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Abstract: Here, we show the utility of the fluorescent biosensor hCaM-M124C-mBBr in detecting and
determining the affinity of serotonin (5-HT). We obtained a Kd of 5-HT (0.71 µm) for the first time,
the same order of magnitude as most anti-CaM drugs. This data can contribute to understanding
the direct and indirect modulation of CaM on its binding proteins when the 5-HT concentration
varies in different tissues or explain some of the side effects of anti-CaM drugs. On the other hand,
molecular modeling tools help the rational design of biosensors and adequately complement the
experimental results. For example, the docking study indicates that 5-HT binds at the same site as
chlorpromazine (site 1) with a theoretical Ki of 2.84 µM; while the molecular dynamics simulations
indicate a stability of the CaM–5-HT complex with a theoretical ∆G of −4.85 kcal mol−1, where the
enthalpy contribution is greater. Thus, the combination of biotechnology and bioinformatics helps in
the design and construction of more robust biosensors.

Keywords: biosensor; calmodulin; 5-HT; docking; molecular dynamic simulation

1. Introduction

Biosensors present a hybrid mechanism to transform information from chemical
interactions into analyzable signals through biochemical mechanisms. These systems are
generally a receptor system, a biological component that specifically interacts with an
analyte and transduces the signal with a detector system. The transductor component
has been the focus of much attention devoted by chemists and biologists over the past
decades to develop “biosensors” that allow the tracking or detecting of a small molecule
of interest in a minimal amount of time. Especially, fluorescent biosensors are currently
the most widely used due to their high sensitivity and selectivity, sufficient temporal and
spatial resolution, and low cost of use [1]. The advantage of these systems is that the
biological component gives it high selectivity, and the transducer component provides high
sensitivity and reproducibility [2].

A molecular target drug that interacts with molecules and regulates many metabolic
pathways is the protein calmodulin (CaM). CaM has been the subject of various studies
of computer, thermodynamic, structural, evolutionary, and pharmacological types [3–9].
This protein is one of the most abundant, ubiquitous, and conserved: more than 60%
of it is conserved among eukaryotes and 100% conserved among vertebrates [10]. The
sequence of CaM comprises 148 amino acids formed by two domains containing each
domain two Ca2+-binding loops known as EF-hands. These domains are separated by a
long central helix giving this protein a dumbbell shape. CaM has no enzymatic activity
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but plays an essential role in calcium signaling pathways. CaM interacts with many
proteins to activate or regulate intracellular calcium concentration [11,12]. This protein
is a molecular target of compounds with pharmacological activity, such as anti-cancer,
antipsychotic, antidepressant, muscle relaxant, and local anesthetic drugs. Moreover, it
involves physiological processes such as muscle contraction, fertilization, cell proliferation,
vesicular fusion, apoptosis, and others [13–17].

Figure 1 shows the development of the hCaM-M124C-mBBr biosensor. The devel-
opment of this biosensor consisted of a rational design to identify the best site to mark
the protein with a fluorophore to monitor both local microenvironment changes and in-
teractions of potential CaM protein inhibitors. A characteristic of the CaM protein is
that it does not present cysteine residues in its wild form, so site-specific labeling with
thio-reactive fluorophores such as monobromobimane fluorophore (mBBr) can be carried
out with the mutation of any amino acid by a cysteine. This development shows high
sensitivity (Φ = 0.49), and thanks to its extrinsic fluorescence, it does not interfere with
most anti-CaM and endogenous molecules (λexi = 381 and λemi = 473 nm) [18].
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Figure 1. Development and functionality of the hCaM-M124C-mBBr biosensor. Panel (A) shows
the complete development for the construction of the fluoresce biosensor, highlighting the critical
points of each step of the process. Panel (B) presents the functionality of this development, where the
change of the microenvironment and direct interaction of the ligand turns off the fluorophore.

Some drugs of everyday use such as chlorpromazine (CPZ), trifluoperazine (TFP),
fluoxetine (FLU), and vinblastine (VBT) [19–24] are linked directly or indirectly to CaM
and its related proteins, and some endogenous molecules such as serotonin (5-HT) and
dopamine (DOP) could also bind to CaM and affect the potency of the aforementioned
drugs. 5-HT is a molecule that acts as a biochemical messenger and regulator. This metabo-
lite can be found mainly in the gastrointestinal tract, central nervous system, and platelets.
Some important physiological functions in which 5-HT participates are gastrointestinal
motility, neuronal communication, cardiovascular integrity, and hemostasis. Multiple
receptor families explain this biochemical mediator’s broad physiological actions and
distribution [25–27]. DOP is an endogenous molecule belonging to the catecholamines
family, which plays important roles at neuronal and physiological levels. In the CNS,
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DOP behaves like a neurotransmitter, and in the rest of the body, it plays a diversity of
roles [28,29].

On the other hand, computational tools such as docking and molecular dynamics
simulations are ideal for obtaining theoretical thermodynamic and union parameters,
compared with experimental data, and help propose structural models of protein–ligand
complexes [30–32]. In this work, we show the usefulness of the hCaM-M124C-mBBr
biosensor in detecting and determining the affinity of 5-HT for the CaM protein for the first
time. We show that 5-HT binds CaM with a Kd of 0.71 µM and is of great importance. It
can be related to the side effects of some CaM agonists used as antidepressants (FLU, CPZ,
and TFP) and chemotherapeutic agents (VBT). Docking and molecular dynamics studies
correlate adequately with experimental data and provide structural details at the atomic
level of the CaM–ligand interaction.

2. Materials and Methods
2.1. Materials

The biosensor used in this work (hCaM M124C-mBBr) was produced according to the
methodology described by González-Andrade, M., et al. [18]. CPZ, 5-HT, DOP, and AMA
were obtained from Sigma-Aldrich Química (Toluca, México). All other consumables were
analytical grade.

2.2. Steady-State Fluorescence

All measurements were conducted with an ISS–PC1 spectrofluorometer (ISS, Cham-
paign, IL, USA) with sample stirring at 37 ◦C. The hCaM M124C-mBBr (1 µM) was incubated
in buffer (10 mM of potassium acetate pH 5.1 and 10 µM of CaCl2). The slits used in the
acquisition of the fluorescence spectra had a width of 4 and 8 nm for the excitation and
emission, respectively. The λexi was 381 nm, and the λemi was collected from 415 to 550 nm.
The fractional degree of saturation biosensor–ligand complex (y) was estimated by charges
in fluorescence on ligand corresponding to y = (F − F0)/(F∞ − F0), where F∞ represents
the fluorescence intensity at saturation of the ligand, y is graphed as a function of the
protein/ligand relation (L), and the apparent dissociation constants (Kd) and stoichiometric
(S) were estimated by fitting to Equation (1):

y =
(1 + Kd/S + L/S)−

√
(1 + Kd/S + L/S)2 − 4L/S

2
(1)

where y is the fractional degree of fluorescence intensity, Kd is the apparent dissociation
constant, L is the protein/ligand relation, and S is stoichiometric. OriginPro version 9.0
64-bit SR2 (OriginLab, Northampton, MA, USA) was used to process all data.

2.3. Obtaining and Preparing the Files of the Three-Dimensional Structures

The three-dimensional file structures corresponding to the CaM protein were obtained
from the Protein Data Bank (PDB, http://www.rcsb.org, accessed on 30 April 2021). The
CaM–ligand complexes, the X-ray structure of CaM with calcium, and ligand TFP named
1A29.pdb (1A29, close form of the CaM) refined at 2.7 Å were chosen [33]. The ligands were
obtained from the PDB co-crystillized structure, and when the crystals were not available,
their structures were constructed using AVOGRADRO software (version 2, Free Software
Foundation, Boston, USA) [34]. Subsequently, the constructed ligands were minimized
using Gaussian 09, revision A.02 (Gaussian Inc., Wallingford, CT, USA) at DFT B3LYP/3-
21G level of theory. For the ligands used in the molecular dynamics simulations, these
were parameterized using the Antechamber program in AmberTools [35].

2.4. Docking

The docking studies were carried out using the three-dimensional structure of CaM
obtained by X-ray crystallography (1A29.pdb). Using the idealization application of

http://www.rcsb.org
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Rosetta 3.1 release, the three-dimensional protein structure was reconstructed and refined
prior to the docking studies [36]. AutoDockTools 1.5.4 was used to prepare CaM and its
ligands. The preparation of CaM consisted of adding polar hydrogen atoms, Kollman
united-atom partial charges, and for the ligands computing Gasteiger–Marsili formalism
charges, rotatable groups which were assigned automatically, as were the active torsions.
The docking was run using AutoGrid4 and AutoDock4 version 4.2 software [37], initially
in a 60 Å × 60 Å × 60 Å grid box and to refine the best pose in a 30 Å × 30 Å × 30 Å
grid box using the recommended parameters. The analysis of the docking was made with
AutoDockTools using cluster analysis and the program PyMOL [38].

2.5. Molecular Dynamics Simulation

The best poses of the ligands obtained from the docking studies were parameterized
with Antechamber (a set of auxiliary programs for molecular mechanic studies) to build
the CaM–ligand complexes used in the molecular dynamics simulation studies. The
LEaP module from AMBER was used to assemble the initial topology and coordinate
files [35,39]. Each file was subjected to the subsequent protocol: hydrogens were added,
ions counterions were added to neutralize the system, the system was solvated in an
octahedral box of solvent explicit (TIP3P model water molecules) localizing the limits at
12 Å from the complex surface. Molecular dynamics simulations were made at 1 atm and
298 K, preserved with the Berendsen barostat and thermostat, using periodic boundary
conditions and particle mesh Ewald sums (grid spacing of 1 Å) for treating long-range
electrostatic interactions with a 10 Å cutoff for computing direct interactions. The SHAKE
algorithm was used to satisfy bond constraints, allowing employment of a 2 fs time
step for the integration of Newton’s equations [40,41]. Amber f19SB force field [39,42]
parameters were used for protein and Gaff2 force field for the ligands [43]. All calculations
were run using a GPU-accelerated molecular dynamics simulation engine in AMBER
(pmemd.cuda) [44]. The protocol consisted in performing a minimization of the initial
system, followed by 50 ps heating step at 298 K, 50 ps for equilibration at constant volume,
and 500 ps for equilibration at constant pressure. Several independent 100 ns molecular
dynamics simulations were performed. Structures were saved at 100 ps intervals for
subsequent analysis, using the CPPTRAJ program [45].

2.6. Binding Free Energies Calculated by Molecular Mechanics/Poisson–Boltzmann Surface Area
(MM/PBSA)

The calculation of the binding free energies consists of the combination of molecular
mechanical energy with implicit solvation models. In MM/PBSA, binding free energy
(∆Gbind) between a protein and a ligand to form a protein–ligand complex is calculated as:

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆GSol − T∆S (2)

∆EMM = ∆EInternal + ∆EElectrostatic + ∆EVdw (3)

∆GSol = ∆GPB + ∆GSA (4)

where ∆EMM, ∆GSol, and T∆S are the changes of the gas phase molecular mechanics energy,
the solvation free energy, and the conformational entropy upon binding, respectively.
∆EMM comprises ∆EInternal (bond, angle, and dihedral energies), ∆EElectrostatic (electrostatic
energies), and ∆EVdw (Van der Waals energies). ∆GSolv is the sum of electrostatic solvation
energy (polar contribution) ∆GPB and non-electrostatic solvation component (non-polar
contribution) ∆GSA. The polar contribution is calculated using the Poisson–Boltzmann
surface area model, while the non-polar energy is estimated from the solvent accessible
surface area (SASA). The conformational entropy change (T∆S) was computed by normal
mode analysis from a set of conformational snapshots taken from the molecular dynamics
simulation [46]. All calculations were made using a system HP Cluster Platform 3000SL
(Hewlett-Packard Development Company, Spring, TX, USA), supercomputer “MIZTLI”
with a processing capacity of 118 TFlop/s. It had 5312 Intel E5-2670 processing cores,
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16 NVIDIA m2090 cards, a total RAM of 15,000 GB and a mass storage system of 750 TB
(http://www.super.unam.mx/, accessed on date 30 April 2021).

3. Results and Discussion
3.1. Analysis of the CaM Complex with Clorpromazine (1:4) for Biosensor Design

It has been reported that CaM can bind from one to four ligands depending on its
size; for example, CaM–KAR-2 (1:1), CaM–AAA (1:2), and CaM–TFP (1:4) complexes [5,47].
Figure 2 shows an analysis of the structure of the CaM–CPZ complex. Site 1 is formed
by residues Phe92, Ile100, Leu105, Met124, Phe141, and Met144; site 2 (Glu11, Glu14,
Ala15, Leu18, Phe19, Val35, Leu39, Met72, Met109, Leu112, and Glu114); site 3 (Met36,
Leu39, Glu41, Glu84, Ala88, Val91, and Phe92), and site 4 (Phe19, Ile27, Leu32, Met51, Ile52,
Val55, Phe68, and Met71). Although the affinity of the binding sites can vary depending
on the ligand, the residues corresponding to site 1 have been reported as constant in
most co-crystallized structures and molecular dynamics and docking studies [20,22,48–52].
Additionally, this site is also involved in interactions with CaM-binding peptides and
proteins [52,53]. The Met124 residue is part of site 1, so covalently labeling the protein
with the mBBr fluorophore was essential for the hCaM-M124C-mBBr biosensor to have the
ability to monitor the binding of most of the ligands, peptides, and proteins.
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Figure 2. Analysis of the CaM-CPZ complex (1:4). In the center, CaM is shown in purple cartoons
with 4 CPZs (CPZ-1; orange stickers), (CPZ-2; blue stickers), (CPZ-3; yellow stickers), and (CPZ-4;
purple stickers); and in the green sphere, position 124 is where the fluorophore of the biosensor is
attached. In the periphery, the analysis of the interactions with the residues is at 4 Å.

3.2. Purification and Chemical Modification with mBBr of the CaM M124C Protein

The hCaM M124C recombinant protein was purified by hydrophobic exchange chro-
matography on a Phenyl-Sepharose CL-4B column (Figure S1). Subsequently, it was
chemically modified with mBBr fluorophore to obtain hCaM M124C-mBBr, which was
repurified using molecular exclusion chromatography on a superdex75 column and moni-
tored at two wavelengths, 276 and 381 nm, corresponding to the aromatic residues of CaM
and mBBr, respectively (Figure S2). Figure 3A shows the follow-up of obtaining the hCaM
M124C-mBBr biosensor. The lanes of the acrylamide gel were analyzed with the Image J

http://www.super.unam.mx/
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program (http://rsb.info.nih.gov/ij/, accessed on 30 April 2021), obtaining the intensity
of each lane according to the tonality scale of the digitized and computerized image. The
amount of recombinant protein was estimated to be around 80% of the total protein, with
a purity of 98%, with a yield of around 160 mg of hCaM M124C-mBBr biosensor per liter
of medium. The spectroscopic properties of the CaM M124C mutant and the biosensor
are shown in Figure 3B, where we observe an absorption maximum at 381 and 276 nm for
hCaM M124C-mBBr and hCaM M124C, respectively.
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Figure 3. (A) Follow-up of the purification of the hCaM M124C protein by SDS-PAGE. Lane 1 and 6
a-Lactoalbumin (14,200 Da) and LAO protein (26,000 Da), lane 2 supernatant after sonication, lane
3 fraction without binding to the Phenyl-Sepharose CL-4B column, lane 4 fraction corresponding
to the hCaM M124C from the Phenyl-Sepharose CL-4B column and lane 5 fraction of the hCaM
M124C-mBBr after passing through the size exclusion column (Superdex75). (B) The absorption
spectra of the hCaM M124C (-) and hCaM M124C-mBBr (—).

3.3. Determination of the Binding Affinity of 5-HT and CPZ with the Biosensor hCaM
M124C-mBBr

To determine the affinity of 5-HT using the biosensor hCaM M124C-mBBr in calcium-
saturating conditions (10 µM), these were titrated by adding increasing amounts of 5-HT
to determine the Kd. Figure 4 shows fluorescence spectra of the biosensor with different
concentrations of ligands; the differences observed in the fluorescence signal were used to
calculate the Kd, using a one-site binding model equation (Equation (1), see method section).
Table 1 shows the results obtained from the fluorescence titrations of the compounds. CPZ
has been previously reported to bind to a CaM–EGFP fusion protein in the presence of
Ca2+, but this system does not respond to 5-HT [54]. In the case of 5-HT, previous studies
using CaM labeled at position 109 did not observe the response of this biosensor either [55].
However, we can perform a complete titration with 5-HT and obtain a Kd of 0.71 µM, using
the hCaM-M124C-mBBr biosensor (Figure 4A), which is within the range expected for most
organic molecules. Another neurotransmitter, DOP, was analyzed with our biosensor and
showed no response (Figure S3A), agreeing with both CaM–EGFP and the CaM labeled at
position 109. CaM has specific binding sites for inhibitors and proteins, so inhibitors share
standard structural features. In general, the inhibitors of CaM are structures of resonant
type, with a zone of character highly hydrophobic and an electronegative pole. The
structural differences between 5-HT and DOP comprise those primarily in the conjugated
system. The DOP molecule consists of a catechol structure, while 5-HT is synthesized from
the essential amino acid L-Tryptophan, so its conjugate system is an indole. Amantadine
(AMA) was used as a negative control; this antiviral drug structurally does not exhibit the
features described above. Figure S3B shows that the addition of about 80 µM does not
change the fluorescence signal of the biosensor.

http://rsb.info.nih.gov/ij/
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Figure 4. Fluorescence spectra and titration curves of hCaM M124C-mBBr with 5-HT (A) and CPZ (B).
Buffer was 10 mM of potassium acetate pH 5.1 at 37 ◦C. The absolute changes of maximal fluorescence
emission were corrected for light scattering effects and plotted against the ligands-to-total-protein
ratio (insets). The continuous line in the insets comes from the fitting of data to the binding model
(Equation ((1)) to obtain the Kd.

Table 1. Experimental and theoretical binding properties of CaM–ligand complexes.

Experimental Studies Docking Studies MD Studies

Complex ∆Gexp (kcal
mol−1) Kd

1 (M) EFEB 2 (kcal
mol−1) Kd

3 (M)
∆H (kcal
mol−1)

T∆S (kcal
mol−1)

∆Gcal (kcal
mol−1)

CaM–CPZ −8.19 0.97 × 10−6 −8.24 0.90 × 10−6 −22.27 ± 2.5 −17.75 ± 7.7 −4.52 ± 1.8
CaM–5-HT −8.38 0.71 × 10−6 −7.56 2.84 × 10−6 −21.38 ± 2.7 −16.52 ± 3.4 −4.85 ± 0.4
CaM–DOP - - −7.21 2.96 × 10−6 −11.85 ± 3.5 −13.60 ± 5.24 +1.74 ± 0.8
CaM–AMA - - −7.74 2.13 × 10−6 +133.30 ± 13.8 +15.60 ± 5.16 +117.69 ± 21.2

1 Apparent dissociation constants at 298.15 K; 2 Estimate Free Energy of Binding; 3 Theory inhibitor constants at 298.15 K.

3.4. Relevance of Interaction between CaM–5-HT

The experimental determination of the binding of 5-HT to CaM is important since
CaM interacts with a wide range of membranal receptors such as epidermal growth factor
receptor, the cytoplasmic domain of platelet glycoprotein VI, and some G protein-coupled
receptors (GPCRs) [56,57]. The GPCRs that interact with CaM are glutamate subtype
5, D2-dopamine, m-opioid, V2-vasopressin, and 5-HT1A receptors [58–62]. Thus, CaM
interactions with these receptors play an essential role in modulating and signaling different
metabolic pathways associated with these GPCRs.

5-HT, being an endogenous metabolite, can vary the concentration in different condi-
tions in the body. Therefore, if it forms a CaM–5-HT complex in addition to performing
its function, it could indirectly regulate some receptors modulated by CaM, including the
5-HT receptor itself. Another possibility is that 5-HT can compete with CaM agonist drugs,
synergizing or abolishing activity of the latter.

Figure 5 outlines a possible scenario of the implications of serotonin being able to bind
and inactivate CaM. CaM in the presence of calcium exposes hydrophobic patches capable
of interacting with various proteins, such as the 5-HT1A receptor. It has been described that
it possesses two CaM-binding regions (residues 217–237 and 331–349), which modulate the
activity of the 5-HT receptor-protein G complex.

Using the hCaM-M124C-mBBr biosensor, we demonstrate that 5-HT binds and inacti-
vates to CaM, since it stabilizes the closed conformation (inactive). Therefore, 5-HT may
play an important role in modulating many GPCRs through the inactivation of CaM.
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Figure 5. Scheme of a possible indirect modulation of 5-TH on the serotonin-bound serotonin 1A
(5-HT1A) receptor through CaM. On the left is shown 5-HT1A receptor-Gi protein complex; 5-HT1A

receptor in yellow cartoons (red cartoons represent CaM interaction sites), and Gi protein in green
cartoons, and the lipid bilayer in purple surface. CaM and CaM–5-HT complex are shown in purple
cartoons and 5-HT in cyan stickers. The structural model of the 5-HT1A receptor-Gi protein complex
was obtained from the PDB code 7E2Y.pdb, for the CaM and CaM–5-HT complex 1Y0V.pdb and
1A29.pdb, respectively.

3.5. Docking

Docking studies show that 5-HT binds to site 1, interacting directly with position 124
and forming a hydrogen bridge, where the fluorophore is bound in our biosensor so that
this interaction can explain the quenching of fluorescence (Figure 6). The Ki for 5-HT was
2.84 µM; for DOP and AMA the Ki values were 2.96 and 2.13 µM, respectively (Table 1).
The data of DOP and AMA should be taken with caution since these compounds do not
respond to interacting with hCaM-M124C-mBBr. Therefore, docking studies can present
false-positive results when there is not enough experimental information. However, when
experimental information is available, it is a powerful tool for studying protein–ligand
interactions at the atomic level and making good correlations. On the other hand, the
comparison of the Ki with the experimental Kd of 5-HT and CPZ are good since they are
in the same range of µM, and for 5-HT there is a difference of 3 times, and for CPZ they
are practically the same. The best pose of the 5-HT obtained from the docking was used to
perform the molecular dynamics simulations, which is of great importance since there is
no structural model of the complex to be studied in our case, the CaM–5-HT complex.

3.6. Molecular Dynamics Simulations

Unlike docking studies, molecular dynamics simulations represent the movement
of all the atoms of a system, where they vibrate and move in a defined time [63]. A key
element for conducting molecular dynamics simulation studies is the starting structure
of the CaM–ligand complex. The initial structures were obtained from docking studies
and available experimental information of CPZ. Another critical point is the optimal
time to perform a molecular dynamics simulation, depending on the studied particle
system. Figure S4 shows the changes in system energy during the simulation process of
the CaM–CPZ complex, which gives us the guidelines to establish the simulation times
for this system. We calculated some thermodynamic parameters of all complexes using
the method normal mode analysis to identify the enthalpy and entropy contributions of
binding ligands to CaM. This calculation estimates a ∆Gcal and allows determining the
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enthalpy and entropy contributions associated with the protein–ligand interaction directly
related to molecular recognition. Table 1 shows the theoretical thermodynamic parameters
of the molecular dynamics simulation trajectories.
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Figure 6. Docking of CaM–5-HT complex. CaM is shown in purple cartoons, position 124 in green
spheres, and 5-HT in cyan stickers. The analysis of the interaction residues at 4 Å of 5-HT is shown
in a zoom. The figures were made with PyMOL and Maestro.

The energetic compound in the docking results (EFEB) shows a good correlation
with experimental results for CaM–5-HT and CPZ complexes. We estimate interaction
energy for the CaM–DOP and CaM–AMA complexes even though we did not observe a
union experimentally. However, molecular dynamics studies calculate a negative ∆Gcal
for CaM–CPZ and CaM–5-TH complexes (−4.52 and −4.85, respectively) and a positive
∆Gcal for CaM–DOP and CaM–AMA complexes (+1.74 and +117.69, respectively) which
is consistent with the experimental data. For CaM–5-HT and CaM–CPZ complexes, the
enthalpy component is the one that contributes most to ∆G, which may be the result of the
direct interaction of the ligands with CaM.

Figure 7A shows the root mean square deviations (RMSDs) vs. Time for 100 ns
molecular dynamics simulation; RMSDs show slight fluctuation (1–3 Å) over time for
CaM–CPZ and CaM–5-HT complexes, and for CaM and the CaM–DOP complex (~10 Å).
The large RMSD observed for CaM can be attributed to the dynamics of the protein itself,
which fluctuates between “closed” and “open” forms when a ligand binding stabilizes a
conformation; in this case, closed conformation. For the CaM–DOP complex, DOP does
not bind to the protein, fails to stabilize a conformation, and possibly the CaM explores
new conformation, translating into a high RMSD (red line in Figure 7A). The CaM–5-HT
complex remains stable during 100 ns of molecular dynamics, as observed in Figure 7B,
where four fragments of the molecular dynamics trajectory were extracted, representing
the structural models (initial, 25, 50, 75, and 100 ns).
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4. Conclusions

The high sensitivity and specificity of the hCaM-M124C-mBBr fluorescent biosensor
allow the detection of most anti-CaM ligands and endogenous metabolites such as 5-HT.
The biosensor was designed based on experimental and theoretical data to place the
fluorophore in the optimal position of the protein. The importance of reporting the direct
interaction of 5-HT with CaM lies in proposing modulations of different proteins with
which CaM interacts, among which are the GPCRs. Additionally, the binding of 5-HT to
CaM may be related to some side effects of anti-CaM drugs such as CPZ, TFP, FLU, and
VBT. On the other hand, the theoretical studies help us to complement experimental data
and, in the case of the CaM–5-HT complex, to propose a structural model of it (docking),
as well as its stability as a function of time (simulation of molecular dynamics).
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concentrations of DOP and AMA, Figure S4: Progress of the molecular dynamics simulation of the
4Ca2+-CaM–CPZ complex. The total energy of the system vs. time. The steps of the simulation
comprise 50 ps of heating, 50 ps of equilibration at constant volume, 500 ps of equilibrium, and 100 ns
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