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Abstract: Odour emissions generated by industrial and environmental protection plants are often a
cause of nuisances and consequent conflicts in exposed populations. Their control is a key action to
avoid complaints. Among the odour measurement techniques, the sensory-instrumental method with
the application of Instrumental Odour Monitoring Systems (IOMSs) currently represents an effective
solution to allow a continuous classification and quantification of odours in real time, combining
the advantages of conventional analytical and sensorial techniques. However, some aspects still
need to be improved. The study presents and discusses the investigation and optimization of the
operational phases of an advanced IOMS, applied for monitoring of environmental odours, with
the aim of increasing their performances and reliability of the measures. Accuracy rates of over 98%
were reached in terms of classification performances. The implementation of automatic correction
systems for the resistance values of the measurement sensors, by considering the influence of the
temperature, has been proven to be a solution to further improve the reliability of IOMS. The
proposed approach was based on the application of corrective coefficients experimentally determined
by analyzing the correlation between resistance values and operating conditions. The paper provides
useful information for the implementation of real-time management activities by using a tailor-made
software, able to increase and enlarge the IOMS fields of application.

Keywords: air quality; continuous monitoring; linear discriminant analysis; MOS sensor; odour emis-
sions

1. Introduction

The operation of industrial plants and of waste and wastewater treatment plants may
entail the alteration of some environmental components, such as the air quality sector,
with introduction into atmosphere of gaseous pollutants, including odours [1]. Odours
emissions can cause annoyance to the exposed population and therefore complaints due
to perception of unhealthy conditions and low quality of air [2,3]. Prolonged exposure
to odorous gaseous mixtures can be responsible for several symptoms such as nausea,
headache, and respiratory problems [4–6]. Even if the exposure to odour emissions was
not related to permanent health effects, a comprehensive assessment and control of these
emissions to increase the plants acceptability is needed [7].

The control of odour emissions is thus a key action that plant managers can implement
to boost the social and environmental sustainability of odour-emitting plants.

To date, it has not been adopted worldwide a shared regulations framework for odour
characterization and measurement [8]. However, the numerous research activities in this
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field suggest to assess odours with integrated strategies, starting from the characterization
of the odours emissions at the receptors level [9].

Currently, measurement and quantification of odour can be implemented with instru-
mental, sensorial and mixed methods [10]. The instrumental techniques allow to identify
and quantify the chemical composition of the odours gaseous mixtures, using separation
and analytical identification techniques such as gas chromatography combined with mass
spectrometry [11,12]. These techniques have the advantage of being consolidated and
objective, as well as being repeatable and accurate. However, they are not able to reflect the
odour offensiveness of gaseous mixture. Sensory techniques, such as dynamic olfactometry,
use the human nose as detector in the evaluation of odours. Due to the subjective nature of
the perception of odour sensation and the influence of external factors on measurements,
dynamic olfactometry is generally related to uncertainty, even if conducted according to
the EN 13725:2003 [13]. On the other hand, among the senso-instrumental techniques,
the Instrumental Odour Monitoring Systems (IOMSs), also known as electronic noses,
are able to monitor odours continuously, combining the advantages of both conventional
instrumental and sensorial measurement techniques. Therefore, a high potential of fu-
ture development has been associated to IOMS-based technologies [14,15]. In 2018, the
German VDI (Association of German Engineers) published a guideline (VDI 3518-3:2018)
relating specifically to odour measurements with IOMSs. In Italy, as consequence of a
significantly growth of the use of IOMSs during the last years, in February 2019, the UNI
Standardization Body elaborated and approved a specific standard (UNI 1605848:2019) for
the application and qualification of IOMS for environmental odour monitoring in ambient
air. Furthermore, during the last years several national and international standards and
regulations in terms of odours have been introduced, confirming importance and actuality
of the topic [9,16].

IOMSs are capable of monitoring odours using a specific array of measurement sensors
and a set of algorithms for the elaboration of the acquired data [17,18]. Since the idea of
an electronic nose was born in 1982, both the sensor array and the algorithms have been
affected by constant significant developments associated with the continuous improvement
of machine learning technologies [17,19]. The electronic nose has found wide application
in different sectors such as agriculture [20,21], medical diagnosis [22,23], environmental
monitoring [24,25], and food safety protection [26,27]. For a specific application, the design
of the hardware components of the device and the selection of the most suitable sensors, as
well as the methods of feature extraction and classification, are fundamental elements to
optimize. The IOMS can be implemented to obtain real-time information needed to support
the decision making processes, with a proactive approach and to control the performance of
the processes (Figure 1) [28,29]. However, even if it is difficult to implement at an industrial
scale, synergistic approaches based on chemical characterization, dynamic olfactometry,
and electronic noses have been demonstrated to have the best performances to characterize
odors, evaluate their concentration and to develop innovative and tailored monitoring
systems [30]. With these approaches, it is indeed possible to integrate and validate the
monitoring results obtained with IOMS with a comprehensive point of view [31,32].

The operating phases of an IOMS are generally: training, validation, measurement
and management [27,33,34]. Despite the many advantages associated with IOMSs, they
still have limitations, such as the difficulty in stabilizing the operating temperature of
the devices, the marked dependence of the sensor resistances on operating parameters
(temperature, flow rate entering the measurement chamber, humidity, etc.), and possible
difficulties in the classification procedure following an improper choice of the method
of feature extraction [35]. The challenge of research is therefore to find answers to these
critical issues.

The study is aimed at the development of an advanced IOMS applied for environ-
mental odour monitoring in ambient air, with the objective of overcoming some of the
above-mentioned limitations. The experimental analyses have been carried out by consid-
ering the operational phases of the IOMS. Optimization of the classification performance
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has been reported and highlighted by introducing innovative management systems to
stabilize the temperature inside the chamber. Moreover, it has been proposed a smart
approach able to automatically process the raw data acquired by the sensors to consider
temperature fluctuations, which may occur for unfavourable operating conditions. The
temperature inside the chamber significantly affects the values detected by the sensors [36].
It has been extensively demonstrated that under constant gas composition and concentra-
tion, the sensor responses change with the variations of temperature and humidity and
consequently different methods have been proposed [37,38]. The novel proposed approach
was designed by experimentally retrieving the correlation curves between temperatures
and resistances for the calculation of specific corrective factors. The results demonstrated a
significant improvement in terms of recognition performances by applying the proposed
approach for the classification of real odour sampling.
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2. Materials and Methods
2.1. IOMS Device

The IOMS device was developed by the research group of the Sanitary Environmental
Engineering Division (SEED) of the University of Salerno in collaboration with the SPONGE
(www.spongeitalia.com; accessed on 15 June 2021) and SARTEC (www.sartec.it; accessed on
15 June 2021) companies. The developed IOMS is equipped with integrated management,
cleaning and calibration systems which allows its automatic use and application even in
particularly aggressive environments for prolonged periods. The hardware component
of the IOMS system consists of four main units: sampling, measurement, elaboration
and management (Figure 2). The sampling component consists of membrane pumps and
electronic valves designed to convey the sampled gas at a constant flowrate of 300 mL
min−1 in the measuring chamber. The measuring chamber, called CODE, designed and
patented by the SEED research group, is equipped with 16 measurement sensors arranged
on two levels (Table 1) and has an internal volume of 300 mL with a residence time of
1 min. The management unit is composed of systems capable of generating zero air and
span air. The elaboration unit, composed by a CPU Board and a Main Board, allows the
storage, process, and display of the data acquired by the sensors. The IOMS is equipped
with a specific software able to work with five different operating modalities (Baseline,
Calibration, Training, Validation, Real Time) [1].

www.spongeitalia.com
www.sartec.it
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Table 1. IOMS sensors and related channels.

Type of Sensor Position

TGS813 (Combustible Gases) (Level I, channel j3–Level II, channel j12)
TGS2620 (Solvent Vapors) (Level I, channel j2–Level II, channel j10)

TGS2602 (VOCs and odorous gases) (Level I, channel j15–Level II, channel j9)
TGS822 (Organic Solvent Vapors) (Level I, channel j13–Level II, channel j7)

TGS880 (alcohol, odor) (Level I, channel j8–Level II, channel j1)
TGS2600 (hydrogen and carbon monoxide) (Level I, channel j6–Level II, channel j14)

TGS2603 (Odor and Air Contaminants) (Level II, channel j5)
TGS2611 (Methane) (Level II, channel j4)

PID sensor (miniPID 2, Ion Science) (Level I)
Humidity-Temperature Module (HYT271, IST) (Level I)

2.2. Experimental Analyses

Four real odour classes were trained for the experimental analysis, sampled at a
refining plant (“RF”), from the organic fraction of municipal solid waste (“OF”), coffee
aroma (“CA”), and ambient air (“AA”), by using the static lung-effect sampler and 7 L
Nalophan bags. The lung-effect sampler (length 730 mm, diameter 160 mm) used has a
volume of 10 L, a filling time of 30 to 60 s and a maximum vacuum output of 500 mbar.
The systems allowed to collect odour samples in gas sampling bags besides hindering the
odour samples contamination. A total of 146 samples were taken.

Table 2 shows the numerical distribution of the total collected samples in the different
odor classes.
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Table 2. Training samples dataset.

Odour Classes RP OF CA AA

Number of samples 24 38 40 44
Total 146

The samples were then connected to the IOMS for the acquisition. 138 samples were
used to create the Training Set (TS), while the remaining 8 (2 for each class) were used as
Validation Set (VS). The preliminary validation was performed on TS and on the whole set
of samples (TS + VS).

2.3. Elaboration of the Classification Predicitve Model

The Linear Discriminant Analysis (LDA) was used for the creation of the predictive
classification model. The LDA approach belongs to the supervised methods [39,40]. The
elaboration of the prediction models has been implemented with a specific function of the
software developed for the IOMS applications [41].

The sensor array generated a vector of resistance every TA seconds for TF minutes
and so it gave as output n vectors of m components, where:

• m is the number of the sensors;
• TA (Acquisition time) is the time between two different acquisition of resistance equal

to 2 s;
• a is the number of acquisition;
• TF (Flushing duration) is the acquisition time between which the values of resistances

were taken in consideration for the calculation of the average value equal to 3 min.

For each sample, the software automatically created a Response Matrix “R” (axm)
with the data recorded by the MOS sensors. These matrixes have been preprocessed with
the following equation according to a previous study [1].

• Differential Value of resistance (DVR)

fi,j = ri,j − ri,0. (1)

For each pre-processed matrix, a vector per sample was extracted by calculating the
average of the values per columns. In this way, for each sample of the Training Set, a vector
was automatically generated by the SW. The Feature Extraction (FE) matrix contained a
vector for each sample of a Training Set (TS).

The matrixes with the preprocessed data (one vector for each sample of the TS) and
the vector with the corresponding odour classes (one value for each sample) were analysed
with the LDA method according to [42]. The LDA statistical procedure was implemented
returning in output the vectors of the coefficients of the predictive classification model, the
confusion matrix, and the Mahalanobis distances.

2.4. Analysis of the Influence of the Temperature on the Sensors Detected Values

The influence of the variation of the detected temperature inside the CODE chamber
and the resistance values of the 14 measurement sensors has been evaluated statistically
during the acquisition phase. For the TS + VS datasets, for each odour class, correlation
graphs were elaborated, implementing linear interpolation analyses. For each sensor, the
R-squared coefficient of the correlation curves Temperature–Resistance was calculated
according to [43]. The corrective coefficients were calculated for the sensors, which showed
a R-squared coefficient higher than 0.7.

2.5. Optimization Studies and Performance Evaluation

In order to improve the accuracy of the classification predictive models, the set of
corrective coefficients obtained by analyzing the temperature influence was applied to the
raw resistance data of the measurement sensors. These coefficients were used only for
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sensors in which the relationship between T and R showed a correlation coefficient higher
than 0.7.

To calculate the corrective coefficients, it has been implemented the following algorithm:

(a) Calculation of the interpolation curves equations Ri,j = aj Ti,j + bj (where Ri,j are
the resistance values, Ti,j the corresponding temperature and aj and bj are the linear
combination coefficients different for each j-esimo sensor);

(b) Calculation of the benchmark values at 50 ◦C, for each sensor, using the corresponding
equation of the interpolation curves (R50: reference value at temperature of 50 ◦C);

(c) Calculation of the reference values for each value of temperature between 40 ◦C and
60 ◦C and for each sensor, using the corresponding equation of the interpolation
curves (RTk: reference value at temperature Tk (40–60 ◦C));

(d) Calculation of the corrective coefficients as the ratio between the RTk and R50, different
for each j-esimo sensor and for k-esimo Temperature.

The obtained corrective coefficients have been automatically applied at each values of
resistance according to the mean value of the temperature measured inside the chamber in
the acquisition time.

To quantify the effectiveness of the proposed approach, the performance of the classi-
fication prediction model was calculated and evaluated by defining the indicators listed
below [44].

• Average System Accuracy corresponds to the average per class effectiveness in the
recognition of samples by the classifier.

∑l
i=1

tpi+tni
tpi+ f ni+ f pi+tni

l
. (2)

• System Error is the average error per class in the recognition of samples made by
classifier.

∑l
i=1

f pi+ f ni
tpi+ f ni+ f pi+tni

l
. (3)

• Precision (µ) represents the concordance of the labels of the data classes with those
attributed by the classifier if calculated from the sums of the decisions per text.

∑l
i=1 tpi

∑l
i=1(tpi + f pi)

. (4)

• Recall (µ) indicates the effectiveness of a classifier in identifying class labels if calculated
through the sum of the decisions per text.

∑l
i=1 tpi

∑l
i=1(tpi + f ni)

. (5)

• F-score (µ) identifies the relationships between positive data labels and those provided
by a classifier based on the sum of decisions by text.

(
β2 + 1

)
Precisionµ Recallµ

β2Precisionµ + Recallµ
. (6)

where:

- l = number of the classes;
- tpi = true positive, represents the number of gaseous samples of the i-class correctly

recognized in the i-class;
- tni = true negative, represents the number of samples of a different class correctly

recognized out of the i-class;
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- fpi = false positive, represents the number of samples of a different incorrectly attributed
to the i-class;

- fni = false negative, represents the number of samples of the i-class attributed to a
different class.

For an individual class Ci, the assessment is defined by singular accuracy, precision,
and recall. Conversely, the quality of the overall classification has been assessed as the sum
of counts to obtain cumulative tp, fn, tn, fp (micro-averaging).

3. Results and Discussion
3.1. Predicitve Model for Odour Classification

Table 3 reports the confusion matrix obtained by processing the data of the TS for the
creation of a classification model. Results showed a recognition of 127 samples out of 138,
equal to 92.0% of correct classification rate.

Table 3. Confusion matrix elaborated with the TS dataset.

TS Classes Predicted

Actual

RP OF CA AA TOT
RP 19 0 3 0 22
OF 2 34 0 0 36
CA 2 0 35 1 38
AA 3 0 0 39 42

Total 138

According to the study of Mahmodi et al. [45] the obtained prediction model was
applied to the TS + VS dataset to verify the influence on unknown samples on the model
accuracy (Table 4). Results show that the samples misclassified resulted in the same both
for the TS and TS + VS dataset, while the correct classification rate resulted in being equal
to 92.5%.

Table 4. Confusion matrix elaborated with the TS + VS dataset.

TS + VS Classes Predicted

Actual

RP OF CA AA TOT
RP 21 0 3 0 24
OF 2 36 0 0 38
CA 2 0 37 1 40
AA 3 0 0 41 44

Total 146

3.2. Influence of the Internal Temperature on the Measured Values of the Sensors in Terms
of Resistance

Figure 3 reports the values of the R2 correlation coefficients between the chamber
temperature and the sensors values in terms of electrical resistance, detected inside the
measurement chamber, for each odor class, by considering the TS + VS dataset.
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Table 5 shows the averages and standard deviation values of the acquisition tempera-
tures of the samples of the TS + VS acquired.

Table 5. Average and standard deviation values of the acquisition temperatures for each odour class.

Class Average Temperature [◦C]

RP 48 ± 4
OF 47 ± 5
CA 46 ± 2
AA 47 ± 3

Comparing the resistance values of the single acquisitions, for each class and for each
sensor, with the corresponding acquisition temperature a relationship of inverse propor-
tionality between the temperature (T) and the resistances (R) has been confirmed [46].

For all the investigated classes, the two TGS2602 sensors (Figaro, Arlington Heights,
IL, USA) showed R2 coefficients higher than 0.86, except for samples of “CA” class. For
“CA” class, in fact, the resistance values resulted in less being affected by the temper-
ature fluctuation, since the lowest variation of the acquisition temperature was among
the samples.

Even if the correlation curves have been calculated also for the different odour classes
separately, to avoid the influence of the specific conditions on the model results the cor-
rective factors were calculated considering all the samples together. For all the classes,
the sensor that demonstrated the lowest R2 value resulted the sensor j10_TGS2620. The
TGS2620 sensor is present at both levels (j2_TGS2620—Level I, j10_TGS2620—Level II),
with a different conditioning of the resistances. Consequently, the dependence of the sensor
on the operating temperature resulted almost negligible for the sensors at the channel j10
(II level) since the lower sensitivity of the sensor to the electrical signals. Conversely, the
sensors TGS2602 showed high R2 for all the investigated class.
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3.3. Optimization of the Classification Models and Performance Parameters

In Table 6, the confusion matrix obtained by applying the prediction model to the TS +
VS samples after the application of the correction coefficients was reported.

Table 6. TS + VS confusion matrix with the application of correction coefficients.

TS + VS Classes Predicted

Actual

RP OF CA AA TOT
RP 23 0 1 0 24
OF 2 36 0 0 38
CA 0 0 40 0 40
AA 2 0 0 42 44

Total 146

The results in terms of accuracy performances have been reported in Figure 4, in
which the performance indicators have been calculated per class for the TS + VS dataset
before and after the application of the corrective factors.
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Figure 4. Comparison between model performances on TS + VS dataset, per each class, before (RP, OF, CA, AA, TOTAL)
and after (RP_c, OF_c, CA_c, AA_c, TOTAL_c) the application of correction coefficients.

Applying the corrective coefficients to the raw data of the 146 samples (TS + VS
Set), a significant improvement in terms of recognition performance was obtained. In
fact, according to the results of the confusion matrix reported in Table 5, the misclassified
samples decreased from 11 to 5. The results have been confirmed in the graph in Figure 4,
in which a remarkable improvement in terms of classification performances mainly for RP
and CA odour classes can clearly be observed.

The strong dependence of almost all sensors on the operating parameters has been
indeed reduced by considering the actual acquisition temperatures. The highest accuracy
was detected for the OF class, for which, by applying the corrective coefficients, an accuracy
of 98.6% was obtained. The overall accuracy increased from 96.1% to 98.3%. All the classes,
after the application of the afore-mentioned coefficients, showed accuracies over 96%.
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4. Conclusions

The possibility to continuously monitor all the parameters that can affect the operating
modes of the IOMS system and their results is a fundamental element to increase the model
prediction results and performances. In the present study, the temperature of the gaseous
flux in the measurement chamber was highlighted as an important variable to be monitored
continuously, given their influence on the values detected by the IOMS sensors. The work
also provided a useful methodology experimentally validated to reduce the influence of
operating conditions, in terms of temperature and consequently humidity, on the model
performances. Corrective factors have been retrieved by analysing the dependence of
resistance values on temperature, by optimizing an algorithm automatically applied. The
automatic application of corrective coefficients, calculated with dedicated software thus
proved to be a useful tool for increasing the reliability of the predictive model, since in the
conditions investigated the accuracy of the model increased from 96% to 98%.

The study promotes the development of flexible and robust IOMS devices, with
highly adaptable architecture and dedicated software, capable of continuous analysis of all
operating parameters and taking them into account in measures to overcome the current
limitations in monitoring environmental odours.
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