
chemosensors

Review

Review on Sensing Applications of
Perovskite Nanomaterials

Muthaiah Shellaiah and Kien Wen Sun *

Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
muthaiah1981@nctu.edu.tw
* Correspondence: kwsun@mail.nctu.edu.tw

Received: 26 June 2020; Accepted: 11 July 2020; Published: 14 July 2020
����������
�������

Abstract: Recently, perovskite-based nanomaterials are utilized in diverse sustainable applications.
Their unique structural characteristics allow researchers to explore functionalities towards diverse
directions, such as solar cells, light emitting devices, transistors, sensors, etc. Many perovskite
nanomaterial-based devices have been demonstrated with extraordinary sensing performance to
various chemical and biological species in both solid and solution states. In particular, perovskite
nanomaterials are capable of detecting small molecules such as O2, NO2, CO2, etc. This review
elaborates the sensing applications of those perovskite materials with diverse cations, dopants and
composites. Moreover, the underlying mechanisms and electron transport properties, which are
important for understanding those sensor performances, will be discussed. Their synthetic tactics,
structural information, modifications and real time sensing applications are provided to promote
such perovskite nanomaterials-based molecular designs. Lastly, we summarize the perspectives and
provide feasible guidelines for future developing of novel perovskite nanostructure-based chemo-
and biosensors with real time demonstration.

Keywords: perovskite; nanomaterials; hybrid materials; chemosensory; bioanalyte detection;
transistors; electron transport; nanocomposites; real time application

1. Introduction

Development of nanomaterials for diverse analyte detection with respect to environmental
and biosafety measures are becoming essential [1–3]. Wherein, the species recognition can be
identified by miscellaneous responses like colorimetric, spectrometry, voltammetry and morphological
changes [4–8]. Among the reported nanomaterials, perovskites are exceptional hybrid materials with
variety of applications, such as solar cells, light emitting devices, transistors, sensors, etc. [9–14].
The compounds that have the ABX3 formula type with differently sized ‘A’ and ‘B’ cations bind to
anion X are known as perovskite [15]. These perovskites are classified in three categories: inorganic
oxide perovskites, alkaline metal halide perovskites and organic metal halide perovskites with oxide or
halide anions [16,17]. Moreover, they can be synthesized from zero to three dimensional nanostructures
and consumed in many sustainable applications [18–20]. Among these applications, sensory utilities
using perovskite nanomaterials to attain the signals to specific analyte in solid or solution states have
attracted most attention [21,22].

Perovskites with general formula ABO3 display good thermal stability with a 3–4 eV band
gap, hence were consumed in many gas sensing studies [23]. Semiconducting properties of these
nanocrystalline perovskites allow the detection of gaseous species by means of current–voltage (I–V)
responses [24]. For instance, Wang et al. established the LaFeO3 nanocrystalline perovskite towards
the discovery of carbon dioxide (CO2) gas [25]. Metal halide/hybrid perovskites were also applied
in many analytes sensing by detecting changes in phosphorescence, fluorescence, I–V fluctuations,
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morphological, etc. [26]. Metal halide/hybrid perovskite nanomaterials also have the advantage of
providing the sensory responses to analyte in solution and solid states [26,27]. However, stability of
metal halide perovskite-based sensors can be affected by various factors, such as solvents, moisture,
time and temperature [28]. Similarly, the diverse crystalline structures of metal halide perovskites like
cubic, tetragonal and orthorhombic may play a vital role in sensory studies [29]. Therefore, an in-depth
discussion is required for the upcoming research designs on metal halide perovskite-based sensors.

Doping or mixing of other nanostructures/ions over perovskites tends to form a nanocomposite
like structure, which can be further utilized as sensors [30]. For example, Cho and coworkers recently
demonstrated the humidity sensing capability of the CsPb2Br5/BaTiO3 composite [31]. Other than its
potential sensory application, a one-step aerosol deposition (AD) process was explored to develop such
a nanocomposite powder. In a similar fashion, manganese (Mn)-doped halide perovskite nanomaterials
showed an exceptional semiconducting property and sensing ability [32]. Lin et al. demonstrated
the Mn-doped CsPbCl3 nanocrystals towards the sensing of oxygen (O2) by means of host-dopant
energy transfer [33]. This kind of photoluminescence (PL)-based sensory design has extensively been
researched. Many procedures have been explored to develop perovskite nanomaterials, including
chemical synthesize, ball-milling, combustion synthesis, sputtering, sol–gel, solid-state reaction,
etc. [34–40]. Moreover, it now becomes essential for finding applications of perovskite nanomaterials
in sustainable research, such as solar cells, light emitting devices, transistors and sensors.

In this review, valuable information on sensory applications of perovskite nanomaterials (Figure 1)
is provided. The mechanisms and electron transport properties of these sensor matrixes are described.
In the end, the material synthesis, structural modifications, and real time applications are defined
along with their developing scopes in the near future.
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2. Structure, Stability and Properties of Perovskites

Perovskites with ABX3 formula exist in a undistorted cubic structure with 6-fold coordinated
smaller B cation enclosed by an octahedron of anions, which are further 12-fold cuboctahedral
coordinated with a larger A cation as shown in Figure 2. Metal oxide perovskites exist in
three-dimensional frameworks with corner-sharing BO6 octahedra, whereas halide ions are considered



Chemosensors 2020, 8, 55 3 of 35

instead of oxygen atoms in metal halide perovskites. Above the cubic structure can be distorted by
tilting and altering the octahedra by cation displacements, which leads to reduced symmetries like
orthorhombic, tetragonal and trigonal. In fact, the metal oxide perovskites seem to be stable with the
cubic structure, but they also require a Goldschmidt’s tolerance factor with values between 0.9 and 1.
The tolerance factor has been derived from t = (RA + RX)/

√
2 (RB + RX), here RA, RB, and RX are the

ionic radii of ions presented in respective A, B and X sites [41]. If the tolerance factors of the perovskite
materials have a value between 0.7 and 0.9, they could have a distorted cubic structure, which result in
reduced symmetries. Apart from the above factors, the stability of many metal halide perovskites is also
affected by other factors, such as temperature, water and the environment as described subsequently.
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Since annealing is an important step in the fabrication processes of metal halide perovskites for
sustainable applications, it is necessary to identify the effective operation temperatures. During this
annealing process, the majority of metal halide perovskites might experience phase transitions.
For example, with a temperature range of 300–600 K, the symmetries of CsPbX3 (X = Cl, Br and I) are
altered to monoclinic, orthorhombic, tetragonal or cubic via phase transitions [42–44]. In contrast,
temperature stability of organic–inorganic hybrid perovskites is rather poor and the perovskites could
decompose at higher temperatures. For instance, CH3NH3PbX3 (X = Cl, Br and I) displayed several
phase transitions (cubic, tetragonal and orthorhombic) while operating the temperature from 140 to
400 K [45–49]. However, the thermally induced phase transitions of metal/hybrid halide perovskites
can also increase their practical use as temperature sensors.

The stability of perovskites is mostly affected by water, which cause the dissolution/degradation
of materials during the fabrication process. In the case of metal oxide perovskites, they tend to form
hydroxyl ions (OH*) over their surface with water, which is currently applied in the water splitting
application [50]. On the other hand, in the presence of water, the metal halide perovskites may degrade
due to the distortion of their lattice sites. Likewise, organic–inorganic hybrid metal halide perovskites
were also affected by the existence of water molecules. For example, the CH3NH3PbI3 decomposed
into CH3NH3 I and PbI2 when encountered with the water molecules [51]. However, such degradation
was also extensive in supportive environment.

Moisture environment or organic solvents in their gaseous state also significantly affect the stability
of perovskite materials [52,53]. The stability of perovskite materials was considerably disturbed when
exposed in a gaseous environment, such as NO2, CH4, NH3, C2H5OH, acetone, etc. [26], as a result,
they can be used as sensors for those gaseous species. The abrupt changes in these perovskite materials
can be recorded through chemiresistive I–V, phosphorescence and fluorescence responses. Nevertheless,
the opto-electronic properties of perovskites play a vital role in these sensing studies.

Perovskite oxides are well known candidates with exceptional properties, such as electrical
conductivity, ferroelectricity, superconductivity, catalytic activity, etc. For example, the studies
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on the ferroelectricity of BaTiO3 indicated that it was strongly related to the crystal structure [54].
With increasing temperature, the BaTiO3 underwent three phase transitions from monoclinic to
tetragonal and cubic structure. However, above 303 K, the ferroelectric property disappeared due to
the crystallization in the cubic structure. These changes in ferroelectricity as a function of temperature
can be utilized in temperature sensors. Similar to the ferroelectricity, these oxide perovskites were
also demonstrated as superconductors at certain temperatures, hence provides possible applications
in temperature detection. Due to excess oxygen content [55,56], perovskite oxides like LaCoO3,
LaFeO3 and LaMnO3 displayed exceptional hole conductivity (as high as σ = 100 S/cm), hence were
currently used as cathodes in solid oxide fuel cells (SOFCs). In a similar fashion, perovskites are the
materials capable of producing piezoelectricity, which has been well recognized through many sensory
applications, such as pressure sensor, force sensor, strain gauge, actuators, etc. [57]. Oxide perovskites
also possess the multiferroicity characteristic, and thus become the excellent materials for memory
devices and sensors [58]. The promising catalytic activity of metal oxide perovskites has been
demonstrated in various reactions. Due to the presence of a large number of oxygen vacancies or
deficiency sites on the surface, metal oxide perovskites are recognized as an oxygen active catalyst
or activated model sites [59], which allows the researchers to utilize them in the reaction-based
sensory readings.

Similar to the metal oxide perovskites, the metal/hybrid halide perovskites also possess the diverse
opto-electronic properties that play a vital role in many sustainable applications. Specified reviews are
available to understand their optical and electrical properties [60,61]. Tuning the stoichiometries of
halides (Cl, Br and I) and metal ions can lead to different material properties and crystalline structures.
Metal/hybrid halide perovskites displayed blue, green and red photoluminescence properties were
achieved by varying the stoichiometries of either metal or halide ions [62]. The absorption and
PL of halide perovskites are extremely sensitive to the temperature and pressure. In particular,
temperature change may induce phase transitions and influence exciton–phonon interactions via
thermal expansion. Similarly, ferroelectric properties of halide perovskites have been investigated in
many reports [63]. Enhancement in photovoltaic properties by means of ferroelectric domain structures
in MAPBI3 was demonstrated by Yam and coworkers [64]. Good electron and hole transporting
properties of organometallic halide perovskites [65] have directed researchers towards electrical sensory
investigations. Moreover, better understanding the charge-carrier dynamics is important to improve
their optical properties as well [66].

3. Factors Affecting Sensor Interrogations of Perovskite Nanomaterials

Sensory utilities of perovskite nanomaterials can be affected by the following factors, hence the
design of suitable nanostructures towards a specific direction must be done with the consideration of
these elements.

A. Suitable nanostructure: Design and development of suitable nanostructure for a specified
analyte/sensor utility is still a question to researchers. Since perovskites may form diverse
nanostructures such as quantum dots, nanocrystals, nanowires/rods, nanoparticles, etc. It is
still the most difficult challenge for scholars to identify the proper perovskite nanomaterials for
their target sensor investigation. Another critical issue is that some synthetic path may lead to a
mixture of nanostructures, hence an improved strategy or synthetic path is required to afford
explicit nanostructured materials.

B. Stability: perovskite nanomaterials has the major issue of stability, which might influence
many sensor responses. For example, organometallic halide perovskites can be significantly
affected by moisture and humid conditions. Likewise, both oxide and halide perovskites can
become unstable by temperature, pressure and solvent environment [67]. However, this property
may also direct the perovskite materials toward sensors for pressure, temperature, solvents,
etc. [68–70]. These factors might disrupt their crystallinity, structure and morphology, hence
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sensory designs for other analytes require precautions. Due to the stability concern, recycle of
perovskite nanomaterials is still an open question in electronic device-based sensors.

C. Toxicity/environmental affordability: to authenticate the sensor efficacies of perovskite
nanomaterials, elucidation of their toxicity or environmental affordability is much anticipated.
Toxicity measurements may tell us the biocompatibility of those materials to be consumed in
healthcare products. However, majority of halide perovskites are likely to be toxic, hence their
use in biosamples are rather restricted. For example, CH3NH3PbX3 (X = Cl, Br and I) are
well known candidates with good emissive nature but should be avoided to use in biosamples.
Bio/environmental samples may be affected by the presence of toxic Pb ions, hence actions are
needed to eliminate their harmfulness via suitable modifications with appropriate capping or
cations [71].

D. Quantum yield (Φ): consumption of luminescent perovskite nanomaterials-based analyte
detection is becoming the modern research topic. However, developing such luminescent
materials with analyte specificity is still a challenge. Since luminescent property may vary at
diverse precursor dilution [72], it is very essential to develop materials with high quantum yield
(Φ) values. For example, Zhu et al. publicized the CsPbBr3 perovskite nanocrystals with 87%
quantum yield towards colorimetric sensing of peroxide number in edible oils [73]. Therefore,
the development of luminescent perovskite nanomaterials with high quantum yield is expected
for sensor studies.

4. Sensing Utilities of Metal Oxide Perovskite Nanomaterials

Until now, many semiconducting perovskites have been reported in a variety of gas sensing
studies, which can be applied in environmental, fire and vehicle monitoring [74]. This might be
attributed to the interaction of analyte gases to oxygen presented in the perovskite grain boundaries,
which results in a fluctuation in electrical conductivity [75]. In this path, the majority of metal oxide
perovskites were utilized towards the detection of various gaseous or hazardous volatile species [76–85].
In addition, numerous reviews and book chapters have explored and demonstrated these sensing
applications in detail [86–90]. Therefore, the recently published sensory studies were mostly focused
in this field.

Sensing responses of metal oxide perovskites are majorly attributed to the doping of ions or the
composite mixture. Cao and coworkers reported the chlorine-doped nanocrystalline LaFeO3 powders
towards ethanol gas sensing via resistance change [91]. They employed the citric sol–gel method to
vary the chlorine doping in LaFeO3, which enhanced the sensing performance via improved grain
size and reduced intrinsic resistance. At 136 ◦C, LaFeO3−xClx (x = 0.6) nanocrystalline demonstrated
the better sensitivity to ethanol (200 ppm; ppm = parts per million) with the Rg/Ra response of 79.2
(Ra and Rg are resistance without and with the target gas). Upon exposure to ethanol gas, the electrons
trapped by oxygen were released, hence an increase in resistance was observed as a sensor signal.
This work was rather impressive in terms of the working temperature than that of few composite
materials. For example, Zhang et al. reported ZnO nanoflowers decorated LaMnO3 nanoparticles for
ethanol detection (50 ppm; Rg/Ra = 6.1) operated at 300 ◦C [92]. Wherein, ZnO played a more vital role
in the LaMnO3@ZnO composite than LaMnO3. However, analogous semiconducting nanocomposite
metal oxide perovskites are still known as inspiring gas sensing materials [93] as detailed in Section 6.

Three diverse PbTiO3 nanostructures were hydrothermally synthesized from different TiO2

powders and utilized in gas sensing studies [94]. Nanoplate-like structures were demonstrated with
better sensing performance to ethanol (5 ppm; Rg/Ra = 80.4) via a change in resistance at 300 ◦C.
Other analytes, such as xylene, acetone, toluene, HCHO, benzene, NH3, CO and NO2 did not display
significant selectivity. However, with the increased temperature to 500 ◦C, there was no selectivity to
any gaseous species. Limit of detection (LOD) to ethanol by the PbTiO3 nanoplates was estimated as
88 ppb (ppb = parts per billion) in a wide range of humidity from 20 to 80%. This work was impressive,
but the operation temperature still required to be reduced. Recently, Cao and coworkers proposed
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using the Au and Cl co-modified LaFeO3 nanoparticles (size = 29.5 nanometer (nm)) for the detection
of ethanol gas (100 ppm; Rg/Ra = 220.7) at 120 ◦C [95]. Au and Cl co-modified LaFeO3 was synthesized
by the sol–gel method and the sensor signal was attained via resistance change. They improved the
ethanol sensing characteristics of Cl-doped LaFeO3 [91] by the inclusion of the Au atom.

Growth of miscellaneous nanostructured metal oxide semiconducting perovskites to detect
assorted gaseous species has recently attracted much attention. For instance, MA et al. synthesized
the p-type PrFeO3 (praseodymium ferrite) mesoporous hollow nanofibers through electrospinning
and calcination procedures and employed in gaseous acetone discrimination [96]. When exposed
to 200 ppm of various gases at 180 ◦C, PrFeO3 nanofibers showed exceptional selectivity to acetone
(Rg/Ra = 141.3) with long term stability as shown in Figure 3. Oxygen in air was adsorbed on the
surface of PeFeO3 to capture the electrons of materials and increased the hole concentration, hence
the resistance decreased. However, when the acetone gas entered, it interacted with chemisorbed
oxygen and released the electrons to recombine with holes, which resulted in increased resistance
(this mechanism is applicable to the majority of volatile organic compounds (VOCs)). Moreover,
PrFeO3 hollow nanofibers also displayed linear resistance change from 10 to 500 ppm acetone gas.
Therefore, one can certainly endorse the potential acetone sensing ability of PrFeO3 hollow nanofibers.
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Acetone gas sensing was also achieved by Ag functionalized ZnSnO3 nanocubes synthesized via
solvothermal tactics [97]. At the 0.6% atomic ratio of Ag, the sensing response of ZnSnO3 at 280 ◦C
seems to be linear from 31.62 to 100 ppm with a LOD of 1 ppm. A 3.18 times higher response than
pristine ZnSnO3 was achieved using Ag functionalized ZnSnO3 nanocubes in acetone gas sensing.
This work is an impressive one in terms of the detection limits, but the operating temperature still
requires further optimization. Through the sol–gel method, researchers fabricated the Pd-doped
SmFe1−xMgxO3 (x = 0, 0.1, 0.2, and 0.3) nanocrystalline powder and La1−xYxMnO3+2 (x = 0 and
0.15) nanoparticles towards acetone gas detection [98,99]. Even though both materials demonstrated
extensive responses, the operating temperatures (220 ◦C and 300 ◦C) still need to be reduced. To this
direction, Au functionalized indium-doped ZnSnO3 nanofibers were fabricated via electrospinning
technique [100], which displayed sensitivity to 50 ppm acetone at 200 ◦C with a fast response/recovery
time (10 s/13 s). As shown in Figure 4, the presence of Au and In3+ in 0.25 Au/In-ZnSnO3 could enhance
the generation of electrons and hence a sensor response of this material was improved considerably.
In addition, Au/In-ZnSnO3 showed good stability in humid conditions via Au NPs-based inhibition of
water vapor influence.



Chemosensors 2020, 8, 55 7 of 35

Chemosensors 2020, 8, x FOR PEER REVIEW 7 of 35 

 
Figure 4. (a)-(e) Schematic illustration of the sensing mechanism of 0.25 Au/In-doped ZnSnO3 sensor 
representing the Au enhanced electron generation in the presence of acetone (reproduced with the 
permission from reference [100]).  

Subsequently, with the concern in volatile organic compounds (VOC) sensing, an xylene gas 
sensor was reported based on Ag-LaFeO3 nanoparticles (40 and 60 nm) synthesized from the lotus 
leaf biotemplated sol–gel process [101]. This p-type sensor can operate at 125 °C with good humidity 
and long-term stability. Notably, it exhibits a high response (Rg/Ra = 16.76) to 10 ppm of xylene gas 
with a fast response and recovery (68 s and 36 s). This is one of the best works towards xylene gas 
detection in terms of the functioning temperature. Similar to the earlier report [96], Ma and 
coworkers presented p-type samarium ferrite (SmFeO3) nanofibers towards effective detection of 
ethylene glycol at 5 ppm low concentration [102]. The response reached 18.19–100 ppm ethylene 
glycol with slightly higher operating temperature (240 °C), which required further investigation. 
Towards VOC discovery, Yin et al. recently described the n-propanol sensing using dense-packed 
n-type ZnSnO3 nanospheres with approximately 500 nm in diameter prepared by coprecipitation 
method [103]. The sensor delivered a good response at 200 °C in high humid conditions. Response 
(Rg/Ra) reached 17.7 at 50 ppm of n-propanol and the estimated LOD was 500 ppb (Rg/Ra = 1.7). The 
above material can be consumed towards the discrimination of n-propanol in the presence of other 
analytes, such as acetone, xylene, ammonia, methane and hydrogen. 

Formaldehyde is a biotoxic VOC, hence researchers have developed the metal oxide 
perovskites for its recognition by the following mechanism. 

Figure 4. (a–e) Schematic illustration of the sensing mechanism of 0.25 Au/In-doped ZnSnO3 sensor
representing the Au enhanced electron generation in the presence of acetone (reproduced with the
permission from reference [100]).

Subsequently, with the concern in volatile organic compounds (VOC) sensing, an xylene gas
sensor was reported based on Ag-LaFeO3 nanoparticles (40 and 60 nm) synthesized from the lotus
leaf biotemplated sol–gel process [101]. This p-type sensor can operate at 125 ◦C with good humidity
and long-term stability. Notably, it exhibits a high response (Rg/Ra = 16.76) to 10 ppm of xylene gas
with a fast response and recovery (68 s and 36 s). This is one of the best works towards xylene gas
detection in terms of the functioning temperature. Similar to the earlier report [96], Ma and coworkers
presented p-type samarium ferrite (SmFeO3) nanofibers towards effective detection of ethylene glycol
at 5 ppm low concentration [102]. The response reached 18.19–100 ppm ethylene glycol with slightly
higher operating temperature (240 ◦C), which required further investigation. Towards VOC discovery,
Yin et al. recently described the n-propanol sensing using dense-packed n-type ZnSnO3 nanospheres
with approximately 500 nm in diameter prepared by coprecipitation method [103]. The sensor delivered
a good response at 200 ◦C in high humid conditions. Response (Rg/Ra) reached 17.7 at 50 ppm of
n-propanol and the estimated LOD was 500 ppb (Rg/Ra = 1.7). The above material can be consumed
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towards the discrimination of n-propanol in the presence of other analytes, such as acetone, xylene,
ammonia, methane and hydrogen.

Formaldehyde is a biotoxic VOC, hence researchers have developed the metal oxide perovskites
for its recognition by the following mechanism.

HCHO + 2 O2−(ads)→ CO2 + H2O + 4 e− (1)

The released electrons are trapped by the adsorbed oxygen, leading to the decrease in hole
concentration and conductivity. Thereby, the sensor response is reflected in the resistance change.
Ag-doped LaFeO3 nanofibers were synthesized by the electrospinning method and employed in
formaldehyde (HCHO) sensing studies [104]. As shown in Figure 5, upon exposure of 100 pm
of analytes (ammonia (NH3), toluene (C7H8), ethanol (C2H5OH), formaldehyde (HCHO), acetone
(CH3COCH3) and xylene (C7H8)), Ag-LaFeO3 nanofibers responded to the HCHO gas at 230 ◦C.
This work still requires further optimization for optimum working temperature. To this approach,
Yang et al. developed the porous LaFeO3 via sol–gel and calcination techniques and utilized it in the
HCHO sensing at 125 ◦C [105]. This material can detect 50 ppm with an Rg/Ra response of 116 and
response/recovery time of 7/24 sec, hence attested as a decent work in formaldehyde identification.
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On the other hand, flammable/toxic gas detection was also explored by many metal perovskite
nanostructures as discussed in the following. Flammable H2 gas sensing by Ca-doped BiFeO3 through
the sol–gel method was proposed by Bala and coworkers [106]. At 15% Ca doping, BiFeO3 showed a
good sensor response (212% for 500 ppm H2) at 250 ◦C. Due to the incorporation of Ca2+, the oxygen
vacancy concentration increased and hence achieved a good gas sensing property. In this way, toxic
CO/CO2/propane gas discrimination by LaFeO3, LaCoO3 and GdCoO3 nanostructures with and without
doping was reported with diverse responses and temperatures [107–111]. These nanostructures can
be synthesized from solvent evaporation (through microwave irradiation) followed by calcination,
the coprecipitation method and solution polymerization tactics. Moreover, by following a similar
mechanism (as in VOCs recognition), they revealed exceptional responses to different gas concentrations
at above 150 ◦C. The structural effect of gas sensing A2BB′O5 (A = Ca, Sr; B = Fe; B′ = Fe, Mn) oxygen
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deficient perovskites to O2, CO and CO2 was investigated by the Karki research group. In their work,
a clear sensing mechanism was provided [112].

Towards toxic gas recognition, Dai and coworkers reported the palladium-doped perovskite oxide
(La0.8Sr0.2Fe0.95Pd0.05O3-2) electrolyte for impedance metric sensing of NO2 gas [113]. In the presence
of H2, NH3, CH4 and CO2, the impedance metric response was detected for the NO2 gas. However,
the electrodes act as a sensor at high temperature (>650 ◦C), hence optimization in temperature is
required. Modification or doping of LaFeO3 with Ca and Sm by means of sol–gel and calcination tactics
could form different nanostructured perovskites that can be employed in the detection of toxic SO2

gas [114,115]. In contrast to the LaCaFeO3 with operation temperature at 275 ◦C [114], LaSmFeO3 [115]
showed better performance with a LOD of 0.017 ppm at room temperature. Recently, Queralto et
al. developed the LaFeO3 nanofibers via calcination at 600 ◦C for the sensing of sulphur containing
gases [116]. This p-type nanofibers possess a wide surface area and display a better reproducible
chemoselectivity to SO2 and H2S in the temperature range of 150−300 ◦C. The mechanistic aspect of
the detection of H2S is noted in the Equation (2).

2H2S + 3O2→ 2SO2 + 2H2O + 3e− (2)

With the optimum LOD (4 ppm) and response/recovery time (60−360 s/180−500 s), LaFeO3

nanofibers are the best material to be employed in the sulphur containing gas detection.
Similar to the toxic gas/VOC determination, metal oxide perovskites were also employed as

humidity sensors. Sol–gel method mediated synthesis of magnesium- (Mg) or samarium- (Sm)
doped nanocrystals of LaFeO3 and LaMnO3 perovskites were demonstrated in humid sensing
applications [117,118]. LaMgx Fe1−x O3−δ (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) responded to different humid
conditions by the change in resistance. A similar response from the La0.7Sr0.3MnO3 (LSMO) nanocrystals
was detected through the impedance analyzer. LMSO nanocrystals showed a comparatively faster
response (0.8 s) from 11% to 95% humidity (RH) at 10 Hz. Metal oxide nanoperovskites were also
utilized in the electrochemical analyte determination as discussed next.

The non-enzymatic/enzymatic determination or direct recognition of analytes, such as glucose,
p-phenylenediamine and H2O2 has been demonstrated using modified metal oxide perovskite
electrodes [119–122]. Atta group compared the non-enzymatic glucose detection by A and B
site doping on strontium palladium perovskite (Sr2PdO3) with Ca2+ and Au3+ ions (among Ni2+,
Cu2+, Au3+ and Pt2+), respectively [119,121]. As shown in Figure 6, the amperometric response of
graphite/Sr2Pd0.7Au0.3O3 is much better than graphite/Sr2−xCaxPdO3 (x = 0–0.7) with LODs of 0.202µM
(micromole) and 2.11 nM (nanomole), correspondingly. This work can be used in the electrochemical
catalytic estimation of glucose. Toxic p-phenylenediamine (PPD) in hair dyes was electrochemically
detected by Sr-doped PrCoO3 (Pr1−xSrxCoO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1)) modified glassy carbon
electrodes (PSC82/GCE) in alkaline solution [120]. The electrode displayed highest responses of 655
and 308 µA mM−1cm−2 in the PPD concentration range of 0.5–2.9 mM (millimole) and 2.9–10.4 mM,
individually, with a LOD of 0.17 µM. However, this work still needs more effort to optimize the range
of detection and LOD. Similarly, Y-doped (8% mol) SrTiO3 displayed electrochemical sensitivity to
H2O2 with a LOD of 14.97 µM [122], which also requires further improvement.

Similar to device- and electrochemical-based analyte discovery, solution-mediated fluorescent
sensing of nitramine explosives was also established by SmCrO3 perovskite oxide (SCO)
nanopowder [123]. SmCrO3 nanopowder was synthesized by the sol–gel method (assisted by
citric acid and cetyltrimethylammonium bromide (CTAB) in water) and employed in nitro explosives
(TNP, TNT, HMX and RDX) detection in ethyl acetate (EtOAc), tetrahydrofuran (THF) and ethyl methyl
ketone (EMK) at room temperature. As displayed in Figure 7, SCO shows better selectivity to nitro
explosives than other competitive analytes and solvents. Moreover, it revealed a fast response to all
explosives with LODs in the range of 6× 10−8 to 9.6× 10−7 M. Regarding the fluorescence-based sensing,
this work is an exceptional example, thereby this tactic can be extensively used for other analytes.
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Next, Hernández-Rodríguez et al. described the Nd3+-doped (1.0% mol) yttrium orthoaluminate
nanoperovskites (by the sol–gel method) for temperature sensing in the first and second biological
windows (293–611 K), which can be employed in subtissue luminescence imaging [124]. Likewise,
nanostructured p-type LaCoO3 was synthesized by solution polymerization tactics and engaged in
ultraviolet detection [125]. When exposed to a UV light source, the material showed changes
in resistance. These results further confirm the exceptional analytical applications of metal
oxide perovskites.

5. Metal Halide Perovskites in Analyte Detection

Recently, inorganic halide perovskites have been explored in many opto-electronic and
photoelectrochemical studies [126]. Especially, rare earth metal containing halide perovskites were
investigated for novel applications [127]. Their properties, like the instability in water or aqueous
media, were established as aqueous sensors. For example, Aamir and coworkers proposed the cesium
copper bromide (CsCuBr3 by wet chemical method) perovskites for aqueous contamination detection
by means of a PL “turn-on” response [128]. In parallel, lead-free zero-dimensional (0D) indium-based
perovskite (Cs2InBr5·H2O) single crystal has been developed for water detection [129]. This material
displayed a photoluminescence quantum yield (PLQY) of 33% in red emission with water sensing via
a PL response.

Towards metal ions discrimination, inorganic halide perovskites were effectively employed with
certain promising applications. For instance, Sheng et al. established the metal ions sensing ability of
cesium lead halide perovskites quantum dots via detecting changes in fluorescence [130]. As shown in
Figure 8, CsPbBr3 quantum dots (QDs) revealed luminescence quenching in the presence of Cu2+ ions
but displayed enhancement with Yb3+ ions. This halide perovskite probe was synthesized through
hot-injection tactic with PLQY of 63%. It demonstrated exceptional linear responses (2 × 10−9 to
2 × 10−6 M) when applied on Cu2+ sensing in edible oils. Similarly, CsPbBr3 perovskite quantum
dots (PQDs) were also reported by Liu and coworkers for Cu2+ quantification with a linear range of
0–100 nM and LOD of 0.1 nM [131]. From both work, it was concluded that luminescent CsPbBr3 is a
good material for the PL-based Cu2+ sensing.

PL tuned sensing of Cu2+ ions was also demonstrated by europium (Eu3+)-doped lead free
Cs3Bi2Br9 perovskite quantum dots [132]. The Eu3+ incorporated Cs3Bi2Br9 QDs with PLQY of
42.4% were prepared from the ligand assisted reprecipitation method and applied in PL based Cu2+

sensor. Linear range of Cu2+ detection was found to be 5 nM to 3 µM with a LOD of 10 nM,
which enabled feasible extension of such QDs in metal ions quantification. Recently, CsPbBr3 QDs
facilitated ultra-trace sensing of uranyl ions (UO2

2+) has been reported by Halali and coworkers [133].
Through hot-injection method, CsPbBr3 QDs were synthesized. The PL intensity was significantly
quenched (LOD = 83.33 nM) only when UO2

2+ ions (from 0 nM to 3.3 µM) were added into the solution,
as displayed in Figure 9. This probe follows the adsorption mechanism and allows the researchers to
extend their trend towards the assay of a nuclear hazard.

Related to the metal ions assay, Cs comprising of nano perovskites were also used in diverse
recognition studies. Lead free Cs2BiAgBr6 double perovskites have been applied in humidity (5–75%)
sensing with a superfast response and recovery time (0.45 s/1.78 s) [134]. Fabrication of Cs2BiAgBr6

was carried out by spin coating. It can detect changes in humidity with a linear range of 15–78%.
Subsequently, Chen et al. reported the medically important gas sensing property of nanostructured and
light-activated CsPbBr2I (CPBI) perovskite, which can detect the reducing (e.g., acetone and propane)
and oxidizing (e.g., NO2 and O2) gas molecules with limits down to 1 ppm [135]. However, due to its
non-specificity, this work can be considered as an addition to the device-based gas sensor. In general,
Cs incorporated inorganic halide perovskites (particularly the CsPbX3 (X = Cl, Br and I) nanostructures)
display high luminescence properties upon light activation [136]. This property allows the scientist to
explore their innovative and analytical applications. Research groups employed the porous network
of nanostructured CsPbBr3 (CPB) in the recognition of ethanol and acetone via O2 (generated from
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solvents) mediated surface passivation and ambipolar charge transport in the perovskite layer [137].
The probe can detect the VOCs down to 1 ppm at room temperature with excellent response and
recovery time.
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Luminescence property of CsPbBr3 nanocrystals plays a more vital role in the detection of HCl
gas than other analytes (such as HNO3, CH3COOH, HBr, NH4OH, H2O and HCOOH) by means
of an anion exchange reaction to form CsPb(Br/Cl)3 [138]. The probe was synthesized by a routine
hot-injection procedure to detect HCl gas with a LOD down to 5 ppm, thereby can be extended for real
time monitoring. In this light, Chen and coworkers used the fluorescent CsPbBr3 quantum dots for
rapid H2S determination in rat brain microdialysis [139]. Upon the addition of H2S, luminescence
of CsPbBr3 QDs was quenched linearly from 1 to 100 µM with a LOD of 0.18 µM. This work is an
impressive one with a rat brain based H2S assay. Exploration of CsPbBr3 QDs-based ammonia gas
sensing was delivered by the Huang research group [140]. As shown in Figure 10, CsPbBr3 QDs show
a turn-on resistance change to ammonia from 25 to 350 ppm (LOD = 8.85 ppm) with response/recovery
time of 10/30 s, correspondingly. This report was an inspiring addition to ammonia sensors.
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Figure 10. (a) Experimental setup for characterization. A fiber is on the right side to the transmission
excitation light (365 nm), the pipeline for controlling ammonia flow is on the left side and (b) a fitting
curve for the sensing response value of PL intensity. The inset is the fitting parameters of the two
fitting curves; (c) dynamic sensing responses of different NH3 concentrations (from 25 to 350 ppm) and
(d) four successive sensing cycles of the CsPbBr3 QDs sensor (50 ppm; reproduced with the permission
from reference [140]).

In recent times CsPbX3 (Br/I) nanostructures were employed in the identification of ozone (O3) and
explosive picric acid [141,142]. The fabricated film composed of CsPbBr3 nanocubes displayed high
sensitivity to O3 environment at room temperature [141]. Before the exposure to O3, the nanocubes
adsorbed the O2 species and became resistive with less conductive holes. This phenomenon was
completely reversed upon exposure to O3 (act as electron acceptor), as shown in Figure 11, where the
conductive holes concentration was enhanced and an increase in the current response was observed.
This work has pointed to the exceptional direction in inorganic metal halide perovskite-based sensor
research. Next, as illustrated in Figure 12, CsPbBr3 PQDs and CsPbI3 PQDs (prepared by the
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hot-injection method with PLQY = 52.88% and 46.18%,) display PL quenching to picric acid in solution
with estimated LODs of 0.8 nM and 1.9 nM, respectively [142]. In the presence of other competing
analytes like 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrobenzene (NB), benzoic acid
(BA), 1,3-dinitrobenzene (DNB) and benzaldehyde (BD), PQDs showed exceptional selectivity to picric
acid with inkjet printing applications, thereby they attested as a nice report in the explosive sensor.
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Similar to inorganic halide, organometal halide perovskites also become effective in sensory
research due to their unique fluorescence and solvent tuned aggregation induced emission (AIE)
characteristics [143]. Earlier, Muthu et al. denoted the organic–inorganic perovskite (CH3NH3PbBr3)
nanoparticles (6.1 nm size) for the luminescent detection of picric acid [144]. As represented in
Figure 13, upon the addition of picric acid (TNP), 97% of PL quenching was attained with LOD down
to femtomolar (1 × 1015 M). This is one of the pioneer works that have initiated the sensing applications
of organometal halide perovskites. In contrary to the metal oxides, organometal halide perovskites
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have been utilized in luminescent- and device-based humidity sensors [145–147]. A red emitting dye
5,10,15,20-tetrakis(pentafluorophenyl)porphyrin was coupled with CH3NH3PbBr3 nanocrystalline
perovskite film, which revealed reversible sensitivity to humidity between the range of 7–98% via
green to red color change and fluorescent quenching [145]. This sensor response is visible to the naked
eye with a LOD of 0.04% RH, thereby attested as exciting research.
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Toward humidity sensing, Ren et al. fabricated the CH3NH3PbI3−xClx (x = 0, 2.8) nanosheet
arrays that responded to humidity change in their resistance [146]. Herein, from low humidity
(30% RH) to 90% RH at 27 ◦C, the resistance fluctuated from 1.28 × 108 to 7.39 × 104 Ω.
The sensor performance was far better than the commercial psychrometer, thereby attested as a
nice innovation. Recently, Gao and coworkers reported the luminescent chromism of nanocrystalline
PEA2MnBr4 (PEA = phenethyl-ammonium) single crystals observed through green to pink emission for
humidity/moisture [147]. The LOD of the water content in toluene by this probe ranged between 0.02
and 0.05 vol %. However, this work needs further optimization to improve the humidity recognition.
Apart from explosive and humidity quantitation, organometal halide perovskites were also employed
in the sensing of cations, anions, toxic gases and VOCs as described in the following sections.

Tian research group demonstrated the Hg2+ ions detection by surface adsorbed fluorescent
quenching of CH3NH3PbBr3 QDs (synthesized by ligand-assisted reprecipitation (LARP) technique
with PLQY = 50.28%) [148]. As illustrated in Figure 14, the green fluorescence of QDs was linearly
quenched with a LOD of 0.124 nM between the concentration ranges of 0–100 nM. They demonstrated
the applicability in spot plate, which assured the proficiency of CH3NH3PbBr3 QDs in the Hg2+ assay.
In this course, Cu2+ sensing has been validated by two-dimensional (2D) PEA2PbI4 nanocrystals
(PNCs) in water [149]. In which, the PL was quenched upon addition of Cu2+ ions from 0.5 nM to
50 mM. However, this work still requires extensive interrogation.

Similar to surface mediated cation discrimination, anion substitution could lead to
opto-electronic/dimensional property alteration [150], hence perovskite facilitated anion sensory
also attracted attention from researchers. For instance, Lu et al. established the fluoride sensing ability
of dual ligands capped CH3NH3PbBr3 QDs (synthesized from LARP procedure with PLQY = 27.2%)
through H-bonding between the fluoride anion and one of the capping ligand 6-amino-1-hexanol
(AH) [151]. The QDs show better selectivity to F− ions with negligible interference of other analytes as
shown in Figure 15. A linear response to F− was observed from 10 to 50 µM with a LOD of 3.2 µM.
Until now, this work is still well recognized in the research of organometal halide based luminescent
anion recognition.
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Figure 15. (A) Fluorescence response of dual ligand capped perovskite quantum dots (DL-PQDs) to
different anions and F− (90 µM for F− and 450 µM for other anions). (B) Interference studies of the
novel nanosensor toward F−. The black bars represent the fluorescence response of DL-PQDs to F− and
other anions (90 µM for F−, 450 µM for other anions). The red bars represent the change of emission
occurred after the subsequent addition of 90 µM of F− to the above solutions (reproduced with the
permission from reference [151]).

Organometal halide nanostructured perovskites were effectively used in the discrimination
of VOCs by means of PL and resistance fluctuations [152–155]. Structural conversion through
irreversible/reversible H-bonding in the perovskite-based aliphatic amines was proposed by Kim
and coworkers [152]. Upon exposure to gaseous monoethylamine (competitor: diethylamine
and trimethylamine), the green fluorescence of CH3NH3PbBr3 perovskite nanoparticles displayed
89% quenching within a second. However, this interrogation needs to be upgraded with many
competing amines. In a similar fashion, a zero dimensional (0D) lead free (C9NH20)2MnBr4

(C9NH20
+ = 1-buty-1-methylpyrrolidinium cation) nanoperovskite was employed in the sensing of

acetone [153]. The material was synthesized from the wet-chemical route (PLQY = 81.08%). The green
luminescence was quenched (50 fold) within 10 s upon exposure to acetone vapor.

Subsequently, a two dimensional (2D) (C4H9NH3)2PbI2Br2 (C4H9NH3
+ = n-butyl ammonium

ion) nanoperovskite was synthesized by a wet-chemical procedure and employed in ppt
(ppt = parts per trillion) level detection of benzene by means of a change in resistance [154]. The sensor
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displays better response to benzene (Rg/Ra = 90.7) at 160 ◦C with a LOD of 1 ppt than that of other
analytes, such as toluene, ethanol, ortho-xylene and para-xylene gases. The report demonstrated an
impressive LOD, but temperature needs to be optimized before commercialization. In this framework,
the methylammonium lead iodide (MAPbI3) nanostructured perovskite thin film has been proposed to
sense ethanol gas at room temperature [155]. Both the resistance and PL responses can be used for the
determination of ethanol. However, the LOD of this ethanol sensor is approximately 1300 ppm, which
require further improvement in perovskite-based sensing of VOCs.

Similar to the VOCs sensing, perovskites can be an exceptional candidate in toxic gas discrimination.
Methylammonium lead tri-iodide (MAPbI3) hybrid perovskites display its high sensitivity to ammonia
(NH3) gas through the resistance changes [156–158]. These reports involved the MAPbI3 in the
form of film, paper and powder pellet for NH3 sensing with detectivity down to 1 ppm. Thus,
the NH3 recognition ability of MAPbI3 is well established. Moreover, Jiao et al. reported the use
of MAPbBr3−xIx in NH3 detection, which work at 15 ◦C with high response values (Rg/Ra = 29.7;
500 ppm) [159]. The material was synthesized via the one step spinning method. It displayed the
detectivity of NH3 gas down to 200 ppm and response-recovery time in less than 20 s due to acceleration
of irreversible decomposition. Recently, Li and coworkers proposed the encapsulation tactics for
PL-based assays of NH3 gas [160]. In which, the MAPbBr3 encapsulated by tetrabutylammonium
cations (nano-MAPbBr3-TBA film) displayed linear PL quenching upon exposure to ammonia gas
as illustrated in Figure 16. This NH3 probe is effective in wide humid conditions with estimated
LOD of 0.46 ppm. In the future, it can be used in ammonia detection with certain authorization.
These organometal halide perovskites are currently more effective in various toxic gas sensing because
of diverse quantum dynamics and surface properties [161].
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Figure 16. MAPbBr3-TBA-based gas sensor. (a) The PL quenching toward different concentration of
gaseous NH3 (0–100 ppm) and (b) the plot of PL intensity versus concentration of NH3 (reproduced
with the permission from reference [160]).

Nanostructured organometal halide perovskites were also utilized in the device-based assay of
toxic NO2 gas [162–166]. Thin film made of CH3NH3PbI3−x(SCN)x, CH3NH3PbI3, CH3NH3PbBr3

and CH3NH3SnI3 showed high selectivity to NO2 with LODs of 200 ppb, 1 ppm, 1 ppm and 25 ppb,
respectively, via resistance changes [162–165]. Moreover, CH3NH3PbI3−x(SCN)x also displayed its
sensing ability to gaseous acetone with a LOD of 20 ppm. The underlying mechanism is that the
NO2 gas physically adsorbed on the surface of those films generates electrons from the conduction
band or from charge transfer chemisorption. A triple cation containing FA0.80MA0.15Cs0.05PbI2.55Br0.45

(FMCPIB) nanocrystalline perovskite was applied in the device-based detection of NO2 gas by Chen
and coworkers [166]. As shown in Figure 17, FMCPIB devices in the self- and externally-powered mode
were able to detect NO2 gas at room temperature with an estimated LOD of 0.2 ppm. This material
is a unique one to be applied in NO2 discrimination in the presence of competing species with a
recover/response time of 17/126 s.
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Petridis research group reported the O3 and H2 sensing by CH3NH3PbI3−xClx through electrical 
measurements [168,169] with slight variation in fabrication tactics. However, the responses of this 
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the CH3NH3PbI3 nanocrystalline film was grown by the pulsed laser deposition (PLD) process, 
which acted as a photo sensor over wavelengths from 375 to 800 nm at 5 V bias [170]. This material 
also exhibited a power conversion efficiency (PCE) of 10.6% and became a potential candidate in 
photonics research. 
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Figure 17. Room-temperature chemical response of the FMCPIB devices in the self- and
externally-powered mode. Dynamic sensor response of an FMCPIB device to three consecutive
injection of 8 ppm NO2 (a) self-powered under weak fluorescent lamp light irradiation (1.3 µW cm−2)
and (b) externally powered with 1 V bias in the dark. FMCPIB sensor response as a function of the
NO2 concentration; (c) in the self-powered mode and (d) at the 1 V external bias; the inset in (d) is the
enlarged part of the red dashed region. The sensor response of the FMCPIB sensor for six different
gases (e) in the self-powered operational mode; and (f) at the 1 V external bias. The gas sensing
measurements were conducted at room temperature (30 ◦C) under simulated air (VN2 /VO2 = 4) with a
constant total gas flow of 0.5 L min−1 (reproduced with the permission from reference [166]).

Organometal halide nanoperovskites were engaged in recognition of O2, O3 and H2 gases, as
well as photo sensors [167–170] through conductivity responses. For example, Stoeckel et al. used
the CH3NH3PbI3 nanocrystalline film to determine O2 concentration via the trap healing mechanism
instigating from an O2 tuned iodine vacancies filling with a detection limit down to 70 ppm [167].
This is an inspiring work on device-based O2 detection at ambient conditions. Subsequently, the
Petridis research group reported the O3 and H2 sensing by CH3NH3PbI3−xClx through electrical
measurements [168,169] with slight variation in fabrication tactics. However, the responses of this
sensor material in the presence of both gases (O3 and H2) need to be established for validation.
Next, the CH3NH3PbI3 nanocrystalline film was grown by the pulsed laser deposition (PLD) process,
which acted as a photo sensor over wavelengths from 375 to 800 nm at 5 V bias [170]. This material
also exhibited a power conversion efficiency (PCE) of 10.6% and became a potential candidate in
photonics research.
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Apart from the sensing ability of organometal halide perovskites to VOCs, metal ions, anions,
toxic gases and explosives, they can be used in electromechanical sensors. In this framework,
Xia et al. reported the two dimensional (2D) (C4H9NH3)2PbBr4 as strain sensors, which displayed
high sensitivity at a strain ratio of 0.16% with reversible stretchability [171]. This work is noted as
an essential breakthrough in wearable sensor research. By combining with certain materials, these
organic/inorganic metal halide perovskites may form nanocomposite like structures, which can be
utilized in exceptional sensors like tactile sensors [172,173]. For instance, the nanocomposite like
structure with a combination of ZnO nanosheet arrays and polystyrene (or CH3NH3PbI3 (MAPbI3))
acts as exceptional tactile sensors (with respective sensitivity of 0.57 kPa−1 and 0.64 kPa−1). The sensing
applications of nanocomposites with perovskites are discussed in the next section.

6. Perovskites Incorporated Nanocomposites as Sensors

Metal oxide perovskites incorporated nanocomposites displayed high sensitivity to ethanol
gas with exceptional response and recovery [92,174–176]. Wherein, LaMnO3/SnO2 composite
nanofibers [174] and α–Fe2O3/LaFeO3 composite nanomaterial [175] delivered their sensitivity to
100 ppm ethanol at high operating temperatures 260 and 240 ◦C with responses of 20 and 10, respectively.
In contrast, Chen et al. reported the Ag/Zn–LaFeO3 (AZLFO) nanocomposite-based ethanol detection,
which showed a response of 64.2–100 ppm analyte and a detection limit down to 5 ppm [176]. Note that
this sensor can operate from 55 to 245 ◦C. By following the reaction steps shown in Equations (3)–(5),
ethanol sensing can be achieved near room temperature.

O2 (gas)→ O2 (phys)→ O2
− (chem) (3)

C2H5OH→ CH3CHO + H2 (4)

2CH3CHO (ad) + 5O2
−
→ 4CO2 + 4H2O + 5e− (5)

It has been established that the gas sensitivity is achieved due to fluctuations in electrical
conductivity induced by surface chemisorbed oxygen species over the sensing materials. However,
the Zn doping also plays a vital role for near room temperature sensing of ethanol. As illustrated in
Figure 18, Zn2+ doping compensates the defects of La sites and increases the hole concentration, thus a
higher sensor response is achieved near room temperature.
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Such a composite structure has been applied in the sensing of gaseous acetone [177].
Three dimensional (3D) LaFeO3/α-Fe2O3 nano-octahedrons were synthesized by the one-step
solvothermal method, which were then combined with a metal−organic framework.
The nano-octahedrons constructed heterostructures detect the acetone and obtain the sensor response
(Ra/Rg = 21) by means of changes in conductivity. The sensor can detect 100 ppm of acetone at 230 ◦C,
thereby further optimization is required to reduce the working temperature. Porous SnO2 fiber-in-tubes
(FITs) were functionalized with La0.75Sr0.25Cr0.5Mn0.5O3-2 (LSCM) nanoparticles (215.7 nm in
size; synthesized from the combustion method using citric acid) and employed in formaldehyde
recognition [178]. The material (LSCM@SnO2 FITs) showed a high response to formaldehyde
(Ra/Rg = 26.50 at 5 ppm, 400 ◦C) with a LOD of 80 ppb. The above report is impressive work but the
operation temperature must be reduced for practical applications. Later, hydrothermally synthesized
nanoflowers like the ZnSnO3/Zn2SnO4 composite hybrid has been reported for phenylamine sensing
by Du and coworkers [179]. The ZnSnO3/Zn2SnO4 sensor exhibited the response of 12.1–20 ppm
phenylamine (at 260 ◦C) with a LOD of 50 ppb and response/recovery time of 1 s/20 s. Due to its
anti-humid property, these materials can be employed in the determination of toxic phenylamine.

Investigation on SmFeO3-modified MoS2 (SmFeO3@MoS2) nanocomposites towards humidity
sensing has been conducted by the Zhang research group [180]. The material, synthesized by
electrospinning combined with the hydrothermal technique, operates from 11 to 95% RH with a
recovery/response time of 1.5 s/29.8 s, thus it can be considered as an effective candidate. Other than
the VOCs and humidity sensors, perovskite enabled composites were utilized in toxic gas quantitation.
For example, La0.8Sr0.2FeO3 (LSFO) nanoparticles (with a size of 100−300 nm) decorated Ga2O3

nanorod arrays have been employed in the recognition of carbon monoxide (CO) via conductivity
studies [181]. The sensor operates at 500 ◦C with a response comparable to the Pt nanoparticles
decorated Ga2O3 nanorod arrays. However, investigations on competing gases still need to be
performed with this material. Joshi et al. reported work on BaTiO3 included nanocomposites
(Ag@CuO/BaTiO3, CaO-BaTiO3 and CuO/BaTiO3) towards CO2 gas sensing [182–184]. In fact, these
materials used in the discovery of CO2 gas showed an optimum sensitivity of 700, 1000 and 5000 ppm,
correspondingly, at either 120 ◦C or 160 ◦C with a good response and recovery time, thereby confirmed
the success of BaTiO3 enabled composites for CO2 recognition.

Toxic SO2 gas detection has been established by wet chemically synthesized SnO2/LaFeO3−XNX

nanocomposite materials [185]. However, the response and other details on LODs and sensitivity were
not clearly specified in this report. Recently, La0.8Sr0.2CoO3 (LSCO) nanoparticles decorated β-Ga2O3

nanorod arrays were consumed in the determination of toxic NO2 gas at 800 ◦C by Zhang, et al. [186].
This is remarkable work with decent performance in sensitivity (0.1625 ppm−1) at high temperature.
Similar to the conductance-based analyte discovery, composites with perovskites were also employed
in electrochemical sensors. Sr2PdO3 nanoperovskite mixed with carbon nanotubes (CNTs) were casted
over a glassy carbon (GC) electrode surface (GC/(CNTs-Sr2PdO3) and used in the electrochemical
determination of dobutamine (DB, cardio-stimulator drug) [187]. This sensor showed dynamic
electro-catalytic linearity in the range of 0.03–50 µmol L−1 with a sensitivity of 20.91 µA/µmol L−1.
The estimated LOD and quantification limit were 0.012 nmol L−1 and 0.04 nmol L−1, respectively.
It was potentiality verified in blood serum samples, which indicated good recovery. Moreover, the
anti-interference sensitivity of this material confirmed its capability in electrochemical sensing of
dobutamine. Nanocomposite sensors based on in-situ growth of BaTiO3 and TiO2 nanostructures over
human hair-sized Ti-wire were utilized as a self-powered UV sensor [188]. Thus, one can conclude that
metal oxide perovskites-based composites are an exceptional candidate in future sensory research.

Inorganic/organic metal halide perovskites were also involved in many composite-based sensory
applications [189]. Chemically synthesized and ligand stabilized CsPbBr3 QDs (CPBQDs; PLQY
= 88% encapsulated in polymethyl methacrylate (PMMA) nanofiber membrane (CPBQD/PMMA
FM) via the electrospinning method were used in the sensing of trypsin, Cu2+ and pH [190].
As illustrated in Figure 19, the CPBQD/PMMA FM detects trypsin through the cleavage of peptide CF6
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(Cys–Pro–Arg–Gly–R6G) followed by a Fluorescence Resonance Energy Transfer (FRET) between the
fiber and cyclam–Cu2+, which leads to Cu2+ recognition. Finally, 10 ppb hydrazide R6G (in ethanol)
plays a vital role in pH sensors. LODs of trypsin of 0.1 µg mL−1 and Cu2+ quantitation of 10−15 M were
reported. CH3NH3PbBr3 QDs were incorporated in metal-organic framework (MOF-5) microcrystals
and applied in temperature and heavy metal ions detection [191]. The CH3NH3PbBr3@MOF-5
composites possess a wide range of pH adaptability and display its sensitivity to temperature from 30
to 230 ◦C. However, this probe showed sensor responses to many metal ions, thereby more work is
required to achieved specificity.

Chemosensors 2020, 8, x FOR PEER REVIEW 22 of 35 

The CH3NH3PbBr3@MOF-5 composites possess a wide range of pH adaptability and display its 
sensitivity to temperature from 30 to 230 °C. However, this probe showed sensor responses to many 
metal ions, thereby more work is required to achieved specificity. 

 
Figure 19. Schematic illustration of (a) trypsin, (b) Cu2+ and (c) pH fluorescence detection, based on 
the CPBQD/PMMA FM (reproduced with the permission from reference [190]). 

A porous halide perovskite–polymer nanocomposite (MAPbBr3–PVDF) has been described in 
fluorescent-based sensing of nitro explosives (TNT, RDX or TNG) via a trapping mechanism [192]. 
PL of the probe was quenched in the presence of the above analytes, but specificity of the probe was 
still not clarified. Toxic NO2 and NH3 gas detection at room temperature has been explored by the 
graphene nanolayers decorated CH3NH3PbBr3 nanocrystals [193]. This composite material exhibited 
diverse mechanisms to NO2 and NH3 gases based on hole concentrations. Electron 
donating/withdrawing from NH3/NO2 gases may reduce/increase the hole concentrations and leads 
to diverse resistance responses. Such a unique approach for multiple gas sensing is much 
anticipated. By combining the solution, immersion and calcination tactics, 
HC(NH2)2SnI3/SnO2/Pt-NPs nanocomposite was developed and employed in formaldehyde gas 
discrimination at 80 °C [194]. The HC(NH2)2SnI3/SnO2/Pt-NPs nanocomposite displayed the 
response of 47.5–10 ppm formaldehyde at 80 °C with a LOD of 65 ppb and response/recovery time of 
40 s/37 s. With respect to the reported operating temperature and LOD, this study can be attested as 
a suitable one. 

Detection of pesticides was also demonstrated by metal halide perovskite containing 
nanocomposites [195,196]. Lin research group utilized CsPbBr3 QDs incorporated and molecularly 
imprinted polymers (MIPs) nanocomposites (MIPs@ CsPbBr3 QDs) for the detection of pesticides 
omethoate (OMT) and phoxim. The 3-aminopropyltriethoxysilane (APTES)-capped CsPbBr3 QDs 
were used in the detection of omethoate through the energy transfer mechanism in PL quenching 
[195]. The linear response of OMT was from 50 to 400 ng/mL with a LOD of 18.8 ng/mL. On the other 
hand, phoxim discrimination was attained by involvement of 
N-(benzyl)-N’-(3-(triethoxysilyl)propyl)urea (BUPTEOS) to enhance the PL quenching [196]. 
Moreover, the effect of MIPs was also comparable to those of non-imprinted polymers (NIPs) as 
shown in Figure 20. The linear response of phoxim was ranged between 5 and 100 ng/mL with a 
LOD of 1.45 ng/mL. Both reports confirmed the utility of MIPs@ CsPbBr3 QDs composites in 
pesticide discrimination with real time applications. 
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A porous halide perovskite–polymer nanocomposite (MAPbBr3–PVDF) has been described in
fluorescent-based sensing of nitro explosives (TNT, RDX or TNG) via a trapping mechanism [192].
PL of the probe was quenched in the presence of the above analytes, but specificity of the probe was still
not clarified. Toxic NO2 and NH3 gas detection at room temperature has been explored by the graphene
nanolayers decorated CH3NH3PbBr3 nanocrystals [193]. This composite material exhibited diverse
mechanisms to NO2 and NH3 gases based on hole concentrations. Electron donating/withdrawing from
NH3/NO2 gases may reduce/increase the hole concentrations and leads to diverse resistance responses.
Such a unique approach for multiple gas sensing is much anticipated. By combining the solution,
immersion and calcination tactics, HC(NH2)2SnI3/SnO2/Pt-NPs nanocomposite was developed and
employed in formaldehyde gas discrimination at 80 ◦C [194]. The HC(NH2)2SnI3/SnO2/Pt-NPs
nanocomposite displayed the response of 47.5–10 ppm formaldehyde at 80 ◦C with a LOD of 65 ppb
and response/recovery time of 40 s/37 s. With respect to the reported operating temperature and LOD,
this study can be attested as a suitable one.

Detection of pesticides was also demonstrated by metal halide perovskite containing
nanocomposites [195,196]. Lin research group utilized CsPbBr3 QDs incorporated and molecularly
imprinted polymers (MIPs) nanocomposites (MIPs@ CsPbBr3 QDs) for the detection of pesticides
omethoate (OMT) and phoxim. The 3-aminopropyltriethoxysilane (APTES)-capped CsPbBr3 QDs
were used in the detection of omethoate through the energy transfer mechanism in PL quenching [195].
The linear response of OMT was from 50 to 400 ng/mL with a LOD of 18.8 ng/mL. On the other hand,
phoxim discrimination was attained by involvement of N-(benzyl)-N′-(3-(triethoxysilyl)propyl)urea
(BUPTEOS) to enhance the PL quenching [196]. Moreover, the effect of MIPs was also comparable to
those of non-imprinted polymers (NIPs) as shown in Figure 20. The linear response of phoxim was
ranged between 5 and 100 ng/mL with a LOD of 1.45 ng/mL. Both reports confirmed the utility of
MIPs@ CsPbBr3 QDs composites in pesticide discrimination with real time applications.
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In this light, CsPbBr1.5I1.5PQD immobilized TiO2 inverse opal photonic crystals (IOPCs) have
been engaged as electrodes for the electrochemical dopamine discovery [197]. This composite
electrode expresses a linear response to dopamine from 0.1 to 250 µM with a LOD of 0.012 µM.
The underlying mechanism of this sensor is discovered as “photonic stop band effect” of TiO2

IOPCs on the incident light and the emission of PQDs, which enhances the photocurrent upon
exposure to dopamine. This work allows the consumption of PQDs in a bioanalysis. In a similar
fashion, nanostructured quasi-2D and 3D CH3NH3PbI3 enabled TiO2 film and molecularly imprinted
polymers (MIPs) and polyethylene glycol (PEG) coated CH3NH3PbI3 (MIP-PEG/CH3NH3PbI3) were
consumed in the electrochemical determination of carbon tetra-bromide (CBr4) and salicylic acid,
correspondingly [198,199]. The quasi-2D and 3D CH3NH3PbI3/TiO2 composites can detect the
CBr4 down to 20 ppb mol−1, and hence become a reliable system for CBr4 sensing. Subsequently,
the MIP-PEG/CH3NH3PbI3 nanocomposite displayed remarkable sensing performance with high
sensitivity to SA in the dynamic range of 1.0 × 10−15 to 7.0 × 10−11 M and with LOD and the limit of
quantitation (LOQ) of 2.71 × 10−16 M and 9.02 × 10−16 M, respectively.

Recently, an inner filter effect-based melamine assay has been demonstrated by barium
sulfate-coated CsPbBr3 perovskite nanocrystals (CsPbBr3NCs@BaSO4) and AuNPs [200]. As shown in
Figure 21, in the presence of AuNPs the PL intensity of CsPbBr3NCs@BaSO4 was quenched and then
recovered upon addition of melamine. The sensor displayed the linearity from 5 to 500 nmol/L with a
LOD of 0.42 nmol/L. Moreover, this work also completed the anti-interference and real sample analysis.
By means of hot-injection method CsPbBr3 QDs/reduced graphene oxide (RGO) nanocomposites
were developed and employed as a potential candidate in photoelectric detection [201]. Due to
the photoelectric effect, the PL intensity of CsPbBr3 QDs was quenched in the presence of RGO.
Similar hybrid halide perovskites enabled nanocomposites were also consumed in cellular imaging
and temperature-insensitive optical gain studies [202,203]. In contrast, the growth of hybrid halide
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perovskite itself was used as a sensor [204]. However, an in-depth theoretical interrogation on hybrid
perovskites [205–207] is still required for their exceptional applications in photonics.Chemosensors 2020, 8, x FOR PEER REVIEW 24 of 35 
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7. Advantages and Limitations

The design and development of perovskites-based sensory probes have certain advantages and
limitations as listed below.

1. The excellent opto-electronic properties of both metal oxide and metal halide/organometallic
halide perovskites allow their usage in device-based analyte detection, especially towards
energetic/toxic gases and humidity quantitation.

2. Metal oxide perovskites are favorable in the determination of VOCs gases with limits down to the
ppt level. Therefore, they become competitive with the existing carbon-/graphene-based sensor
materials [208,209].

3. Luminescent characteristics of metal halide/organometallic halide quantum dots or nanocrystals
have advantages over PL-based identification of specific target. Their metallic and crystalline
nature further improve their sensitivity in comparison with carbon dots [210].

4. Selectivity and sensitivity of both perovskites can be improved towards practical reliability with
precision when modified or combined with nanostructured materials, such as MIPs.

5. A suitable modification of operational electrodes with perovskite materials could extend their
usage in diverse analyte assays.

6. Majority of metal oxide perovskite-based devices operate at high temperatures in the assay
of gases, which becomes a disadvantage in many cases. Likewise, thin film-based sensory
performance is limited by film thickness, thereby careful optimization is necessary.

7. Environment and solvent conditions are the major threats to the perovskite-facilitated sensory
investigations, except in the humidity analysis.

8. Cost-effectiveness in the design of perovskite-based devices is still a concern for the researchers.
9. Due to the material toxicity and instability in certain circumstances, perovskite sensors have

limits in reliability and toxicity. Therefore, unlike the carbon-based materials [211], it still remains
an important challenge to apply them in biological and clinical diagnosis.

10. For fluorescent-based assays, development of suitable perovskite material with high PLQY is
limited by synthetic tactics, stabilizer ligands, temperature, etc.
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8. Conclusions and Perspectives

This review summarized the sensing applications of metal oxide and metal halide/organometallic
halide perovskite nanomaterials. We focused on detection of toxic/energetic gases, humidity, VOCs and
electromechanical quantitation using the perovskite nanomaterials-based devices and explained the
underlying mechanisms. The fluorescent-based assays of analytes were also discussed in detail with
given advantages and limitations. Moreover, the sensory utilities of perovskite-enabled nanocomposites
were also reviewed. Besides the aforementioned sensing applications, the following points are yet to
be focused.

1. The underlying mechanisms in many sensory reports still require in-depth investigations with
respect to theoretical concepts.

2. There are only limited reports on the fluorescent-based analyte assays using metal oxide
perovskites, thereby need more attention.

3. The majority of the device-based sensory investigations are influenced by operational temperature,
therefore, considerate optimization is needed to attain responses at room temperature.

4. A cost-effective, reproducible and standardized procedure is required to produce “state of the art”
materials towards specific target (toxic gases, VOCs, anions, cations and physical parameters)
for commercialization.

5. There are only limited reports on the studies of perovskite nanowire-based chemo-/biosensors,
hence more efforts need to be devoted in this research area.

6. Perovskite nanomaterial-mediated sensing of biologically important species must be promoted
with real applications.

7. Focus on lead free organometallic halide perovskites is desirable for research in biological
imaging studies.

8. Research in the development of stable perovskite nanomaterials for environmental and biological
assays needs to be intensively stimulated and encouraged.

9. Investigations on the incorporation of well-known matrixes in perovskite-composite sensors,
such as metal organic frameworks, metal nanostructures, hybrid clusters and polymers, need
more attention.

10. Perovskite nanomaterial-based colorimetric/naked eye analyte determinations require
further attention.

11. Design and development of low toxic perovskite nanomaterial-based devices/probes towards
sensing-drug delivery modules are required to be established in the future.

Though many mechanistic points require justification, perovskite-based sensory research is still a
hot topic with respect to their applicability and future scope. Currently, many scientists are working
on perovskite-based photonics, which may provide in-depth theories for the design and development
of nanoperovskite sensors and opto-electronic materials with social and economic impacts.
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