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Abstract: In contemporary bioanalysis, monitoring the antioxidant activity (AOA) of the human skin
is used to assess stresses, nutrition, cosmetics, and certain skin diseases. Non-invasive methods for
skin AOA monitoring have certain advantages over invasive methods, namely cost-effectiveness,
lower labor intensity, reduced risk of infection, and obtaining results in the real-time mode. This
study presents a new flexible potentiometric sensor system (FPSS) for non-invasive determination of
the human skin AOA, which is based on flexible film electrodes (FFEs) and membrane containing
a mediator ([Fe(CN)6]3–/4–). Low-cost available materials and scalable technologies were used for
FFEs manufacturing. The indicator FFE was fabricated based on polyethylene terephthalate (PET)
film and carbon veil (CV) by single-sided hot lamination. The reference FFE was fabricated based
on PET film and silver paint by using screen printing, which was followed by the electrodeposition
of precipitate containing a mixture of silver chloride and silver ferricyanide (SCSF). The three-
electrode configuration of the FPSS, including two indicator FFEs (CV/PET) and one reference
FFE (SCSF/Ag/PET), has been successfully used for measuring the skin AOA and evaluating
the impact of phytocosmetic products. FPSS provides reproducible (RSD ≤ 7%) and accurate
(recovery of antioxidants is almost 100%) results, which allows forecasting its broad applicability
in human skin AOA monitoring as well as for evaluating the effectiveness of topically and orally
applied antioxidants.

Keywords: contact hybrid potentiometric method; human skin; antioxidant activity; carbon veil;
flexible film electrode; phytocosmetics

1. Introduction

The skin is the largest organ of the human body and performs several vital func-
tions, such as protective, sensory, thermoregulatory and others. Similar to any other
organ, the skin is exposed to reactive species (RS), which may exist as radicals and non-
radicals [1,2]. In physiological concentrations, RS impact cellular metabolism processes,
such as protection against infectious pathogens, intracellular and intercellular signaling,
redox regulation, and they are neutralized by antioxidants [1–3]. Various environmental
factors (e.g., radiations, pollutants) and physiological factors, such as unhealthy lifestyle or
unbalanced exercise, lead to RS overproduction and may change the redox homeostasis
of the skin [1,2,4]. In pathological (elevated) concentrations, RS can cause irreversible
changes in cellular compartments, inflammation, weakening of immune functions, and
tissue degradation [1,2]. In addition, current research shows a link between high levels of
RS, aging [1,2,5], and skin diseases [1,2,6]. The use of antioxidants in topical cosmeceuticals
and oral nutraceuticals aims to achieve and maintain the redox balance of the skin [2,7].
For this reason, methods and sensors that measure the antioxidant status of the skin have
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great potential for the use in cosmetics and food industries. In recent years, the cosmetics
industry has focused on the use of biologically active plant-based ingredients with a reliable
safety profile, which have evolved as “phytocosmetics” [8].

In the literature, there is still a lack of unified terminology to characterize the antiox-
idant status of a test sample. The most popular are “antioxidant activity”, “antioxidant
capacity”, the total content of antioxidant compounds of a certain class and other terms [9].
In this paper, we will be using the term “antioxidant activity” (AOA), which is related
to the concept of effective concentration of a substance accepted in chemistry. Effective
concentration (activity) is a parameter of the Nernst equation used in potentiometry and in
this work.

The methods used to measure the skin AOA can be classified into invasive, semi-
invasive, and non-invasive according to the method of obtaining samples [10]. Invasive
methods are based on obtaining skin specimens of certain thickness (epidermis and der-
mis) [11,12] or suction blister fluid from the epidermis [13], which is possible only in clinical
settings with the involvement of medical staff. Semi-invasive methods are based on the
use of an adhesive tape that collects the cells of the stratum corneum (corneocytes) [14].
The skin samples obtained by these methods require the extraction of antioxidants. Skin
extracts are usually analyzed using high-performance liquid chromatography and spec-
trophotometric methods. The shortcomings of invasive and semi-invasive methods are
that these methods are labor-intensive, uneconomical, and impractical to use in studies
involving a large number of test subjects (screening).

Non-invasive methods are based on performing measurements directly on a testable
skin area in real time and include reflection [15–17], resonance Raman [16–19], and electron
paramagnetic resonance spectroscopy [19–21]; linear sweep [22] and cyclic [23,24] voltam-
metry; and potentiometry [25–30]. Non-invasive methods enable study of the impact of
stresses, nutrition, cosmetics, and diseases on the skin AOA in vivo. The studies have
reported correlations between reflection and resonance Raman spectroscopy [16,17] as
well as resonance Raman and electron paramagnetic resonance spectroscopy [19]. How-
ever, reflection and resonance Raman spectroscopy have limitations, since they are able to
measure only one class of skin antioxidants (carotenoids). In addition, resonance Raman
spectroscopy presents an advantage in terms of measurement accuracy, but it uses more
expensive apparatus compared with reflection spectroscopy. Electron paramagnetic reso-
nance spectroscopy requires more complex instruments and, consequently, more qualified
staff to operate them, which adds complexity to using this method for screening. With
linear sweep and cyclic voltammetry, the results depend on the active area of the working
electrode that can vary from electrode to electrode and may affect the value and repro-
ducibility of the assay. In addition, these electrochemical methods differ by uncompensated
charging current, which confines the detection limit value [31].

The simplest non-invasive method for monitoring the skin AOA is the potentiometric
technique, which relies on using Fe3+/2+-chelate [25] or [Fe(CN)6]3–/4– [26–30] mediators.
The use of [Fe(CN)6]3–/4– seems to be more efficient, as it reduces the measurement time
from 30 to 10 min. This method variation was later called the contact hybrid potentiometric
method (CHPM) [30] and could have two modifications: when [Fe(CN)6]3–/4– was intro-
duced into an electrically conductive gel [26–28] or in a polymer membrane [29,30]. The
use of a polymer membrane has led to better reproducible measurement results due to
the elimination of the problems caused by different thickness of the gel layer and uneven
distribution of [Fe(CN)6]3–/4– [29]. However, multiple uses of a commercially available
platinum screen-printed electrode requires its sterilization (when changing a respondent)
and regeneration (after taking a series of measurements), which can be performed during a
single procedure of high-temperature annealing [32]. It is obvious that the application of a
sensory system with disposable components is of a more practical value. Brainina et al. [30]
proposed a single-use potentiometric sensor system to evaluate the AOA of human skin;
however, the obtained results showed a lower degree of reproducibility as compared with
a sensor system relying on a commercial platinum screen-printed electrode.
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It is known that the reproducibility of tactile skin sensors is related to the following
factors: effective sampling, i.e., transport of the analyte to the sensor surface [33]; sensor
contamination [33,34]; skin condition variability [34]; and poor contact resulting in an
unreliable analytical signal [35]. This paper adopts three strategies aimed at improving the
result reproducibility when determining the human skin AOA by the CHPM. Following
the first strategy, the proposed sensor system should be disposable, which eliminates its
contamination during repeated use and makes it safe for a respondent. The second strategy
focuses on the need to create a three-electrode sensor system configuration, which enables
receiving two results during one measurement, thus eliminating a possible impact of
time-varying skin conditions. The third strategy implies the use of flexible film electrodes
(FFEs) as part of the sensor system, which ensures better contact at the heterogeneous
˝electrode/membrane with [Fe(CN)6]3–/4–/skin˝ interface and contributes to the measure-
ment of a stable analytical signal (potential) under load conditions (local pressure). Finally,
a carbon veil (CV) was used for fabricating the indicator FFE. Since the CV displays such
features as electrical conductivity, softness, and flexibility, it is these features that explain
the CV popularity in applied electrochemistry. The CV can be used for manufacturing
electrodes for batteries [36], capacitors [37], microbial fuel cells [38], and generator cells [39];
heating elements [40]; and sensors for the determination of ascorbic acid [41] and nitrite
ions [42]. The analysis of Web of Science and Scopus publications has not revealed any case
reporting the use of CV for monitoring the AOA of biological objects.

2. Materials and Methods
2.1. Chemicals

The following chemicals were used: K3[Fe(CN)6)], KCl, Na2HPO4×12H2O (JSC Vek-
ton, St. Petersburg, Russia); K4[Fe(CN)6] × 3H2O (JSC Kupavnareaktiv, Staraya Kupavna,
Russia); KH2PO4 (NevaReaktiv Ltd., St. Petersburg, Russia); NaCl (OJSC Mikhailovsky
Chemical Reagents Plant, Barnaul, Russia); Na3C6H5O7 × 5.5H2O (JSC ECOS-1, Moscow,
Russia). These reagents were chemically pure. Other chemicals were 0.05 M HAuCl4
solution (RPE Tomanalyt Ltd., Tomsk, Russia); L-ascorbic acid BioXtra ≥99%, uric acid
BioXtra ≥99%, L-glutathione reduced ≥98% (Sigma-Aldrich Co., St. Louis, MO, USA).
Deionized water with a resistivity of 18 MΩ × cm was used as dissolvent.

2.2. Materials

A polymer film based on polyethylene terephthalate (PET), 0.25 mm thick (Fellowes
Inc., Itasca, IL, USA) was used as a substrate for FFEs fabrication. CV based on polyacryloni-
trile (M-Carbo Ltd., Minsk, Belarus) was used in the preparation of the indicator FFE. CV
specifications are given in Table S1 of the Supplementary Materials. Silver conductive paint
Mechanic DJ912 (Shenzhen Welsolo Electronic Technology Co., Ltd., Guangdong, China)
was used in the preparation of the reference FFE. Cementit Universal (Merz + Benteli AG,
Niederwangen, Switzerland) was used as an insulator. Microporous film MFAS-OS-2 based
on cellulose acetate (CJSC STC Vladipor, Vladimir, Russia) was used as a membrane for
[Fe(CN)6]3–/4–. Five Russian-made phytocosmetic products were studied in the present
work: cream-mousse, cream-gel, serum, day cream, and nourishing night cream. Their
specifications are shown in Table S2 of the Supplementary Materials.

2.3. Apparatus

The LM-260iD laminator (Rayson Electrical MFG., Ltd., Guangdong, China) was
used for single-sided hot lamination. The SPR-10 manual printer (DDM Novastar Inc.,
Ivyland, PA, USA) was used for screen printing. The IVA-5 inversion voltammetric analyzer
(IVA Ltd., Yekaterinburg, Russia) was used for the potentiostatic electrodeposition of a
precipitate containing a mixture of silver chloride and silver ferricyanide (SCSF). Two
portable PA-S potentiometric analyzers (Ural State University of Economics, Yekaterinburg,
Russia) were used for potentiometric measurements. A focused ion beam scanning electron
microscope Auriga CrossBeam (Carl Zeiss NTS GmbH, Oberkochen, Germany) and Ultim
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Max detector (Oxford Instruments plc., Abingdon, UK) were used for scanning electron
microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. An
ultrasonic liquid processor VCX 750 (Sonics & Materials Inc., Newtown, CT, USA) with
a stepped microtip (Ø 2 mm) was used to produce emulsions. A digital multimeter
Owon B41T+ (Fujian Lilliput Optoelectronics Technology Co., Ltd., Zhangzhou, China)
with a thermocouple was used for the temperature control of emulsions. A pediatric
sphygmomanometer LD-80 (Little Doctor Int. (S) Pte. Ltd., Yishun, Singapore) with
18–26 cm cuffs was used to fix the sensor system on the selected skin area. Installation
Akvalab-UVOI-MF-1812 (JSC RPC Mediana Filter, Moscow, Russia) was used to obtain
deionized water with a resistivity of 18 MΩ × cm.

2.4. FFEs Manufacturing

FFEs were prepared by applying scalable technologies [43]. The indicator FFE was
prepared by applying the single-sided hot lamination technology described in [41,42] and
in the Supplementary Materials. The manufactured electrode was marked CV/PET and
was used as the indicator FFE of the potentiometric sensor system. The size of one CV/PET
was 3 × 35 mm. The CV/PET was modified with gold nanoparticles (AuNPs) in order to
improve its potential stability. The procedure of AuNPs synthesis and the technique of
electrode modification are identical to those described in [30].

The reference FFE was manufactured on the basis of PET and silver paint using
the screen-printing method, with the subsequent electrodeposition of a SCSF in the po-
tentiostatic mode. The applied silver paint was oven-dried at 110 ◦C for 30 min. The
silver electrodes were cooled to room temperature and then cut to the required dimen-
sion 3 × 35 mm. The middle part of the silver electrodes, which separated the working
and contact zones, was covered with a mixture of insulator and acetone in a ratio of 1 to
5 by volume. The geometric area of the working area of one electrode was 6–9 mm2

(3 × 2–3 mm). Modification of the silver electrode included the electrodeposition of a SCSF
on the working surface, according to the technique described in [44]. For that purpose, the
silver electrode was inserted in a continuously stirred buffer solution pH 5 (see Table S3 in
Supplementary Materials) that contained 1 mM K3[Fe(CN)6] and 0.05 mM K4[Fe(CN)6],
and then, it was polarized at a constant potential of 0.325 V (vs. Ag/AgCl/KCl, 3.5 M) for
120 s. The resulting electrode was labeled SCSF/Ag/PET and used as a reference FFE in a
potentiometric sensor system.

2.5. CHPM Implementation
2.5.1. Assembly of the Potentiometric Sensor System

The standard two-electrode configuration of the potentiometric sensor system includes
one indicator electrode and one reference electrode, which are in contact with a membrane
containing [Fe(CN)6]3–/4– [29]. In this study, prior to measurements, the membrane was
kept in a buffer solution pH 5 (see Table S3 in Supplementary Materials) containing 1 mM
K3[Fe(CN)6] and 0.05 mM K4[Fe(CN)6] for 3–5 min. The choice of the solution composition
is due to the fact that it has sufficient electrical conductivity and its pH corresponds to the
physiological pH value of healthy human skin [45]. An increase in the number of indicator
electrodes in the potentiometric sensor system led to a change in its electrode configuration.
The three-electrode configuration of the potentiometric sensor system was first proposed
to determine the AOA of human skin in [30]. Figure 1a illustrates the relevant process.
This three-electrode configuration where E1 = E3 = indicator electrodes (in our work, it
is CV/PET) and E2 = reference electrode (in our work, it is SCSF/Ag/PET), allows us
to obtain two results simultaneously and correctly evaluate the reproducibility of the
measurement. This approach is important, since the human skin is a complex analytical
object and its parameters, including AOA, may change over time affected by various
external and internal factors. To minimize the impact of a variable skin condition on the
results, the time interval between repeated measurements should tend to zero. The use
of a three-electrode configuration of a potentiometric sensor system meets this condition,



Chemosensors 2021, 9, 76 5 of 14

since two results can be obtained during one measurement. In the present study, all
components of the sensor system were flexible (Figure 1b); hence, it was called the “flexible
potentiometric sensor system” (FPSS).
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Figure 1. The circuit for performing measurement using a three-electrode configuration potentiometric sensor system (E1,
E2, and E3: electrodes; M: membrane with [Fe(CN)6]3–/4–; PA 1 and PA 2: potentiometric analyzers; P: load) (a) and the
pictures of fabricated flexible film electrodes (FFEs): carbon veil (CV)/polyethylene terephthalate (PET) (left) and silver
chloride and silver ferricyanide (SCSF)/Ag/PET (right) (b).

2.5.2. Model Conditions

In the model conditions, the membrane containing [Fe(CN)6]3–/4– was placed on the
table surface atop an inert (fluoroplastic) film. FFEs were applied to the membrane. Then,
a steel 0.5 kg weight (base diameter = 36 mm) was set on top. The pressure exerted on the
FPSS was approximately 4.82 kPa or 36.1 mm Hg.

2.5.3. Determining the AOA of Volunteers’ Skin

Six young non-smoking women aged 24–28, with skin phototype II–III (hereinafter
referred to as volunteers) were involved in the present study. The skin phototype of each
volunteer was determined using the Fitzpatrick scale as described in [46,47]. Five volun-
teers participated in the skin AOA analysis in order to determine analytical characteristics
of the developed FPSS. One volunteer was involved in evaluating the effectiveness of
commercially available phytocosmetic products. The exclusion criteria were malnutrition,
the intake of dietary supplements 7 days before the start of the measurements, and the use
of cosmetic products other than those provided for the present experiment on the day of
the analysis.

The three-electrode FPSS configuration was attached to the selected area of the skin
(inside hand from the palm to the elbow) in such a way that the impregnated [Fe(CN)6]3–/4–

membrane was in contact with the skin surface, and FFEs were in contact with the mem-
brane. The FPSS was fixed on the selected area of the arm with the help of a sphygmo-
manometer cuff, which was inflated to low pressure (35–40 mm Hg). This pressure was
maintained during the entire measurement (10 min). Skin antioxidants diffused to the
membrane, where they interacted with the oxidized form of the mediator by reaction (1):

a[Fe(CN)6]3- + bAO = a[Fe(CN)6]4- + bAOOx, (1)

where [Fe(CN)6]3–—the oxidized form of the mediator; AO—antioxidant(s); [Fe(CN)6]4–

—the reduced form of the mediator; AOOx—the oxidized form of antioxidant(s); a and b—
stoichiometric coefficients. The change in the ratio of the oxidized and reduced forms of the
mediator in the membrane as a result of reaction (1) caused changes in the potential of the
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indicator electrode and served as an analytical signal. The skin AOA (in mol-eq L–1 = M-eq)
was calculated by Formula (2):

AOA =
COx−aCRed

1 + a
, a =

(
COx
CRed

)
· 10(

∆EF
2.3RT ), (2)

where COx and CRed (in mol L–1 = M)—respective concentrations of K3[Fe(CN)6] and
K4[Fe(CN)6] in the membrane; ∆E = E2–E1—the change in the potential of the indicator
electrode for 10 min from the initial (E1, V) to the final (E2, V) value; F = 96485.332 C
mol–1—the Faraday constant; R = 8.314 J K–1 mol–1—absolute gas constant; T (in K) = T
(in ◦C) + 273.15—absolute temperature.

2.6. Analysis of Phytocosmetic Products

The effectiveness of phytocosmetic products (see Table S2 in Supplementary Materials)
was measured in vitro and in vivo assays, applying the hybrid potentiometric method and
CHPM respectively (see Table S6 in Supplementary Materials).

In vitro, AOA of phytocosmetic products was determined by the method described
in [27] with some modifications. A sample of the phytocosmetic product was mixed with a
pH 5 buffer solution containing 1 mM K3[Fe(CN)6] and 0.01 mM K4[Fe(CN)6] by ultrasound
(frequency 20 kHz; amplitude 250 µmat; efficiency 20%) for 2 min. As a result, emulsions
were obtained. The formation of emulsions by ultrasound was accompanied by their
heating. The heated emulsions were cooled in a water bath to 25 ± 1 ◦C. The temperature
was monitored by using a thermocouple of a multimeter lowered in the tube containing the
emulsion. The emulsion AOA was expressed per 1 g of the initial phytocosmetic product
according to Formula (3):

AOA =
COx−aCRed

1 + a
· V

m
, (3)

where V (in L)—the volume of the obtained emulsion; m (in g)—the weight of the analyzed
sample of a phytocosmetic product.

In vivo, the skin AOA was measured without applying (control) and after applying
the phytocosmetic product. A three-electrode configuration of FPSS was used for measure-
ments, and the computation of the skin AOA was completed applying Formula (2). The
effectiveness of the analyzed phytocosmetics product was estimated as the deviation of the
skin AOA on the area with the applied phytocosmetic product relative to the control area
by Formula (4):

∆AOA = AOA(skin+phyto cos metics) − AOAskin, (4)

where AOA(skin+ phytocosmetics)—AOA of volunteer’s skin with an applied phytocosmetic
product; AOAskin—AOA of volunteer’s skin without a phytocosmetic product (control).

2.7. Statistical Analysis

The measurements were performed in 2–6-fold replication (4–6 times in the model
conditions and 2 times on the human skin). Statistical analysis was performed in Microsoft
Excel 2010 with an accepted significance level of 0.05. The data are presented as X ± ∆X,
where X is the mean value and ∆X is standard deviation. FPSS validation was performed
by the spike recovery test with the use of non-enzymatic antioxidants present in the human
skin. The recovery of non-enzymatic antioxidants was determined in accordance with
IUPAC recommendations [48]. The relative standard deviation was used to determine the
reproducibility of the measurement results. The correlation analysis was performed by
calculating the Pearson correlation coefficient.
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3. Results and Discussion
3.1. FFEs Study

Measuring circuit in the Figure 1a, where E1 = E2 = E3 = CV/PET or AuNPs/CV/PET
or SCSF/Ag/PET, was used to study the stability of the FFEs under the model conditions.
The results are presented in Table 1.

Table 1. Studies of FFEs stability under model conditions (n = 6).

FFE τ 1, s E 2, mV Emax—Emin
3, mV

CV/PET 250 ± 50 1 ± 0 2
AuNPs/CV/PET 317 ± 93 3 ± 2 6

SCSF/Ag/PET 233 ± 58 1 ± 1 1
1 τ: potential stabilization time. 2 E: stable potential value. 3 Emax—Emin: range of potential variation.

The time of establishing the potentials of all studied FFEs is less than the duration of
measuring skin AOA (10 min or 600 s). However, the CV/PET has a potential of better
reproducibility and a shorter period of its stabilization as compared with the electrode
modified with gold nanoparticles (AuNPs/CV/PET). Unlike the carbon screen-printed
electrode with a flat surface, whose modification with gold nanoparticles led to its better
stability [30], the CV/PET surface is three-dimensional and consists of randomly coupled
carbon fibers with a diameter of 5–10 µm and an unevenly distributed polyester binder
(see Figure S1 in Supplementary Materials and [41,42]). The three-dimensional structure of
the CV/PET excludes the formation of a surface flat layer containing AuNPs, since AuNPs
penetrate through pores into the inner layers of the CV. This results in a mixed potential
detecting AuNPs and CV simultaneously. Due to the registration of a mixed potential,
the AuNPs/CV/PET demonstrates a worse potential stability than the CV/PET. The
characteristics of the electrode that differ from the SCSF/Ag/PET by the non-conductive
substrate (alumina ceramics), by SEM, were described in [44]. It was shown that small
Ag3[Fe(CN)6] crystals fill the pores between large AgCl crystals, which leads to a greater
stability of the potential of the electrode with a mixed precipitate (Ag3[Fe(CN)6] + AgCl) as
compared with a silver chloride electrode (AgCl only) in a medium (solution, membrane)
containing [Fe(CN)6]3–/4–. Since the non-electrically conductive substrate does not affect
the potentiostatic electrodeposition of the precipitate, the results presented in [44] are fully
valid for the SCSF/Ag/PET. In further studies, the CV/PET and SCSF/Ag/PET were used
as the indicator and the reference electrodes of the FPSS, respectively.

3.2. FPSS Testing in Model Conditions

The three-electrode configuration of the FPSS (E1 = E3 = CV/PET and E2 = SCSF/Ag/PET
in Figure 1a) was tested under the model conditions to confirm its analytical effective-
ness. Figure 2 illustrates the dependence of the FPSS potential on the logarithm of the
concentration ratio of the oxidized and reduced forms of the mediator in the membrane,
which is linear with an approximation coefficient R2 > 0.99. The slope of this dependence
is approximately 55 mV, which is in good agreement with the pre-logarithmic coefficient in
the Nernst equation for a single-electron process, which is equal to 59 mV at 25 ◦C [49].
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The content of the non-enzymatic antioxidants in the human skin decrease in the
following sequence: ascorbic acid > uric acid > reduced glutathione > α-tocopherol >
ubiquinol 10 [11]. Due to normal aging and photoaging, the content of ascorbic acid,
reduced glutathione, and a-tocopherol decreases, while the level of uric acid is relatively
stable [12]. The non-enzymatic antioxidants prevailing in the human skin (ascorbic acid,
uric acid, and reduced glutathione) were used to validate the measurement procedure.
The results are presented in Table 2 and Table S4 of the Supplementary Materials. The
results obtained for ascorbic acid are characterized by good analytical characteristics:
reproducible (RSD) does not exceed 5.5%, and the recovery is close to 100% in the range of
AOA 15–990 µM-eq (see Table S4 of Supplementary Materials).

Table 2. Results of determining antioxidants and their mixtures with the use of FPSS under model conditions (n = 4).

Model Solution Expected AOA,
µM-eq

Measured
AOA,
µM-eq

RSD,
%

Recovery,
% t 1

L-ascorbic Acid (25 µM) 50.0 49.0 ± 0.7 1.5 98 ± 1 2.51
Uric Acid (25 µM) 50.0 48.9 ± 0.8 1.5 98 ± 1 2.76

L-glutathione Reduced (50 µM) 50.0 51.0 ± 1.2 2.4 102 ± 2 1.64
L-ascorbic Acid (25 µM) + Uric Acid (25 µM) 100.0 91.8 ± 2.9 3.2 92 ± 3 5.63

L-ascorbic Acid (25 µM) + L-glutathione
Reduced (50 µM) 100.0 101.0 ± 1.6 1.6 101 ± 2 1.21

L-ascorbic Acid (25 µM) + Uric Acid (25 µM)
+ L-glutathione Reduced (50 µM) 150.0 144.8 ± 2.9 2.0 96 ± 2 3.61

1 Student’s t test: tteor. = 3.18 for f = n − 1 = 3 and α = 0.05.

There are no statistically significant differences between the expected and measured
AOA values for individual antioxidants and the binary mixture of ascorbic acid and
reduced glutathione (Table 2). The model solutions, including both ascorbic and uric
acids showed a slight, but still statistically significant, decrease in the measured AOA as
compared to the expected value. Apparently, this is due to the insignificant (typical for
this degree of concentration) antagonism of these antioxidants. An antagonistic effect of
mixtures of ascorbic and uric acids was also recorded for conventional spectrophotometric
ORAC and ABTS assays and was related to the formation of adducts between these
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antioxidants [50]. In general, biological objects are characterized by additive, synergistic,
and antagonistic antioxidant effects [51]; that is why when characterizing the antioxidant
status of a biological sample, preference should be given to the integral value due to its
greater informativeness compared with the additive value.

3.3. Measuring AOA of Volunteers’ Skin

Table 3 presents the results of determining the AOA of five volunteers’ skin using
a three-electrode FPSS configuration (E1 = E3 = CV/PET and E2 = SCSF/Ag/PET in
Figure 1a). RSD does not exceed 7.5%, and the values of the recovery of the model antioxi-
dant (L-ascorbic acid), introduced into the membrane, indicate the absence of significant
matrix effects.

Table 3. Results of determining antioxidant activity (AOA) of volunteers’ skin and L-ascorbic acid
additives with the use of FPSS (n = 2).

Volunteer
No

AOA of
Skin,
µM-eq

RSD,
%

Added
L-Ascorbic

Acid,
µM-eq

Total AOA,
µM-eq

Recovery,
%

1 19.4 ± 1.4 7.5 50.0 70.8 ± 2.4 103 ± 2
2 26.1 ± 1.9 7.3 50.0 75.7 ± 4.1 99 ± 4
3 35.5 ± 2.3 6.4 50.0 85.8 ± 3.2 98 ± 2
4 41.0 ± 2.2 5.3 50.0 89.9 ± 3.5 98 ± 2
5 68.5 ± 3.1 4.6 50.0 118.3 ± 4.5 99 ± 3

3.4. Analysis of Phytocosmetic Products

The results of determining AOA of a volunteer’s skin (a young woman) in the areas
without application (control) and after application of the analyzed phytocosmetic prod-
uct are given in Figures 3 and 4. The time of data collection equal to the duration of
exposure of phytocosmetic products on the volunteer’s skin was selected as a length of
an average working day. All the analyzed phytocosmetic products demonstrated their
effectiveness both in vitro (see Table S5 in Supplementary Materials) and in vivo assays
(Figures 3 and 4).

Figure 4 presents the ∆AOA = f(t) dependences which show how, after the application
of phytocosmetic products, AOA of the volunteer’s skin was changing for 8 h. The evidence
of the antioxidant effect of the phytocosmetic product (t) was mounting in the following
order: cream-mousse ≈ cream-gel ≈ serum (t ≤ 5 h) < day cream (t ≤ 8 h) < nourishing
night cream (t > 8 h). We have identified two types of ∆AOA = f(t) dependencies. Cream-
mousse, cream-gel, and serum demonstrated the first type of ∆AOA = f(t) dependence
(Figure 4a), while day cream and nourishing night cream demonstrated the second type of
∆AOA = f(t) dependence (Figure 4b). We believe that the phytocosmetic products of the
first type can be attributed to the express care category, and phytocosmetic products of the
second type can be attributed to the cosmetics with the prolonged action. In this paper, we
will limit ourselves with just this assumption and leave the further interpretation of the
results to cosmetic chemists.
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The AOA of the phytocosmetic product in vitro was correlated with its in vivo ef-
fectiveness. The Pearson correlation coefficient between the AOA of the phytocosmetic
product obtained in an in vitro assay and the maximum effectiveness of the phytocosmetic
product in vivo is equal to r = 0.92 (p < 0.05). These data are presented in Figure 5 and indi-
cate that phytocosmetic products with higher AOA are able to ensure a higher antioxidant
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status of the human skin. It is worth noting that the use of in vivo assay is preferable, since
it most closely resembles the operating conditions of phytocosmetic products and therefore
has a better reliability of the obtained results. In addition, in vivo assay enables evaluation
of how long the effectiveness of the phytocosmetic product on the human skin can last (the
duration of the antioxidant effect).
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3.5. Comparison of the Obtained Findings with Earlier Studies

Brainina et al. [29] first proposed a membrane based on cellulose acetate as a mediator
carrier [Fe(CN)6]3–/4–, which, complete with commercially available electrodes, was used
to determine the AOA of human skin. A shortcoming of this technique was a multiple
use of the indicator platinum screen-printed electrode and the need for its sterilization
(when the test volunteer changed) and regeneration (after a series of measurements). In
their later work, Brainina et al. [30] proposed a disposable sensor system. Its effectiveness
was exemplified with the biologically active food supplement Askorutin. However, the
obtained findings showed a decrease in reproducibility as compared with the results
received in [29]. In the present work, a disposable FPSS is proposed, and its effectiveness is
exemplified with commercially available phytocosmetic products. The comparative results
of these three potentiometric sensor systems are presented in Table 4, and it is apparent
that the proposed FPSS enables obtaining the most reproducible results.

Table 4. Comparative characteristics of potentiometric sensor systems for non-invasive measurement of human skin AOA.

Electrodes Mediator, mM Range of AOA,
µM-eq

RSD, % Source
Indicator 1 Reference 2 K3[Fe(CN)6] K4[Fe(CN)6]

Pt/AC H92SG 5 0 20–4000 ≤13 [29]
AuNPs/C/FG SCSF/Ag/FG 1 0.05 30–900 3 ≤20 [30]

CV/PET SCSF/Ag/PET 1 0.05 15–990 3 ≤7 [This work]
1 Pt/AC: commercial platinum screen-printed electrode on alumina ceramic; AuNPs/C/FG: carbon screen-printed electrode on fiberglass
modified with gold nanoparticles; CV/PET: carbon veil electrode on polyethylene terephthalate. 2 H92SG: commercial ECG-type electrode;
SCSF/Ag/FG: silver screen-printed electrode on fiberglass modified with silver chloride and silver ferricyanide; SCSF/Ag/PET: silver
screen-printed electrode on polyethylene terephthalate modified with silver chloride and silver ferricyanide. 3 The range of determined
values of skin AOA can be broadened if concentration of the mediator changes (see Table S6 in Supplementary Materials).
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4. Conclusions

The use of flexible, soft, and stretchable materials is the basis for creating tactile,
including wearable, sensors that are advantageous in terms stability, reliability, and con-
venience as compared with conventional “rigid” electronic devices. The application of
scalable technologies and the use of available materials contribute to the rapid prototyping
of sensor devices. In this study, we have proposed a new disposable FPSS for non-invasive
monitoring of the human skin AOA, which has been developed on the basis of low-cost
materials with the use of scalable technologies. The FPSS has been tested in the model
conditions and applied for determining the skin AOA of volunteers and for evaluating the
impact of phytocosmetic products. Validation of the assay procedure has been performed
using non-enzymatic antioxidants present in the human skin. The obtained results have
shown good accuracy and reproducibility, which makes it possible to predict a broad
applicability of the FPSS in real-time monitoring of the skin AOA as well as for evaluating
the effectiveness of topically and orally applied antioxidants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9040076/s1, Table S1: Specification of the carbon veil used in the study; Figure
S1: SEM-images and EDS spectrum of CV/PET; Table S2: Characteristics of commercially available
phytocosmetic products used in the study; Table S3: Composition of the buffer solution pH 5 used in
the study; Table S4: Results of L-ascorbic acid determination using FPSS under model conditions
(n = 4); Table S5: Effectiveness of commercially available phytocosmetic products; Table S6: The
theoretical range of the AOA determined values.
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