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Abstract: Retinal microaneurysm (MA) is the initial symptom of diabetic retinopathy (DR). The
automatic detection of MA is helpful to assist doctors in diagnosis and treatment. Previous algorithms
focused on the features of the target itself; however, the local structural features of the target and
background are also worth exploring. To achieve MA detection, an efficient local structure awareness-
based retinal MA detection with the multi-feature combination (LSAMFC) is proposed in this paper.
We propose a novel local structure feature called a ring gradient descriptor (RGD) to describe the
structural differences between an object and its surrounding area. Then, a combination of RGD with
the salience and texture features is used by a Gradient Boosting Decision Tree (GBDT) for candidate
classification. We evaluate our algorithm on two public datasets, i.e., the e-ophtha MA dataset and
retinopathy online challenge (ROC) dataset. The experimental results show that the performance
of the trained model significantly improved after combining traditional features with RGD, and the
area under the receiver operating characteristic curve (AUC) values in the test results of the datasets
e-ophtha MA and ROC increased from 0.9615 to 0.9751 and from 0.9066 to 0.9409, respectively.

Keywords: diabetic retinopathy; microaneurysm detection; feature extraction; fundus image analysis

1. Introduction

The number of diabetes patients worldwide is gradually increasing and, with the
progression of diabetes, patients may develop DR, which may eventually cause vision loss
or even blindness [1]. MA is the initial symptom of DR, and the early identification and
timely treatment of retinal MA can prevent further progression of DR. Therefore, it is of
great medical significance to realize the automatic detection of MA and assist doctors in
the diagnosis of retinal lesions through computer technology.

Color fundus images are the primary way ophthalmologists assess retinal lesions, they
judge whether the retina is normal and the grade of DR by visually observing whether
there are microaneurysms, hard exudations, soft exudations, hemorrhages, and neovessels
in the color fundus images [2]. MA occupies only a few pixels in fundus images and has
low local contrast, as shown in Figure 1. At the same time, due to factors, such as the
environment and equipment, color fundus images often have different brightness, contrast,
and color. Artificial detection of MA is time-consuming, with low accuracy, and easily
leads to ophthalmologist fatigue. Therefore, many researchers have studied the automatic
detection of MA.
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Figure 1. An example of a color fundus image with MAs. The areas with MAs are identified with a
green box and zoomed in on the right side of the image, the dark blobs that the white arrow points to
are MAs.

The current mainstream MA detection algorithm [3–7] can be briefly summarized as
the following three steps: preprocessing, candidate extraction, and candidate classifica-
tion. The preprocessing methods mainly include color correction, contrast enhancement,
reflective elimination, and other image enhancement operations. The main purpose of
pretreatment is to better observe the lesions in the retina and prepare for subsequent
algorithms. Candidate extraction is primarily to extract image blocks that may contain
MA from color fundus images, mainly using morphology, filtering, and other methods.
In the step of candidate classification, the accurate detection of MA can be realized by
extracting hand-crafted features of each candidate and classifying them with a machine
learning classifier.

In this work, we first performed color correction on fundus images, and then used
morphological methods to extract MA candidates. We found that MAs and blood vessels
were mainly present in the candidate region, and traditional features based on the candidate
area are not sufficiently capable and interpretable of distinguishing between them. To make
up for the lack of traditional features, a novel local structure feature called ring gradient
descriptor (RGD) is proposed, which scans the background around the target in an annular
way to find the region most similar to the target and calculates the similarity between
the region and the target. Then, a combination of RGD and the salience and texture
features of candidate objects is used by Gradient Boosting Decision Tree (GBDT) for the
final candidate classification.

The major contributions of this paper can be summarized as follows.

1. A novel method is proposed for the accurate and reliable detection of microaneurysms
with the possibility of applying this method in large screening setups.

2. A simple candidate extraction algorithm based on morphology is proposed to extract
the potential MA in fundus images.

3. A new local structure feature RGD is proposed that can describe the local structure of
object and its surrounding background and improve the classification performance.

2. Related Works

The detection algorithm of MA can be divided into the physical model-based method,
classifier-based method, and deep learning-based detection methods.

Physical model-based MA detection methods are mainly based on the physical charac-
teristics of retinal MA. Joshi et al. [8] employed morphological methods to enhance fundus
images and remove blood vessels and then extracted MAs. Zhang et al. [9] proposed a
feature-transfer network and local background suppression for MA detection by using the
similarity matrix of feature distances to measure the difference between background noise
and retinal objects to suppress the local background. Quellec et al. [10] did not perform
MA detection in color fundus images but used a lesion template for MA matching in its
wavelet-transformed images.
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The classifier-based method is the most prevalent method at present, the main process
of this method includes candidate extraction, feature extraction, and candidate classification.
Orlando et al. [3] employed morphological reconstruction to extract MA candidates. In the
process of feature extraction, they constructed a Convolutional Neural Network (CNN)
model to extract depth features and combined it with color features, textural features,
and geometrical features for candidates classification. Dashtbozorg et al. [4] used a gradient-
weighting technique and an iterative thresholding approach to extract MA candidates
and used the response of local convergence index filters and the salience of the candidate
area for classification.

Melo et al. [5] used a sliding band filter for MA enhancement and they also used the
filter response and the salience of the candidate area for classification. Antal and Hajdu [6]
proposed an ensemble-based framework for MA detection; they selected the optimal
results under different preprocessing and candidate extraction methods. Shah et al. [7]
removed blood vessels from the green channel and extracted MA candidates using a local
thresholding technique. They classified MAs and non-MAs based on statistical features.

The deep learning-based detection method mainly regards MA detection as a segmen-
tation task. Xu et al. [11] improved the U-Net model and achieved pixel-level segmentation
of MA. Liao et al. [12] proposed a novel deep convolutional encoder–decoder network for
MA detection. Budak et al. [13] used a CNN trained with preprocessed RGB patches to
classify MA patches and non-MA patches.

Due to the complex structure of retina and the uneven color and brightness of fundus
images, physical model-based methods often have unstable detection effects and low
detection accuracy. Classification-based methods tend to have high accuracy because a
large number of features are extracted from candidate region images. Deep neural networks
have been widely used in the field of computer vision; however, MA detection methods
based on deep learning may lead to the existence of over-fitting due to the small amount of
data. In addition, deep convolutional neural networks have a large number of parameters
and are therefore not easy to use clinically.

In this paper, the classifier-based method was used for MA detection. Previous
researchers focused on the target salience of candidates. In addition, we also paid attention
to the local structure of the target and background, and proposed the novel local structure
feature RGD to overcome the shortcomings of the salience features.

3. Materials

We conducted experiments using two publicly available datasets: e-ophtha-MA [14]
and ROC [15]. The main specifications of the two datasets are summarized in Table 1.

Table 1. Dataset specifications.

Image Size (px) FOV (Degree) FOV Diameter (px) NE NIN NIP NMA

ROC 768 × 576, 1394 × 1392 45° 720–1345 4 13 37 336
e-ophtha-MA 1440 × 960, 2544 × 1966 45° 910–1925 1 233 148 1306

FOV: field of view. NE: number of experts. NIN: number of images without MAs. NIP: number of images with
MAs. NMA: total number of MAs.

ROC: The Retinopathy Online Challenge (ROC) contains 50 training images and
50 test images, and all MAs were annotated by four experts. The images have differ-
ent resolutions, ranging from 768× 576 to 1394× 1392 pixels with a 45° field of view (FOV).
Since the test images do not have MA annotations, only 50 training images were used to
verify our proposed algorithm.

E-ophtha-MA: The e-ophtha-MA is a public dataset of color fundus images designed
for scientific research in red lesion (MA and small hemorrhage) detection. It contains
233 healthy images and 148 DR images with four resolutions, ranging from 1440 × 960 to
2544 × 1696 pixels with 45° FOV. All images are used to verify our proposed algorithm.
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To assess the ability of the new structural features proposed in this paper, the results
of the classification between MAs and non-MAs can be evaluated by the receiver operating
characteristic (ROC) curve [16] by plotting the true positive rate (TPR) against the false
positive rate (FPR) and the area under the ROC curve (AUC). Different TPR and FPR values
can be obtained with different thresholds. They are defined as:

TPR =
TP
P

(1)

FPR =
FP
N

(2)

where P and N correspond to the number of MAs and non-MAs in candidates, respectively.
TP is the number of MAs correctly detected, FP is the number of MAs incorrectly detected.

In addition, we evaluated the performance of the detection algorithm at the lesion
level. The free-response operating characteristic (FROC) curve [17] was used to evaluate
the lesion level of MA detection results of all color images. The abscissa of FROC curve is
the average number of false positives per image (FPI), and the ordinate is the sensitivity.
The sensitivity represents the proportion of MAs correctly detected by the algorithm. These
are calculated as follows:

Sensitivity =
TP

NMA
(3)

FPI =
FP
Ni

(4)

where NMA is the number of MAs in all fundus images in the test dataset, Ni is the number
of images in the test dataset, TP is the number of MAs correctly detected, FP is the number
of MAs incorrectly detected. By setting the threshold to classify MA and non-MA, we can
obtain pairs < FPI, Sensitivity > to draw the FROC curve.

Under the same FPI, higher sensitivity means better detection performance. Similarly,
under the same sensitivity, lower FPI means fewer misdetected MA in one image. In order
to compare with different methods, we obtained the sensitivity values from FROC curve
as the FPI values are 1/8, 1/4, 1/2, 1, 2, 4, and 8. In addition, the average of sensitivity
at these seven predefined FPIs (Fscore) and the partial area under FROC curves between
1/8 and 8 FPI normalized by dividing with the maximum FPI (FAUC) were obtained as the
comprehensive evaluation indexes.

Under different detection tasks, Fscore and FAUC often have different optimal ranges.
Even under the same detection task, the number of images also has a great influence on
them. In the ROC dataset, the optimal value of these two evaluation indexes should be
greater than 0.4, while in the e-ophtha-MA dataset, it should be greater than 0.5

4. Methods

A schematic diagram of our method is illustrated in Figure 2. It includes three parts:
First, the original image was preprocessed to eliminate the interference of uneven color
(see Section 4.1). Second, we extracted the MA candidates (see Section 4.2). Finally,
a patch centered on each region was collected to extract target salience and local structural
features.The target salience include mean, standard deviation (SD), third moment (TM),
energy, entropy, and contrast. The local structural features include the texture feature
based on Gray level co-occurrence matrix (GLCM) and RGD. Then, we used the combined
features to classify candidates to MAs and non-MAs (see Section 4.3).
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Figure 2. Schematic diagram of the automatic MA detection method, including preprocessing,
candidate extraction, feature extraction, and classification.

4.1. Image Preprocessing

Due to the interference of environment and equipment in the process of retinal image
acquisition and the differences of people’s age and ethnicities [18], the captured fundus
images often generally have nonuniform illumination and different colors.

In order to reduce the subsequent computation, we first resized the input image
with a scaling factor χ/1400, where χ is related to the width in pixels of the input image.
Subsequently, a novel approach proposed by Grinsven et al. [19] was utilized on each
channel to enhance the original fundus image with the following equation:

I(i, j; σ) = α · I(i, j) + τ · Gaussian(i.j; σ) ∗ I(i, j) + γ (5)

where ∗ is a convolution operator, σ is the standard deviation of the Gaussian filter, α, τ,
and γ are constants. These parameters were set following Grinsven et al. [19], i.e., α = 4,
τ = −4, γ = 128 and σ = χ/30.

After the image enhancement, there is a great deal of noise in the retina edge. In order
to eliminate this noise, we performed region of interest (ROI) detection on it; As shown
in Figure 3c, the binary mask of the ROI was obtained by threshold segmentation. Finally,
the preprocessed image Ice was measured by means of morphology operations as given
in Equation (6):

Ice(i, j) = Iuni(i, j) · εB(Gmask) (6)

where Iuni and Gmask correspond to the enhanced image and ROI mask, respectively. εB()
denotes the erosion of an image performed by structural element B with disc type. Figure 3
illustrates the entire preprocessing procedure.

(a) (b) (c)

Figure 3. Illustration of the entire procedure for image preprocessing. (a) Original resized image.
(b) Binary mask of the ROI. (c) The preprocessed image.

4.2. Candidate Extraction

After color correction, the gray value of fundus image is more uniform, which is more
conducive to the extraction of the lesion area by threshold segmentation. An effective
candidate extraction method should capture MAs as much as possible and capture fewer
non-MAs. To accomplish this, we propose a novel candidate extraction algorithm based on
dual-gray threshold segmentation and morphological processing. Figure 4 illustrates the
entire candidate extraction procedure.
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Due to the main information of microaneurysm being in the green channel [3], we first
extracted the green channel Gce from Ice. As the main non-MAs in the retinal image come
from blood vessels, we first performed vessel segmentation.

Figure 4. An example to illustrate the candidate extraction method. From top to bottom and left to
right: original image I, the green channel of the preprocessed image Gce, the binary mask of candidate
area Ibw, details in the green channel of the preprocessed image Ice, the first binary image Iht under
a higher threshold, the vessels mask Ive, the second binary image Ilt under a lower threshold, and
the binary mask of candidate area Ibw. The areas with MAs are identified with white boxes.

We obtained the first binary image Iht of the low-gray area through threshold segmen-
tation with a higher gray threshold Th with vessels with more connectivity. The value of Th
ranges from 100 to 115. Then, we reserve the connected domain with an area greater than S
through connected domain analysis. The retinal blood vessels mask Ive can be obtained
by Equation (7):

Ive(i, j) =

{
Iht(x, y) if s(x, y) > S
0 if s(x, y) ≤ S

(7)

where Ive corresponds to the vessel mask, and Iht corresponds to the first binary image.
s(x, y) correspond to the area of the connected domain in which pixel (x, y) is located. As
the retinal vessels occupy a large area, the value of S is set to 400.

After the vessel mask Ive is obtained, we expanded Ive to ensure that the vessel edge
can also be eliminated. In addition, we obtained the second binary image Ilt with a lower
threshold Tl through threshold segmentation, so that fewer non-MAs can be captured.
The value of Tl ranged from 90 to 100. Then, the binary mask of candidate area Ibw was
obtained according to the following equation:

Ibw = Ilt · (1− εB(Ive)) (8)

where Ibw and Ilt correspond to the binary mask of candidate area and the vessel mask,
respectively. εB() denotes erosion of an image performed by rectangular element B with
size k× k. In this article, k = 5. Then, we conducted the connected domain analysis for Ibw
and deleted the pixels whose connected domain area was equal to 1.

We considered each of the connected domains in the binary image IBW as a candidate
region for the possible existence of MA. Consequently, we use the center coordinates of
each connected domain to extract a certain size image from the preprocessed image Ice for
feature extraction and target recognition.

4.3. Feature Extraction and Classification

The salience and local structural features were extracted from each candidate. The local
structure features include local texture based on Gray level co-occurrence matrix (GLCM)
and our proposed RGD. Then, we combined all the features and used GBDT to classify
MA candidates.
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4.3.1. Object Salience

Saliency features of objects have been widely used in classification and detection
tasks [20–24]. Since different candidate regions have different sizes and shapes, we extracted
image patches of a certain size, which is sufficient to contain one MA from the center of
each candidate region as the source of salience features. The size is set to 11× 11. In this
study, six salience features were extracted from the green channel, including the mean,
standard deviation(SD), third moment (TM), energy, entropy, and contrast [25–27].

4.3.2. Local Structures

Local structures include the local texture and RGD. The local texture indicate the homo-
geneity information of objects [28–31], which is calculated depending on the pixels and their
surroundings [32]. We implemented texture feature extraction based on GLCM [33] and six
features based on Haralick features [34] were obtained on one offset GLCM matrix. In our
work, we selected four different offsets (0◦, 45◦, 90◦, 135◦) resulting in 24-dimensional
Haralick features.

The local texture features used in this article are shown in Table 2. p(i, j) correspond the
(i, j)th entry in normalized GLCM, px(i) correspond ith entry in the marginal-probability
matrix obtained by summing the rows of p(i, j), py(j) correspond jth entry in the marginal-
probability matrix obtained by summing the columns of p(i, j), and µx, µy, σx, and σy

are the means and standard deviations of px and py. px−y = ∑
Ng
i=1 ∑

Ng
j=1 p(i, j), |i− j| =

0, 1, . . . , Ng − 1, and Ng is the number of gray levels.

Table 2. The local texture-feature-based GLCM matrix [34].

Feature Name Description

correlation ∑i ∑j
(ij)p(i,j)−µxµy

σxσy

inverse difference moment ∑i ∑j
1

1+(i−j)2 p(i, j)
difference variance variance of px−y

entropy −∑i ∑j p(i, j)log(p(i, j))
angular moment ∑i ∑j(p(i, j))2

contrast ∑i ∑j(i− j)2 p(i, j)

The object salience and local texture ignore the relationship between the target and
the surrounding background, so their description ability is not enough. By introducing the
surrounding background, we can observe a large degree of structural difference between
MA and non-MA in this local region.

Vessels are the major component of non-MAs. We defined the l × l area in the center
of the candidate area as the central area Ace, and the adjacent area with width b as the
surrounding area Asr. As shown in Figure 5, if the target contained in the candidate region
image is MA, we can see that the surrounding region is the retinal background. If the target
of the candidate region image is a blood vessel, we can always find a region with the lowest
gray mean similar to the central region in the surrounding region. Therefore, we propose
a novel local structure feature called a ring gradient descriptor (RGD) to calculate the
minimum gradient between the candidate image block and its surroundings to distinguish
MAs from vessels.

First, we find the region with the minimum gray mean Asm in the surrounding region
in the area around the target through annular scanning, and the size of the scan box is Asm
is b× b. Since the blood vessels are multi-directional, we set the moving step of the scan
box to 1 pixel each time. Then, the number of scanning K can be calculated as 4(b + l) and
the minimum gradient between Ace and Asm can be calculated by the following equation:

RGD =
1
b2

b

∑
i=1

b

∑
j=1

Asm(i, j)− Ace(i, j) ∗ G(i, j; σ) (9)
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where G(i, j; σ) is the Gaussian kernel with standard deviation σ, which has the same size
as the central region. ∗ is the convolution operator. Since the gray level of MA is lower
in the center and higher in the surrounding area, Gaussian convolution is used instead of
calculating the gray level mean, mainly to control the weight of each pixel.

(a) (b)

Figure 5. Examplesof candidate images. (a) Candidate image containing an MA. (b) Candidate image
containing a vessel.

The two most important parameters in the RGD algorithm are l and b, which are deter-
mined by the size of MA and the distance from the surrounding blood vessels. The value of
σ transforms with l. As shown in Figure 6, different candidates have different optimal pa-
rameters. In order to make the model more robust, we calculated 10 RGDs under different
parameters as new local structural features as shown in Table 3.

(a) (b) (c) (d)

Figure 6. Illustrative example of the optimal parameter settings of different candidates. (a–d) are
MAs in different environments, with different pixel widths and distances from the adjacent blood
vessel. These two values are marked by red and blue markers respectively.

Table 3. Local structural features.

Parameters Description

b The width of the surrounding area 3 3 3 3 3 5 5 5 5 5
l The width of the central area 5 7 9 11 13 5 7 9 11 13
σ The standard deviation of Gaussian kernel 0.9 0.7 0.5 0.5 0.5 0.9 0.7 0.5 0.5 0.5

4.3.3. Classify

To distinguish between MAs and non-MAs, the GBDT classifier [35], which is an
ensemble classifier that has been used in general applications, was employed in our work.
The increasing popularity of this classifier is mainly attributed to its faster training speed
and its robustness. As introduced before, a training set SGB =

{
x(i), y(i)

}
, i = 1, 2, . . . , N is

constructed by combining features x and corresponding label.
The establishment process of the GBDT is shown in Figure 7, It consists of M base

classifiers. The base learner of GBDT is the classification and regression tree (CART).
The complete algorithm process of GBDT binary classification algorithm is as follows:

(1) Initialize the first weak CART:

F0(x) = log
P(Y = 1|x)

1− P(Y = 1|x) (10)



Biomedicines 2022, 10, 124 9 of 15

where P(Y = 1|x) is the proportion of MAs in the training sample.

Figure 7. The construction of GBDT [36].

(2) Perform m(m = 1, 2, 3 . . . M) iterations on the base learner:
For i = 1, 2, . . . , N, calculate the response value corresponding to the mth tree (negative

gradient of the loss function):

rm,i = yi −
1

1 + e−Fm−1(xi)
(11)

For i = 1, 2, . . . , N, use CART regression tree fitting data (xi, rm,i) to get the mth
regression tree, whose corresponding leaf node area is Rm,j, where j = 1, 2, . . . , Jm and Jm is
the number of leaf nodes of the mth regression tree.

For Jm leaf node region j = 1, 2 . . . , Jm, the best fitting value cm,j was calculated:

cm,j =
∑xi∈Rm,j

rm,i

∑xi∈Rm.j
(yi − rm,i)(1− yi + rm,i)

(12)

Update the strong classifier Fm(x):

Fm(x) = Fm−1(x) +
Jm

∑
j=1

cm,j I(x ∈ Rm,j) (13)

(3) Then, the final strong classifier FM(x) can be expressed as:

FM(x) = F0(x) +
Jm

∑
m=1

Jm

∑
j=1

cm,j I(x ∈ Rm,j) (14)

(4) Finally, the classification value of sample x can be expressed as:

P(Y = 1|x) = 1
1 + e−FM(x)

(15)

The learning rate of model (ε) and the number of levels of trees (C) are the hyperparam-
eters that have the most obvious impact on the accuracy of GBDT model. The prediction
accuracy of GBDT is significantly affected by the value of hyperparameter [36]. After plenty
of experimentation, the optimal values of ε and C were set to 0.03 and 80, respectively.

5. Results
5.1. Candidate Extraction Evaluation

The performance of candidate extraction proposed in this article was evaluated by
sensitivity and compared with the previously published candidate extractor algorithms as
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demonstrated in Table 4. The proposed method achieved a sensitivity value of 0.51 for the
ROC dataset. Although this value did not reach the maximum value, it had a relatively low
FPI value, and the performance of the candidate extraction algorithm proposed is better
than some algorithms. We obtained a sensitivity value of 0.72 in the ephtha-MA dataset,
corresponding to an FPI value of 200.74.

Table 4. Candidate extraction performance using the ROC dataset.

Method Sensitivity FPI

Proposed method 0.51 243.38
Shah et al. [7] 0.48 65.00
Dai et al. [37] 0.69 569.39

Adal et al. [38] 0.45 35.2
Walter et al. [39] 0.36 154.42
Zhang et al. [40] 0.33 328.30

Dashtbozorg et al. [4] 0.82 755.50

5.2. Candidate Classification Evaluation

We adopted five-fold cross-validation for model training. We trained three models
using target saliency and local texture (TSLT), RGD, and the combined features (CF).
The performance of classification based on object salience features and local structure
features was evaluated by ROC curve as shown in Figure 8. Their AUC values are shown
in Table 5.

Table 5. Validation of different features in MA candidate classification.

Database Method AUC

e-optha-MA
TSLT 0.9615
RGD 0.9566
CF 0.9752

ROC
TSLT 0.9066
RGD 0.9205
CF 0.9409

(a) (b)

Figure 8. ROC curves of MAs and non-MAs classification on different features. (a) The results of the
e-optha-MA dataset. (b) The results of the ROC dataset.

The combined features achieved much higher AUC (AUC = 0.9752 in e-optha-MA,
AUC = 0.9409 in ROC) than using traditional TSLT features individually (AUC = 0.9615
in e-optha-MA, AUC = 0.9066 in ROC). The AUC value (AUC = 0.9566) obtained using
RGD features were close to those obtained using TSLT features (AUC = 0.9615) in dataset e-
optha-MA, and the AUC values (AUC = 0.9205) obtained by using RGD features in dataset
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ROC exceeded those (AUC = 0.9066) obtained by using TSLT features alone. Therefore,
combining traditional features with RGD can improve the classification performance of
the model.

Figure 9 presents the FROC curves obtained by not considering the missing MAs from
the candidate extraction step and consider. Since many MAs were omitted in the extraction
algorithm of candidates, the Fsocre and FAUC values of the final model would be reduced.
The values of Fscore and FAUC in dataset e-optha-MA without considering the omission
of MA in the second step were 0.591 and 0.794, which are much higher than the values
of 0.434 and 0.583 considering the omission of MA, and the values of 0.349 and 0.519 in
dataset ROC are higher than the values of 0.188 and 0.280.

The final results after candidate extraction and candidate classification at the lesion
level were compared with other MA detection methods in the ROC and e-ophtha MA
datasets as shown in Table 6. After verification, our algorithm is ahead of some other
algorithms in the ROC dataset (Fscore = 0.264, FAUC = 0.356), and the FAUC and Fscore
values achieved a leading level in the e-ophtha MA dataset (Fscore = 0.547, FAUC = 0.630).
Although we achieved a high detection performance in the e-ophtha MA datasets, the result
in the ROC dataset was poor because of the simplicity of the candidate extraction algorithm.

The sensitivity values of 0.51 and 0.72 in the ROC and e-ophtha MA datasets were
achieved in the candidate extraction step, respectively, which can be said to be the upper
limit of the final detection algorithm. The proposed method achieved the sensitivity values
of 0.468 and 0.696, respectively, at the two datasets where FPIs is 8, which were close to
the upper limit. This shows that our classification algorithm has high performance and the
features we extracted were very effective.

In order to more qualitatively display the performance of RGD on MA detection, we
used six 224 × 224 color images containing MAs for pixel-level validation, as shown in
Figure 10. The MA candidate region was obtained through dual-threshold segmentation
proposed by us. RGD was performed for each pixel in the MA candidate region and the
values of b, l, and σ are 5.7, and 0.6, respectively. Then, we normalized the results and
segmented them with thresholds of 0.6 and 0.8, respectively. We found that the use of RGD
alone was also effective to detect MAs.

Table 6. Performance of different MA detection methods in the ROC and e-ophtha MA datasets.

Database Work Sensitivty against FPIs Fscore FAUC

ROC

1/8 1/4 1/2 1 2 4 8
Proposed work 0.083 0.104 0.200 0.257 0.344 0.394 0.468 0.264 0.356

Chudzik et al. [41] 0.039 0.067 0.141 0.147 0.243 0.306 0.385 0.193 -
Dashtbozorg et al. [4] 0.435 0.443 0.454 0.479 0.481 0.495 0.506 0.471 0.484
Eftekhari et al. [42] 0.047 0.173 0.351 0.552 0.613 0.722 0.769 0.461 0.660

Wu et al. [43] 0.037 0.056 0.103 0.206 0.295 0.339 0.376 0.202 -
Budak et al. [13] 0.039 0.061 0.121 0.220 0.338 0.372 0.394 0.221 -
Wang et al. [44] 0.273 0.379 0.398 0.481 0.545 0.576 0.598 0.464 -
Dai et al. [37] 0.219 0.257 0.338 0.429 0.528 0.598 0.662 0.433 0.553

Antal and Hjdu [6] 0.173 0.275 0.380 0.444 0.526 0.599 0.643 0.434 0.551
Melo et al. [5] 0.053 0.066 0.077 0.098 0.146 0.208 0.259 0.130 0.185

e-ophtha-MA

Proposed work 0.335 0.424 0.496 0.578 0.634 0.668 0.696 0.547 0.630
Wu et al. [43] 0.063 0.117 0.172 0.245 0.323 0.417 0.573 0.273 -

Dashtbozorg et al. [4] 0.358 0.417 0.417 0.522 0.558 0.605 0.638 0.510 0.575
Eftehari et al. [42] 0.091 0.258 0.401 0.534 0.579 0.667 0.771 0.471 0.637
Chudzik et al. [41] 0.185 0.313 0.465 0.604 0.716 0.801 0.849 0.562 -

Melo et al. [5] 0.178 0.284 0.383 0.519 0.587 0.587 0.587 0.446 0.551
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(a) (b)

Figure 9. FROC curves of MAs and non-MAs classification. (a) The results of the e-optha-MA dataset.
(b) The results of the ROC dataset.

Figure 10. Illustration of pixel level validation. For better visualization, the correctly detected MAs
and miss detection MAs are highlighted by red and blue squares, respectively. The FP candidates are
highlighted by yellow circles.
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6. Discussion

In this paper, we proposed an efficient local structure awareness-based retinal MA
detection method with the multi-feature combination (LSAMM). First, the color correction
was performed on the images, and simple morphology and threshold segmentation method
was used to extract MA candidates. The sensitivity values of this stage in the ROC and
e-ophtha MA dataset, respectively, were 0.51 and 0.72, and their corresponding FPI values
were 243.38 and 200.74, respectively.

In the candidate classification step, a novel local structure feature RGD was proposed
that can effectively distinguish MA and vessels and improve the performance of classifica-
tion. After using this, the AUC value in the e-ophtha MA dataset increased from 0.96153
to 0.97515, and in the ROC dataset, the AUC value increased from 0.90658 to 0.94060.
The whole MA detection algorithm proposed achieved a high detection performance in the
e-ophtha MA dataset (Fscore = 0.567); however, its performance in the ROC dataset was
mediocre (Fscore = 0.264) as the sensitivity value in candidate extraction step was low.

The candidate extraction algorithm performed worse in the ROC dataset than in the
e-ophtha MA dataset. Nevertheless, the results of candidate classification showed high
performance in both datasets. The detection performance of MA can be improved by
changing the candidate extraction algorithm and combining RGD with other conventional
features in the candidate classification step.
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