical images. Experiments were performed
on medical images comprising MRI, CT, and X-ray. The results demonstrate the strength
and robustness of the EF-ALBP compared to other descriptors. A novel operator, namely,
Local Binary Patterns Clustering (LC) is used for dermoscopic image segmentation [4].
The operator improves the segmentation process by extracting border lines, geometric
details, and target regions. The performance of LC was found to be better compared to
26 popular segmentation algorithms. Color information with the LBP feature is combined
to generate a maximal multi-channel LBP (MMLBP) [5] operator. The new MMLBP proved
efficient in identifying similarities between images and improves the performance of the
CBIR system. The size of the MMLBP operator is smaller and performed consistently across
different datasets. The Attractive Center-Symmetric LBP (ACS-LBP) and Hessian matrix
are combined to develop a hybrid operator Hess-ACP-LBP [6]. The new LBP operator has
texture analysis capabilities and differential texture information. A similar feature with
the combined capabilities of LBP and affine-invariant detectors [7] proved its ability to
identify key points and descriptions from MRI images to detect mild cognitive impairment
convertible. A wavelet-based LBP for classifying X-ray images using a random forest
classifier [8] exhibited improved performance. Local and global features represent images
and are informative to differentiate objects. A combined feature of the LBP operator and
Chebyshev moments [9] is introduced and tested to classify images in the most challenging
datasets of Outex, ALOT. The results were found to be very encouraging and supportive of
the superiority of the LBP operator.

Textures patterns from biomedical images [10] are extracted and the weight aspect is
added to form a Multi-scale Gabor rotation-invariant local binary pattern (MGRLBP). Using
the MGRLBP operator significantly improved the classification capability and reduced the
false classification ratio. To include the strength of local information available in the pixels,
an LBP operator accounting center-symmetric (CSLBP) [11] is developed. The operator
was tested on databases of different types of images including medical images from the
OASIS dataset and was found to be effective. The algorithm to estimate CSLBP features is
simple and needs less computation time. The length of the operator is also considerably
smaller, and the performance is on par with other operators. The influence of noise on the
LBP operator makes it less suitable for facial expression recognition. An LBP operator with
reduced noise in its feature extraction estimated using new neighborhoods obtained by
means of pixels in radial directions and adaptive windows was derived and successfully
tested [12]. A Hybrid operator combining CLBP and MSCLBP has been developed to
perform classification tasks in GeoEye imagery [13] and found suitable. LBP operators and
variants are based on greyscale images. Hence, information is lost during conversion from color
images to greyscale images. A color-based LBP extracted directly from color images [14] is
used for the classification of color images and is found to be more efficient. An LBP operator
with a color difference sign and color difference is fused to form a new multiple-channel LBP
(MCLBP) [15] and has the potential to perform well in color image classification.

Experiments performed on images in well-known datasets demonstrate the superior
performance of descriptors. QuLBP [16], the quantum Local Binary Pattern, has been
formulated and tested using MRI and grayscale images. Extensive experimentation results
were recorded, and analysis provided encouraging results of the QuLBP approach. A
combination of Local Binary Pattern in three orthogonal planes (LBP-TOP) and a histogram
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of orientation gradients (HOG-TOP) has been used to learn brain tumors [17]. The results
of testing on BRATS 2013 certify the suitability of the proposed framework in detecting
brain tumors. The LBP operator in combination with the local information analysis com-
ponent produced a high classification accuracy of around 99.86% in the identification of
the biometrics of coronary angiography images [18]. Identifying a more suitable set of
LBP variants to represent images assures the best performance of classification systems.
Experiments have been performed to explore the capacity of several LBP-based descriptors
to represent images. It was analyzed and recorded that LPB operators generated with the
same radius and number of neighborhoods best represent the images of images [19]. HIS
images have a huge amount of spatial and spectral information. Existing feature descriptors
incur large computational costs. Classical LBP operators are exclusively implemented for
spatial texture representation. LBP operators used to index HSI images have limitations
on spatial–spectral information. To overcome the limitation, Clifford algebra-based mul-
tidimensional LBP (MDLBP) for HSI is proposed [20]. The descriptor is able to extract
spatial–spectral feature from multiple dimensions. The test results of HSI classification
using MDLBP outperforms the LBP variants. A new DR_LBP [21] approach including
the information available in neighborhood pixels was framed and implemented for face
recognition tasks and produced good results.

An LBP operator occupies a very larger space in texture classification requirements
because of its capability to represent the texture features of an image. The operator has
few limitations if attended and shall be a more powerful tool for applications in more
sensible areas such as security, medical, defense, etc. The three major shortfalls of an LBP
operator are (1) its performance being limited by the quality of texture images because
of low-resolution imaging sensors due to size constraints in transmission networks and
transmission loss, (2) the robustness of the center pixel, and (3) the corruption of uniform
patterns by the presence of noise.

The retrieval of records that are similar to the requirements from the database involves
classifying, searching, matching, and locating the records. This complete sequence is
performed by algorithms, namely, classifiers. There are several effective algorithms that
are available and used as classifiers. Among the algorithms, Neural Networks with deep
learning techniques have proven their suitability for Medical Image Classification (MIC).
CNN architectures such as Alexnet, ResNet, Inception, Densenet, etc. are used in many of
MIC studies. The medical image classification research work published is mentioned with
complete analysis [22]. The survey provides a detailed insight into the experimentation
and methodologies used on medical image databases for feature extraction and various
classification techniques.

A Deep Convolutional Neural Network (DCNN) [23] has been trained and imple-
mented for detecting Alzheimer’s disease in MRI brain images. DCNN has delivered
better performance and enhanced precision in retrieval. CNN architectures VGG16 and
InceptionV3, capsule network training, and Space Vector Machine classifiers were tested
for the evaluation of their performance to classify pneumonia from chest X-ray images [24].
The results depicted showed that CNN architectures are more effective and delivered
useful performance. CNN and its best-performing frameworks have been discussed in
detail [25]. The discussion covers the contents of understanding medical imaging tasks
such as classification, segmentation, localization, and detection. The detailed survey pro-
vided clarity about CNN in medical image processing. The tasks include analysis and
alignments in the breast, chest, lungs, brain, and other organs. CNN is also implemented
for various other applications such as object detection and segmentation in medical image
studies [26]. The algorithms are found to be suitable for processing ultrasound images,
endoscopic images, CT, PET, and MRI. CNN was trained to detect the skin lesion from
the image and for measuring the border irregularity [27]. The network achieved outstand-
ing performance. A deep-learning CNN network was employed to diagnose infections
from X-ray images [28]. The analysis was performed by extracting LBP features from the
images. The results were found to be very encouraging compared to results obtained
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in other studies. The BreastUNet [29] framework with CNN with a capability to graft
features has been developed and trained to analyze mitotic nuclei in breast histopathology
images. GLocal Pyramid Pattern, a variant of LBP, is used for texture recognition in Breast
Cancer datasets. The framework is found suitable for successfully classifying images with
mitotic nuclei and non-mitotic nuclei. Detecting various types of cells in and around the
tumor matrix is very significant and supports classifying the tumor micro-environment for
cancer prognostication and research. The availability of a real-time dataset plays a vital role
and encourages researchers to develop and test algorithms for efficient classification and
retrieval networks. A large and diverse dataset of nucleus boundary annotations and class
labels with key findings during a challenging task with the dataset MoNuSAC2020 has been
published [30]. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, 4 organs,
and 4 nucleus types. A detailed analysis has been performed by implementing six different
algorithms for classification tasks [31]. The evaluation of retrieval and classification algo-
rithms dealt with textured 3D objects. The results and insight in the work have provided
much-required contents to the research community. The images received from sensors and
transmitted from remote locations will face a loss of information. The lost information
may cause a variety of transformations simultaneously, such as non-rigid deformations
(changes in pose), topological noise, and missing parts—a combination of nuisance factors
that renders the retrieval process extremely challenging. A total of 15 retrieval algorithms
were evaluated in the contest [32] which provide the details of the dataset and present
comparisons among the methods. Intuitionistic fuzzy sets (IFSs) are a competitive tool
during decision-making during classification tasks and resolving ambiguity and vagueness
cases. A novel similarity-distance technique [33] with a better performance rating has
been framed. A comparative analysis is presented to showcase the advantages of the
novel similarity-distance over similar existing approaches. Furthermore, the applications
of the novel similarity-distance technique in various decision-making situations have been
explored. Predicting patient survival by the degree of accuracy and efficiency is the goal of
any retrieval approach. An approach is demonstrated [34] to understand the importance of
using classification and FS algorithms to obtain the best results faster, as it is a crucial factor
in a patient’s survival. After conducting experiments and analyzing results obtained in
terms of error rate and accuracy, it was concluded that the classification algorithm produces
better results without combining them with the FSFA. The rich literature provides strong
evidence for using an LBP operator for indexing and a Neural Network-based framework
for classification.

From the literature, a few characteristics of images, such as overlapping classes, noisy
images, the sequence of presenting images for training, etc., influence performance and
cause category proliferation problems in Neural Networks. This importantly influences the
prediction accuracy of the classifier, and the proposed work aims to improve the accuracy.

2. Materials and Methods

The proposed framework performs image indexing using a novel LBP operator,
namely, AvN-LBP. The proposed descriptor addresses the issues caused due to noisy
images by including the information available in the neighborhood pixels. The difficulties
faced by stand-alone classification algorithms are addressed by including neural network-
based classifier FAMs. To improve the computation efficiency and classification accuracy,
the FAM network is optimized. DE is used for evolving a FAM network, namely, DEFAM.
A MIRS framework DEFAMNet to retrieve the required images from benchmark medi-
cal image databases by using AVN-FAM for indexing and DEFAM for classification and
retrieval is developed, trained, and tested.

2.1. Introduction to LBP Methodology

An LBP modeled by Ojala [35,36] is a descriptor used to represent texture images and
is estimated at each pixel of an image I of size N ×M. Xr,n denotes the (n + 1)th pixel at a
distance r around the center pixel x0,0. The image represented by I in Equation (1) is of size
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5 × 5 with r = 2 and, for example, X2,4 represents the 5th (fifth) pixel in the 2nd (second)
row of image I.

I5×5 =


x2,6 x2,5 x2,4 x2,3 x2,2
x2,7 x1,3 x1,2 x1,1 x2,1
x2,8 x1,4 x00 x1,0 x2,0
x2,9 x1,5 x1,6 x1,7 x2,15
x2,10 x2,11 x2,12 x2,13 x2,14

 (1)

The LBP descriptor is a string of binary bits 0 (zero) or 1 (one) based on a mathematical
relationship between a particular pixel and the pixels present in its neighborhood. The
estimation of LBP is defined in Equation (2).

LBPp,r =
p−1

∑
n=0

S(xr,n − x0,0)2n (2)

where

S(x) =
{

1x ≥ 1
0x < 1

Two examples of image patches (a,b) and corresponding LBP factors (a1, b1) are shown
in Figure 2.
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Equation (3) provides the equation to compute the h(k) of length K = 2p, LBP descriptor
for the complete image.

h(k) =
N

∑
i=0

M

∑
j=0

δ(LBPp,r(i, j)− k) (3)

where 0 ≤ k ≤ K− 1; LBPp,r(i, j) is the LBP pattern of each pixel i, j of an image I of size NXM.
LBP has many promising features that makes it an eminent choice for the represen-

tation of texture images. The features include invariance, simple calculation that reduces
computational time, fewer assumptions and parameters, rotation invariance, and better
discrimination power. However, LBP suffers from a few weaknesses that need to be ad-
dressed for adopting the descriptor for applications expecting superior performances. From
Equation (3), it can be noticed that the length of the histogram depends on P and stretched
to a length of K = 2p. Larger P values produce longer histograms. It is also evident from the
process of estimating the descriptor that the presence of noise influences the LBP operators.
The presence of noise in the images will produce non-uniform patterns. The performance of
the stand-alone classifiers is affected because of these non-uniform patterns. To overcome
the weaknesses of the LBP descriptor, the below session presents a modified LBP-based
descriptor AvN-LBP for texture image representation.

2.2. Proposed Approach

The proposed approach is modeled explicitly to include the combined information
of the central pixel and the pixels in its neighborhood and hence possesses the strength
of maintaining information coming from neighbors and minimizes the effects of noise.
It produces consistent patterns and is discriminative and robust to noise. The AvN-LBP
operator of an image is estimated using Equation (4).

AvN − LBPp,r =
p−1

∑
n=0

S(x′r,n − µr)2n (4)

where

S(x) =
{

1, x ≥ 0
0, x < 0

µr =
1
p

p−1

∑
n=0

x′r,n

The x′r,n is computed by averaging the pixels in an image patch lying on an angular
sector of a circle with a radius R = 2.3 and θ = 150, 300, 450. If θ = 450, the pixels in the circle
with radius R from the center pixel are divided into eight sectors. The example in Figure 3
provides the steps for the calculation of AvN-LBP. The proposed AvN-LBP descriptor has
three major advantages:

• Thresholding at µr tends to make local neighborhood vectors almost zero-mean. Hence, the
descriptor proposed is not affected by grayscale changes and is resistant to lighting effects.

• Since the threshold is estimated from the neighborhood pixels, the pattern is more
discriminative compared to LBP. Figure 4 shows the discriminative strength of the
proposed descriptor.

• Weak edges are better preserved by AvN-LBP. Analyzing Figure 5, it can be noticed
that the LBP patterns are not reflecting the actual distribution of pixels compared to
the proposed descriptor.

• Less influenced by the presence of noise. Figure 6 provides a comparison between the
signal-to-noise ratio (SNR) and the classification accuracy for the proposed AvN-LBP
and conventional LBP. The results provide the evidence for the robustness of the
proposed descriptor for different Gaussian noise levels added to images.
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Figure 3. Steps detailed for the calculation of the proposed AvP-LBP descriptor for the center pixel in
an example image patch. (a) Image Patch and sectors for R = 3, p = 8, and θ = 450. (b) Average value
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Figure 5. Example for effective edge preservation by proposed AvN-LBP. (a,b) Two image patches of
size 5 × 5. (a1,b1) AvN-LBP preserves weak edge patterns. Two 5 × 5 example image patches are
shown in (a,b). (a1,a2) are the patterns given by LBP for (a,b), respectively. (b1,b2) AvN-LBP patterns
of (a,b), respectively.

Biomedicines 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

Figure 6. Comparison of the robustness of the proposed AvN-LBP descriptor to noise and the com-

parison with conventional LBP. 

2.3. Fuzzy ARTMAP Architectures 

2.3.1. Fuzzy ARTMAP (FAM) 

The FAM Architecture in Figure 7 has ART modules aART  and bART . These two 

modules are interconnected by a mapping field. The unlabeled descriptors of images from 

a class are submitted to input (a) of module aART , and the labeled descriptor of the same 

class is given to input (b) of bART . The map field relates the descriptors to their labeled 

counterparts. In FAM, learning ensures that each category is connected to one node rep-

resenting a particular class in the database. The classes of all categories are identified and 

labeled with their corresponding classes during the learning processes. Each set of pat-

terns (a, b) given as an input to the FAM classifier during the learning process shall belong 

to correctly labeled classes. 

 

Figure 7. FAM Architecture. 

In case the input pattern to aART  does not choose a class associated with the one 

presented to bART , FAM performs a reset operation laterally, and the vigilance 

Figure 6. Comparison of the robustness of the proposed AvN-LBP descriptor to noise and the
comparison with conventional LBP.

2.3. Fuzzy ARTMAP Architectures
2.3.1. Fuzzy ARTMAP (FAM)

The FAM Architecture in Figure 7 has ART modules ARTa and ARTb. These two
modules are interconnected by a mapping field. The unlabeled descriptors of images
from a class are submitted to input (a) of module ARTa, and the labeled descriptor of the
same class is given to input (b) of ARTb. The map field relates the descriptors to their
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labeled counterparts. In FAM, learning ensures that each category is connected to one node
representing a particular class in the database. The classes of all categories are identified
and labeled with their corresponding classes during the learning processes. Each set of
patterns (a, b) given as an input to the FAM classifier during the learning process shall
belong to correctly labeled classes.
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In case the input pattern to ARTa does not choose a class associated with the one
presented to ARTb, FAM performs a reset operation laterally, and the vigilance parameter
is varied. Thus, the network selects a different suitable category. The categories in ARTa

and ARTb that are not committed with patterns will not have associations in the map field
during the initial stages of the learning process. The focus of the work is classification
learning. The images are classified into their respective classes. The output nodes F2 of FAM
will have 10 nodes to represent a database with 10 classes. A FAM network is trained to identify
the classes in a database and used as a classifier in Content-Based Image Retrieval (CBIR)
systems to organize and search the images in the database based on their features. Images
with the same features are considered similar and grouped as the same class. Algorithm 1
provides the algorithm for training FAM network. After proper training, a FAM network is
capable of identifying the class of query images submitted to the CBIR system.

Based on the sequence of input images during the training phase of the classifier, the
presence of similar characteristics between images (overlapping classes) across different
classes in the dataset and the presence of noise are major reasons that increase the size of
FAM networks. The problem is mentioned as a category proliferation problem [36]. The
problem influences the precision of image categorization and also increases the computa-
tional cost.
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Algorithm 1: Training FAM network

1. FNT = Training (F, l)//FNT-Trained FAM Network
2. //F: Feature Vector, l: Label→ Class of the feature vector.
3. Initialize ρ, NE = 0//ρ = Vigilance Parameter, NE: Count training epochs
4. While NE < number of training epochs
5. Ii = F = (a1,a2, . . . ,ad);//d: dimension of feature vector
6. AI1 = (a1, a2, . . . ,ad,1-a1,1-a2, . . . ,1-ad)
7. if AI = first input of label l
8. W = AI
9. W←l

10. else for (all j) compute Tj(AI) =
∣∣∣AI ∧Wj

∣∣∣/α +
∣∣∣Wj

∣∣∣
11. J = argmax (Tj(AI); J: Winner node

12. if
∣∣∣AI ∧Wj

∣∣∣/|AI| ≥ ρ; vigilance test

13. if l = J:Wnew
k = Wold

k + β(AI ∧Wold
k )

14. else:ρ = MFk(AI)+ ∈
15. While (more winner nodes are available)
16. While (more training patterns are available)
17. End

2.3.2. Non-Proliferation Fuzzy ARTMAP (NPFAM)

NPFAM is a FAM architecture with a modified learning process that addresses the
category proliferation problem. The NPFAM framework is adopted for image retrieval [37]
with an inter-ART reset model to restrict the growth of the number of categories that result
in larger networks leading to category proliferation. The model decides the requirement
of the newly created category and skips its creation if found not required. In addition, to
ensure classification accuracy, an offline learning model is included, and the requirement
of the newly created category is ensured before deciding on the deletion of a particular
category. Probabilistic data for connected one/many relationships are stored in wab

jk , and the

probability of an inter-ART reset during prediction is stored in weight vab
jk . These weights

define the entropy (coverage) of the training set.

2.3.3. Differential Evolution of FAM Networks (DEFAM)

DEFAM [38] is an optimized FAM architecture used for image retrieval. The archi-
tecture is created by repeatedly applying DE operators to the initial population of trained
FAM networks. The initial population is generated by training the FAM networks for
image classification following all the reasons that cause the category proliferation problem.
Due to the category proliferation problem, large networks are created. A network evolved
from these populations of trained networks using DE will be able to deliver high precision
classification and smaller classifier network. In the proposed work, the complex problem
of optimizing the FAM network is achieved by adopting an advanced version of the DE
algorithm that uses neighborhood mutation and opposition-based learning [39] for solving
the complex problem of optimizing the FAM network. The DE algorithm searches in the
space of solutions with the guidance of the difference between individuals. The basic
phenomenon is to generate a mutation vector by differentiating and scaling two vectors of
a population and adding them to the third vector in the same population. The mutation
vector is crossed with the parent vector with a predefined probability to generate a target
vector. Then, the most efficient vectors among the target and parent vectors are identified
using a fitness function, which proceeds to the next generation. The basics of the adopted
DEFAM evolution process, including a brief explanation about the proposed mutation
strategy, are outlined below.
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Initialization

Each of the trained FAM networks is represented by D dimensional vectors of size M.
Similarly, N networks are considered as the initial population. Each individual vector shall
be expressed as in Equation (5).

xi(G) =
{

xi1, xi2, xi3, . . . . . . , xiD
}

(5)

where G represents the generation and i = 1 to N.

Mutation

Mutation operation generates mutation vector Vi,G corresponding to each xi,G target
vector of the present population employing mutation strategies. Equations (6)–(9) provide
the most commonly used mutation strategies

DE/rand/1 Vi,G = xr1,G + F·(xr2,G − xr3,G) (6)

DE/best/1 Vi,G = xbest,G + F·(xr1,G − xr2,G) (7)

DE/rand− to− best/1 Vi,G = xi,G + F·(xbest,G − xi,G) + F·(xr1,G − xr2,G) (8)

DE/rand/2 Vi,G = xr1,G + F·(xr2,G − xr3,G) + F·(xr4,G − xr5,G) (9)

where r1, r2, r3,r4&r5 are randomly selected integer numbers between (1, M), F is the scaling
factor, and xbest,G is the individual vector evaluated with the best fitness in the current generation.

DE and Particle Swarm Algorithms face difficulties to balance local and global search
abilities. During the evolution process, the local search leads to premature convergence
and on the other side, depending on the global search, degrades the exploring ability and
increases the convergence time. Neighborhood mutation modules [39,40] provide promising
results and avoid the convergence of the DE algorithm to the local optimum. Influenced by
the capability and results of neighborhood approaches, a modified version of the strategy in
Equation (8) based on the neighborhood approach is framed as in Equation (10).

DE/neigh− to− best/1 VG
i = xG

r3 + F1·(xG
best − xG

r3) + F2·(xG
r1 − xG

r2) (10)

The proposed strategy in Equation (10) avoids premature convergence, restricts incom-
petent mutation operators, involves individual vectors with high fitness values to reach
convergence faster, and avoids large-scale global convergence. Algorithm 2 depicts the
steps involved in proposed mutation technique.

Algorithm 2: Steps for Mutation

1. Input = xG

2. for all xG calculate fitness value using Equation (13)
3. Sort xG based on its Fitness value
4. Select xG

best and 30% to 60% of top ranked xG

5. Implement Mutation operation based on Equation (10)
6. End

Crossover

A new test vector Ui,G = (u1,G, u2,G, . . . . . . , ui,G) is generated during the process by
employing a binomial crossover between the target vectors xi,G and the mutation vector
vi,G. The procedure is defined in Equation (11)

ui,G =

{
vi,G, i f randj(0, 1) > CR)or(j = jrand, j = 1, 2, 3, . . . . . . , D)
xi,G, otherwise

}
(11)

where CR is the crossover rate. CR ∈ [0, 1] and jrand ∈ [1, D].
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Selection

Selection is performed between the target vectors xi,G and test vectors Ui,G based on their
fitness. The selected vectors shall be the part of the population used for evolving the network
during the next generation. Selection is performed by evaluating the fitness of xi,G and Ui,G
using the function f (p). The selection operation is performed following Equation (12).

Xi,G+1 =

{
Ui,G, i f f (Ui,G) > f (Xi,G)
xi,G, otherwise

}
(12)

The fitness function for optimizing the FAM classifier is expressed in Equation (13).

F(p) =
100

catmin
− pcc(p)

Na(p)

(catmax − Na(p))p2
cc(p)

(13)

Subjected to:
Nc ≤ catmin ≤ catmax (14)

catmin < Na(p) ≤ catmax (15)

where catmin and catmax are the minimum and maximum number of categories that can be
allowed. These values shall be decided by the user. A best catmin value shall be equal to the
number of classes in the dataset. The fitness function in Equation (3) is derived such that
DE has to evolve a FAM-based classifier such that F(p) as a minimum. An optimum FAM
network is one that has a smaller number of categories Na(p) near to the minimum number
of categories catmin and delivers the highest possible accuracy pcc(p) equal to or nearer
to 100, that is, the numerator of the fitness function in Equation (13) 100

catmin
− pcc(p)

Na(p) shall

be near to zero. Similarly, the denominator of the fitness function (catmax − Na(p))p2
cc(p)

must be very larger. Algorithm 3 portrays the steps involved in evolution of FAM network
using proposed DE algorithm.

Algorithm 3: Evolution of FAM Network

1. Pop_best_fit = DE(FNT)
2. Initialize β = 1.0 and CR = 0.7
3. Set Generation Count t = 0(max = G)
4. Create the initial population C(t) = NP
5. While (stopping criteria not true)
6. For each target xi((G)εC(G)
7. Create the Mutant Vector Vi(G)
8. Create the test vector Ui(G)
9. For all i
10. Evaluate F(xi(G)) and F(Ui(G))
11. If (f(xi(t) ≥ f(Ui(t))
12. xi(t + 1) = x0(t)
13. else xi(t + 1) = U0(t)
14. Return population with best fitness
15. End

3. Results

The parameters for the AvN-LBP extraction, training, and optimization of the FAM
network adopted during the experimentation of the proposed DEFAMNet-based MIR
are provided in Table 1. The parameters used influenced the overall performance of the
proposed framework. The parameters used in the proposed DEFAMNet can be grouped
into three categories. The parameters related to AvN-LBP belong to the first category and
decide the effectiveness of indexing in the proposed framework. p is the number of circle
parts. In the proposed work, the pixels in the circle of pixels are portioned into eight at
an angle of 45◦. A low number of partitions will not consider the actual neighbors of the
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pixel, and a large number of partitions will increase computations and consume more
time. Hence, an optimum value p = 8 is chosen. R is the radius of the circle considered
for averaging. R = 3 means three pixels in the grid will be averaged. The radius also
influences the number of computations and decides the time consumption. The second
category of parameters is related to the FAM Network. The FAM dynamics are decided
by a learning parameter β ∈ [0, 1], Vigilance parameter ρ ∈ [0, 1] and choice parameter
α > 0. For fast learning, β = 1. We performed experimentations using different β values
and decided to assign β = 0.8 during the learning process of the FAM. Vigilance parameter
ρ decides the size of hyper boxes representing the category of a class in the database. ρ ∼= 1
allows larger boxes; ρ ∼= 0 restricts the size of the boxes and increases the size of the FAM
network. In our work, we decided to have ρ ∼= 1, have smaller networks, and use DE for
achieving the required performance. Small values of α reduce recoding during learning,
hence α = 0.001 is assigned during the experimentation. DE has been adopted to optimize
plenty of problems, and from the literature, β = 1 and CR = 0.7 are considered.

Table 1. Parameters adopted for the AvN-LBP extraction, training, and optimization of the FAM
network adopted during experimentation.

MODULE

AvN-LBP FAM DE

PARAMETER p R Θ P β δ α β CR

VALUE 8 3 450 1.0 0.8 0.2 0.001 1.0 0.7

The proposed DEFAMNet classifier is trained for 100 epochs, with a batch size of 64,
assigning a learning rate of 0.001 and training data from a medical image dataset.

During the development of the MIR framework 40%, 30%, and 30% of the images in each
class in the database are adopted for training, testing, and validation, respectively [41,42]. An
NVIDIA DGX station with a processor 2.2 GHz, Intel Xeon E5-2698 (20-Core), NVIDIA
Tesla V100 4 × 16 GB GPU was used.

3.1. Database

There are several databases available to support research on medical images. Images
in each database have different features and offer interesting challenges. A MIR system
shall be capable of performing in a similar pattern for any type of image. The capability
of the proposed DEFAMNet medical image retrieval system is examined using the Public
Lung Image Database (I-ELCAP) [43], the Open Access Series of Imaging Studies–Medical
Image Resonance (OASIS–MRI) [44], and Interstitial Lung Disease (ILD) [45].

3.2. Evaluation of Proposed DEFAMnet Medical Image Retrieval System

The effectiveness of any retrieval system should guarantee that the retrieved images
should be closer in similarity with the query images. The Average Retrieval Precision
(ARP) and Average Retrieval Rate (ARR) are evaluation metrics commonly used to measure
the performance of CBIR systems. The proposed DEFAMNet classifier is evaluated and
analyzed by the ARP and ARR values calculated using Equations (16)–(19).

|Precision| =P(Iq) =
NR ∩ NRT

nRT
(16)

|Recall| =R(Iq) =
NR ∩ NRT

nR
(17)

ARP =
1

DB

DB

∑
n=1

P(In)

∣∣∣∣∣
n≤10

(18)
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ARR =
1

DB

DB

∑
n=1

R(In)

∣∣∣∣∣
n≥10

(19)

where In is the query image, and DB is the number of images in the database. NR is the
number of images in the database that are similar images to the query image, NRT is the
total number of retrieved images similar to the query image, and NR ∩ NRT provides the
number of images in common between similar images in the database and similar images
retrieved. nR is the total of the relevant images present in the database relevant to the
query image, nRT is the total of the images retrieved by the MIR System. The results of
the proposed AvN-LBP descriptor are compared with texture descriptors such as LBP [46],
LTP [47], LDP [48], and other patterns [49,50].

3.3. Performance on the I-ELCAP Database

The proposed DEFAMNet framework is evaluated using the I-ELCAP dataset. The
I-ELCAP dataset has been used because of its popularity in evaluating MIR systems.
The dataset has 10 classes with 100 images in each class. The weights associated with
DEFAMNet are trained with 10% of the images from each class of the dataset. The proposed
DEFAMNet is tested with the remaining images. One sample image from each of the
10 classes in the I-ELCAP database are shown in Figure 8. A comparison of performance
in terms of APR and ARR achieved by DEFAMNet and other approaches along with a
performance comparison between AvN-LBP with other LBP variants are presented in
Tables 2 and 3. DEFAMNet retrieved 100% similar images for the query image from eight
classes and an average performance of 99.8% for all 10 classes. It can also be noticed from
Tables 2 and 3 that the best performance among other techniques considered for comparison
is 99.1%.
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Figure 8. Sample images from 10 different classes of the I-ELCAP image database.

3.4. Retrieval Analysis on the OASIS–MRI Database

Experimentations are performed on the publicly available OASIS–MRI medical image
database to evaluate AvN-LBP and DEFAMNet. OASIS comprises 421 images. The images
belong to patients aged between 18 and 96. For the sample images in the OASIS database,
the images are organized into four classes. Each class consists of 124, 102, 89, and 106.
Figure 9 presents one sample image from each of the four classes. Briefly, 10% of the images
from the database are used to tune the weights of DEFANET and balance, and 90% of the
images are used to evaluate DEFAMNet’s retrieval performance. The results achieved by
AvN-LBP and DEFAMNet are compared with existing approaches and variants of LBP
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on the OASIS dataset and are summarized in Table 4. It is clear from the results; the best
performance of existing approaches is 84.3%, and that of the proposed DEFAMNet is 93.01%
in terms of average retrieval accuracy.

Table 2. Comparison of Percentage Retrieval Accuracy (ARP) on the I-ELCAP database.

OPERATOR/
ALGORITHM

CLASS

1 2 3 4 5 6 7 8 9 10 Avg

LBP [46] 56.6 72.7 64.7 89.5 67.8 91.6 80.4 99.7 78.4 90.7 79.1
LTP [47] 49.6 52.6 58.5 80.8 48.2 77.2 55.3 92.5 61.5 74.8 65.4

GLBP [46] 67.8 84.2 77.8 92.3 79.2 89.3 77.1 99.1 84.1 97.4 84.7
LMeP [49] 77.3 75.1 68.1 92.6 73.5 93.4 86.8 100 80.1 87.2 83.2
AvN-LBP * 85.6 89.9 86.7 95.6 91.1 98.5 91.4 99.4 97.1 97.1 93.4
GLCM [47] 76.8 55.1 55.1 54.9 49.9 74.2 68.5 94.7 32.3 72.4 63.3
GLMeP [49] 82.5 82.2 85.6 95.5 74.6 97.5 90.1 100 82.7 94.2 88.4
ResNet [50] 100 96.8 100 100 100 100 85.7 96.8 96.8 100 97.3
AlexNet [51] 82.9 99.1 95.2 78.9 96.6 92.6 99.1 73.2 93.8 62.5 84.1
VGG-16 [52] 63.8 100 79.4 85.7 90.9 59.1 100 83.9 100 95.2 82.1

RetrieveNet [53] 100 100 100 98.1 100 98.1 100 100 100 94.2 99.1
DEFAMNet * 100 100 100 99.4 100 100 100 100 100 98.6 99.8

* Proposed Method.

Table 3. Comparison of Percentage Retrieval Accuracy (ARR) on the I-ELCAP database.

OPERATOR/
ALGORITHM

CLASS

1 2 3 4 5 6 7 8 9 10 Avg

LBP [46] 32.4 40.5 38.6 67.0 36.2 54.2 48.5 81.2 47.8 72.7 51.9
LTP [47] 23.1 25.8 23.8 52.1 20.6 38.5 22.8 40.9 26.4 40.6 31.4

GLBP [46] 34.5 42.5 41.5 66.0 37.7 51.1 40.2 72.1 47.4 76.7 51.0
LMeP [49] 37.4 35.4 28.9 73.0 37.9 52.9 53.3 95.6 43.0 69.6 53.7
AvN-LBP * 49.8 51.2 47.9 72.5 41.1 52.9 52.7 76.1 45.6 84.6 57.5
GLCM [47] 33.2 28.2 16.5 26.4 19.7 34.2 27.6 52.9 15.4 42.1 29.6
GLMeP [49] 38.7 38.3 37.3 71.4 36.5 62.2 56.3 89.6 44.8 70.4 54.6
ResNet [50] 100 100 96.7 86.7 100 100 100 100 100 90.2 97.3
AlexNet [51] 96.7 76.7 66.7 100 93.3 83.3 33.3 90.2 100 100 84.2
VGG-16 [52] 100 96.7 90.1 100 33.3 96.7 60.5 86.7 100 66.7 82.4

RetrieveNet [53] 100 100 100 100 100 100 96.1 96.8 100 98.5 99.1
DEFAMNet * 100 97.0 99.5 99.0 100 100 100 99.0 100 98.0 99.3

* Proposed Method.
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Table 4. Comparison of Retrieval Accuracy (ARP) on the OASIS database.

OPERATOR/
ALGORITHM

CLASS

1 2 3 4 Avg

LBPSEG [45] 43.21 38.03 28.32 46.44 39.01
LTP [47] 56.33 36.70 34.97 50.02 45.17

CSLBP [45] 44.72 40.15 31.17 48.27 41.06
GLDP [47] 48.72 40.09 38.41 41.52 42.23
AvN-LBP * 58.91 61.38 51.3 66.43 59.51

LDP [47] 46.29 36.37 36.82 45.56 41.8
LMEBP [54] 46.17 40.17 36.83 49.17 43.08
ResNet [50] 78.01 57.74 73.91 86.52 75.62
AlexNet [51] 88.01 54.51 62.51 73.82 68.52
VGG-16 [52] 75.74 57.14 52.41 70.74 66.15

RetrieveNet [53] 90.01 71.25 82.15 95.92 84.3
DEFAMNet * 96.16 84.64 91.23 100 93.01

* Proposed Method.

3.5. Result Analysis on the ILD Database

In actuality, the medical records are a combination of images and clinical data. The
evaluation of the proposed framework is performed on the ILD database. The ILD database
has valuable content and contains 658 images of interstitial lung disease along with clinical
data of patients for research studies. One sample image from five classes is provided in
Figure 10. The classes of ILD are micronodules (173 images), ground glass (106 images),
emphysema (53 images), fibrosis (187 images), and healthy (139 images). The DEFAMNet
weights are tuned with 10% of the images and tested with the remaining 90% of the
images. The performance of the proposed approach in terms of ARP compared with other
approaches and feature descriptors on the ILD dataset is given in Table 5. DEFAMNet
performed with 96.06% average retrieval accuracy against the 92.4% best performance of
the approaches considered for comparison.
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Table 5. Retrieval Accuracy (ARP) in percentage on ILD database.

OPERATOR/
ALGORITHM

CLASS

Emphysema Fibrosis GroundglassHealthy Micronodules Avg

LBP [46] 26.79 47.85 35.66 28.71 28.79 33.53
LTP [47] 36.79 49.82 45.66 38.71 37.72 41.73

LTCop [50] 31.32 50.82 44.15 28.71 63.88 43.77
LTrP [54] 42.07 51.87 49.27 41.79 57.65 48.52

AvN-LBP * 56.42 65.64 57.64 48.24 65.86 58.76
ResNet [50] 90.98 91.49 88.96 83.78 72.49 82.86
AlexNet [51] 62.52 92.68 88.23 55.78 83.78 75.47
VGG-16 [52] 50.75 79.45 56.95 73.68 94.72 75.89

RetrieveNet [53] 99.89 98.92 91.75 80.56 96.36 92.40
DEFAMNet * 100 97.92 94.56 92.90 99.12 96.90

* Proposed Method.
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From the experimental results on the three databases used for evaluation, the proposed
DEFAMNet and AvN-LBP outperformed the existing approaches used for medical image
retrieval and prove that the proposed perform with better results across different types of
image datasets and different classes in the dataset.

3.6. MIR System Adopting NPFAM and DEFAMNet Classifiers

The medical images in the OASIS database are categorized using two classifiers,
namely, NPFAM and DEFAMNet. The classifiers are chosen for comparison because both
are FAM networks and address the category proliferation problem. On the other hand, the
procedure adopted to construct the classification model is entirely different. This section
compares the performance of these classifiers in medical image classification. The classifiers
trained with AvN-LBP operators produced better results. Training was undertaken with
30 percent of the images (36, 30, 26, and 32) from each of the four classes. The trained
classifiers were evaluated by testing to classify 421 images in the database (124, 102, 89,
and 106). After training, the network was tested to classify the images from the training set,
and we found that DEFAMNet with AvN-LBP performed at 100%. The trained network
was then tested to classify the balance of 40% of images (50, 40, 35, and 43) from each class.
Table 6 provides the comparison of accuracy considering only the top 25 retrieved images
based on similarity.

Table 6. Accuracy in percentage achieved on the OASIS database for the top 25 retrieved images.

DESCRIPTOR
CLASSIFIER

NPFAM DEFAMNet

LBP 87.64 90.00
CS-LBP 89.41 91.76
NI-LBP 86.47 88.82

LTP 88.82 90.58
AVN-LBP 91.88 93.71

3.7. Retrieval Accuracy Obtained on Different Body Parts

Medical images of different parts of the human body exhibit different texture patterns.
Hence, the performance of the DEFAMNet MIR system is examined with diverse X-Ray
images of body parts. Medical images from the internet are collected for six different parts
(classes) of the body, namely, the chest, head, foot, neck, palm, and spine [54–56]. A total of
150 images has been used, with 25 images in each class. The classifier is trained with 10
images per class and tested with the remaining images. Table 7 shows the retrieval accuracy
achieved by the system with only AvN-LBP and AvN-LBP with classifiers.

Table 7. Percentage accuracy achieved by MIR Systems on the database of human parts for the top
25 retrieved results.

CLASS
RETRIEVAL ACCURACY

AvN-LBP AvN-LBP + NPFAM AvN-LBP +
DEFAM

CHEST 54.6 89.1 91.2
HEAD 66.8 86.4 90.3
FOOT 60.2 85.2 89.2
NECK 71.4 87.6 91.7
PALM 69.2 88.7 94.4
SPINE 56.1 86.2 90.3

4. Discussion

Retrieval time, required resources, and retrieval performance are factors considered to
evaluate the suitability of retrieval systems for performing the retrieval task. The execution
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time consists of the time required for feature extraction from query images and retrieval
(classification, searching, and retrieving similar images from the database). The system’s
time consumption depends on the procedure for the extraction of the feature descriptor.
The larger the operator, the longer it will take to extract the vector and retrieve the images
from the database. The retrieval time is also affected by the organization of databases and
the use of classifiers in the retrieval system. Table 8 summarizes the time required for the
estimation of the feature descriptor and retrieval time in seconds over the OASIS–MRI
database using the proposed AvN-LBP and other descriptors considered for comparison.

Table 8. Feature extraction and retrieval time in secs over OASIS–MRI databases using proposed
LBP/VAR and other descriptors considered for comparison.

Eature
Descriptor

Feature
Extraction Time

Retrieval Time in Seconds

Without Classifier With NPFAM Classifier With DEFAMNet Classifier

ZMs 16.85 1.37 0.42 0.41
ULBP 3.89 5.48 1.14 1.02
LBP 4.56 20.41 0.52 0.51

AvN-LBP 8.46 22.32 0.49 0.47

The extraction time of images from the OASIS database with the proposed method
is less than that of LDEP and ZMs, but greater than that of LBP and ULBP. Table 8 and
Figure 11 provide the comparison of the total CPU time (feature extraction time + retrieval
time) required for image retrieval using the proposed method and other feature descriptors
on the OASIS–MRI database. The results show that the computation time of ULBP is less
than that of the proposed AvN-LBP operator. The extra time is compensated for with
improved retrieval accuracy.
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5. Conclusions

This paper has proposed a local texture-based descriptor, AvN-LBP, a modified version
of the well-known LBP. The proposed descriptor addresses issues due to noisy images
by including the information available in the neighborhood pixels to better represent the
images and avoid the loss of valuable information. In addition, a FAM classifier evolved
using the DE algorithm that avoids the category proliferation problem is implemented.
Modifications are performed during the mutation stage to make the DE algorithm more
suitable for the intended application of MIR. The complete proposed NPFAM-based MIR
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system accommodating AvN-LBP for indexing medical images and DEFAMNet for retrieval
is subjected to extensive experimentation, and the results presented provide the proof of its
suitableness. In future, if the time consumption and resource requirements are reduced, the
proposed system can be more competitive with the existing MIR systems. Experimentation
is performed on smaller databases, but the size of the datasets influences the retrieval
results, hence the proposed framework shall be implemented on larger datasets and needs
to be extended to real-time application.
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