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Abstract: In this study, the gas sensing properties of Co-doped ZnO nanoparticles (Co-ZnO NPs)
synthesized via a simple sol-gel method are reported. The microstructure and morphology of the
synthesized Co-ZnO NPs were characterized by X-ray diffraction (XRD) and transmission electron
microscopy (TEM), respectively. Co-ZnO NPs were then used for developing a conductometric gas
sensor for the detection, at mild temperature, of low concentration of hydrogen (H2) in air. To evaluate
the selectivity of the sensor, the sensing behavior toward some VOCs such as ethanol and acetone,
which represent the most important interferents for breath hydrogen analysis, was also investigated
in detail. Results reported demonstrated better selectivity toward hydrogen of the Co-ZnO NPs
sensor when compared to pure ZnO. The main factors contributing to this behavior, i.e., the transition
from n-type behavior of pristine ZnO to p-type behavior upon Co-doping, the modification of oxygen
vacancies and acid-base characteristics have been considered. Hence, this study highlights the
importance of Co doping of ZnO to realize a high performance breath hydrogen sensor.
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1. Introduction

ZnO has been one of the most investigated material for gas sensing by using conductometric
sensors, i.e., devices whose response is related to the resistance variation of the sensitive element
upon exposure to target gases [1]. In the pristine form, ZnO is an n-type semiconducting metal oxide
with a wide direct band gap (~3.3 eV), high exciton binding energy (60 meV), excellent chemical and
thermal stability, and a low price [2,3]. Nanosized ZnO due to fascinating properties imprinted by the
small dimension is used in the transparent electrodes [4], solar cells [5], transducers [6], optoelectronic
devices [7], UV sensors [8], and gas sensors [9,10]. Regarding gas sensing application, nanostructured
ZnO materials have been reported for detection of both oxidative and reducing gases such as various
VOCs [11–15], LPG [2], acetylene [16], NO2 [17], ammonia [18], and H2 [19] with good performance.
ZnO-based sensors are often preferred to other metal oxide-based conductive sensors to detect gaseous
species due to their particular features such as high sensitivity, ease of fabrication, and very low
cost [20].

ZnO has been largely investigated for H2 sensing [21–24]. Sensing properties toward this gas
are particularly remarkable when ZnO is in a nanostructured form [25]. However, doping ZnO with

Chemosensors 2018, 6, 61; doi:10.3390/chemosensors6040061 www.mdpi.com/journal/chemosensors

http://www.mdpi.com/journal/chemosensors
http://www.mdpi.com
https://orcid.org/0000-0001-8426-9389
https://orcid.org/0000-0001-8999-060X
http://www.mdpi.com/2227-9040/6/4/61?type=check_update&version=1
http://dx.doi.org/10.3390/chemosensors6040061
http://www.mdpi.com/journal/chemosensors


Chemosensors 2018, 6, 61 2 of 11

noble metals such as Pd is a somewhat required additional step to obtain the desired high sensitivity
for advanced applications. For example, Wang et al. [26] employed ZnO nanorods coated with Pd to
detect H2 down to 10 ppm with a relative response of 2.6% at 10 ppm and a recovery time of less than
20 s at 25 ◦C.

On the other hand, noble metals are expensive. Therefore, we decided to focus our attention on
developing high performance doped-ZnO sensors for hydrogen by using cheaper additives/modifiers.
In this case, we report the research activity made to investigate the hydrogen sensing properties of
Co-doped ZnO sensor. There are few studies reporting on the addition Co on ZnO and leading to the
formation of Co3O4/ZnO heterojunctions with p-type behavior [27]. Co-doped ZnO nanocomposites
show good sensing properties toward H2 monitoring at very low concentration, which is of utmost
importance for detecting this gas in the human breath [28]. Hydrogen found in the breath of humans
can be an indicator of some diseases like neonatal necrotizing enterocolitis, lactose intolerance, fructose
malabsorption, and diabetic gastroparesis. Accordingly, high performance hydrogen sensors are of
utmost importance and are highly demanding in the biomedical field.

However, one of the biggest drawbacks of metal oxide conductometric hydrogen sensors is
the cross-sensitivity to other gases present in the breath, especially acetone (C3H6O) and ethanol
(C2H5OH). These two volatile organic compounds (VOCs) are present in the breath of humans and
their concentrations varies as a consequence of different factors. For instance, while the concentration
of ethanol in the breath of healthy people is almost negligible, its concentration reach high levels
for many hours after drinking alcoholic beverages in excess [29,30]. In addition, acetone is present
in higher concentrations in the breath under particular circumstances [31]. People with cases of
diabetes that are not well controlled and suffering of ketoacidosis show higher levels of breath acetone
compared to healthy people.

In this study, we synthesized pristine and Co-doped ZnO NPs by a facile and low temperature
sol-gel method and investigated their electrical and sensing characteristics towards the monitoring
of low hydrogen concentration. In particular, we focused our attention on the role of Co dopant in
modifying the sensing characteristics of pristine ZnO for H2 monitoring at low concentration and
selectivity against ethanol.

2. Materials and Methods

2.1. Synthesis of Co-Doped ZnO

In order to synthesize Co-doped ZnO NPs, zinc acetate dihydrate (Zn(CH3COO)2·2H2O), cobalt
acetate tetrahydrate (Co(CH3COO)2·4H2O), isopropanol (CH3C2H5OH), and monoethanolamine
(C2H7NO) were used. All chemicals used in the experiment were of analytical grades. Doped ZnO
NPs were synthesized by the following procedure. First, 0.917 g (0.005 mol) (Zn(CH3COO)2·2H2O)
was dissolved in 10 mL isopropanol. Then 0.060 g (0.001 mol) monoethanolamin was added to the
Zn2+ solution as a stabilizer. Subsequently, 0.249 g (0.001 mol) (Co(CH3COO)2·4H2O) was added to
the above solution and the obtained solution was stirred at 70 ◦C for 1 h to accelerate the hydrolysis
reactions. The final solution was clear in color and homogeneous. After three weeks kept at room
temperature, the solution was changed to a highly viscous gel. Lastly, the obtained gel was calcined at
400 ◦C for 1 h in a muffle furnace. For synthesis of pristine ZnO NPs, the procedure was the same.
However, in this case, the cobalt precursor was not added to the prepared solution.

2.2. Characterization

Phase and crystallinity of synthesized powders were analyzed by X-ray diffraction. XRD data
were collected by a Bruker D8 Advance Diffractometer (Bruker AXS, Karlsruhe, Germany) using the
CuKα1 wavelength of 1.5405 Å. Morphological analysis was carried out by using transmission electron
microscopy (TEM-Philips CM 200, Philips, Eindhoven, Netherlands).
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2.3. Gas Sensing Measurements

Gas sensors were fabricated as follows: first, synthesized nano-powders were mixed with distilled
water and deposited on cleaned Al2O3 sensor substrates by a drop coating method. The size of the
sensor substrate platform was 6 mm × 3 mm and comprised a pair of interdigitated Pt electrodes on
the front side and a resistive heater on its backside. The sensing area where the ZnO or Co-doped ZnO
sensing material had to be deposited is 2 mm× 2 mm. Before sensing tests, the sensor was conditioned
in air for 2 h at 300 ◦C. Hydrogen sensing tests were performed by injecting pulses of the target gas
from certified bottles and measuring the change in resistance. The sensors were tested at different
temperatures under a synthetic dry air stream of 100 sccm as carrier gas. By collecting the resistance
data in the four-point mode, the gas response, S, was defined as S = R0/R (for pristine sensor) or S
= R/R0 (for Co-doped gas sensor) where R0 is the baseline resistance in air and R is the electrical
resistance of the sensor in the presence of hydrogen or other gases tested, respectively. The response
time is defined as the time required for a sensor to reach 90% of its final value after introducing the gas
pulse and the recovery time was defined as the time required for the sensor to reach 90% of its original
baseline signal after returning to air flow.

3. Results

3.1. Morphological and Microstructural Characterization

The TEM micrograph of Co-doped ZnO sensor is shown in Figure 1. As can be seen, it consists of
ZnO NPs with a hexagonal shape and with an approximate size of 25 nm.
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study, it appears that Co3O4 has been formed as a separate phase. However, it cannot be excluded 
that a part of Co replaces Zn in the ZnO lattice. This could occur with little or without change of the 
ZnO wurtzite structure due to the small difference between the ionic radius of the Zn (0.740 Å) and 
Co (0.745 Å). 

Figure 1. TEM micrograph of Co-doped ZnO NPs.

Figure 2 shows the XRD pattern of pristine ZnO and Co-doped ZnO NPs. The XRD pattern of
pristine ZnO shows diffraction peaks related to the formation of ZnO with the hexagonal wurtzite
structure while no other peaks due to the presence of impurities were observed. In the XRD pattern of
Co-doped ZnO NPs, peaks related to both crystalline ZnO and Co3O4 phases can be observed. The
co-dopant can mainly be sorted into two categories: (i) in the crystal lattice substituting the original
atom and (ii) forming other phases besides the original one [25]. From the XRD data reported in this
study, it appears that Co3O4 has been formed as a separate phase. However, it cannot be excluded
that a part of Co replaces Zn in the ZnO lattice. This could occur with little or without change of the
ZnO wurtzite structure due to the small difference between the ionic radius of the Zn (0.740 Å) and Co
(0.745 Å).
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Figure 2. XRD patterns of pristine ZnO and Co-doped ZnO NPs. 
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Figure 2. XRD patterns of pristine ZnO and Co-doped ZnO NPs.

3.2. Sensing Tests

First, the gas sensing properties of pristine ZnO and Co-doped ZnO sensors were compared. It is
well known that the performances of the semiconductor gas sensors are greatly influenced by the
working temperature because gas adsorption, reaction, and desorption are temperature-dependency
phenomena [11]. Preliminary tests (not shown) indicated that the fabricated ZnO and Co-doped ZnO
sensors shows best performances in the temperature range between 150 ◦C to 250 ◦C.

Thus, to compare the sensing performances of these sensors, the operating temperature was set
at 200 ◦C. Figure 3a reports the transient response to 50 ppm of H2 on ZnO sensor. In the presence
of hydrogen, the resistance show a fast decrease. The response is very high (S = 18). However,
one limitation of this ZnO sensor is the cross-sensitivity of other gases present in the breath and
in specifically acetone and ethanol. This is well evident in Figure 3b where the response of the
pristine ZnO sensor to hydrogen is compared with the higher response observed when exposed to the
previously mentioned VOCs.

The sensing behavior of Co-doped ZnO sensor in the same conditions have been evaluated
and reported in Figure 4a,b. Using this comparison, some findings appear to be very clear. First,
a pristine ZnO gas sensor shows n-type semiconducting behavior while the Co-doped gas sensor
shows a clear p-type behavior, which indicates a change of the semiconducting behavior upon
Co-doping [32]. Second, even if the pristine ZnO sensor is more sensitive than the Co-doped ZnO
gas sensor, its selectivity to hydrogen is poorer. Furthermore, the Co-doped ZnO sensor shows a
faster dynamics response compared to a pristine ZnO sensor. The response and recovery time of the
Co-doped ZnO based sensor are 20 s and 150 s, respectively. The recovery time is much shorter than
that observed with the pristine ZnO sensor (>200 s). This suggests that the desorption stage represents
the rate-determining step for the overall process.

Figure 5a,b show dynamic resistance curves of pristine ZnO and Co-doped ZnO NPs, respectively,
registered at 200 ◦C toward a pulse of 10 ppm ethanol. As previously mentioned, the Co-doped
ZnO sensor shows a lower response to ethanol in comparison to the pristine ZnO sensor, which is
advantageous because it means that this gaseous species present low interference for the determination
of breath hydrogen. The response time is faster for the Co-doped ZnO sensor (less than 50 s) when
compared to the pristine ZnO-based sensor (around 200 s). Furthermore, a longer recovery time has
been recorded for the pristine ZnO-based sensor (around 750 s) when compared to the Co-doped one
(less than 200 s).
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A possible reason behind the decrease of response of the Co-doped sensor toward ethanol is
the decrease of oxygen vacancies in ZnO due to Co-doping. In fact, n-type behavior in pristine ZnO
suggests the presence of oxygen vacancies, which can be considered the adsorption sites for effective
adsorption of ethanol. In the Co-doped ZnO gas sensor, the amount of oxygen vacancies significantly
decreases, according to the p-type behavior and leads to the observed decrease of the sensor’s response.

An acid-base change related to the introduction of the Co3O4 phase should be considered in this
case. Acid-base characteristics of the sensing material are well known for addressing the sensing
performances in metal oxide semiconductor gas sensors. In the framework of this hypothesis, the high
sensitivity to ethanol found in pristine ZnO could be related to a large number of electrons involved in
the pathway of total oxidation of ethanol (see Equation (3) below). This is a process favored on basic
sites, which are known to be relatively abundant on the ZnO surface.

C2H5OH(ads) + O−
(ads) → CH3CHO(ads) + H2O + e (1)

CH3CHO(ads) + 5O−
(ads) → 2CO2 + 2H2O + 5e (2)

CH3CHO(ads) + 6O2−
(ads) → 2CO2 + 3H2O + 12e (3)

In the presence of Co, the response to ethanol is lower. This can be attributed to the higher surface
acidity of the Co-doped ZnO, which favors alternative pathways, e.g., through Equation (1), involving
a strongly reduced number of electrons.

3.3. Hydrogen Sensor Performances

In view of the above findings, we decided to investigate the performances of the Co-doped ZnO
gas sensor for hydrogen sensing at a low concentration. When the sensor is in an H2 atmosphere,
hydrogen molecules react with adsorbed oxygen ions on the surface of the gas sensor, according to the
following equation [33].

H2 + O−
(ads) → H2O + e (4)

The released electrons will cause modulation of electrical resistance in the gas sensor and a
signal will appear, which relies on the balance between the adsorption and desorption rate of H2

and surface reactivity with adsorbed oxygen species [1]. When the n-type ZnO sensor is in the air,
oxygen molecules adsorb onto the sensing layer surface and, depending on the temperature, will be
converted to oxygen ions (e.g., O−2 , O− or O2) by extraction of free electrons from the conductance
band of ZnO. Adsorbed oxygens ions will generate a region free of electrons, which is known as the
electron depletion layer, EDL (see Scheme 1a). In hydrogen, these molecules will be chemisorbed on
the surfaces of ZnO NPs. By a subsequent reaction between the hydrogen molecules and the adsorbed
oxygen species, the trapped electrons are released back to the ZnO NPs and H2O vapor is released.
Accordingly, the thickness of EDL will decrease (Scheme 1b) and the resistance of the sensor decreases.

In the case of cobalt doped ZnO gas sensors, the p-type semiconducting behavior was observed.
As shown in Scheme 1c, after exposure to air, oxygen molecules can be adsorbed on the surface of
the sensor and a hole accumulation layer (HAL) will be formed on the surface of the sensor. Upon
exposure to hydrogen vapor, electrons come back to the surface of the sensor, which results in a
decrease of width of HAL and an increase of the sensor’s resistance (Scheme 1d). A lower response
of the Co-doped ZnO sensor relative to the pristine ZnO gas sensor can be attributed to the intrinsic
lower response of the p-type semiconductor metal oxides relative to that of n-type counterparts [34].

Preliminary, it was found that the optimum operating temperature determined by exposure
to 50 ppm H2 at different operating temperatures (100–375 ◦C) is 150 ◦C, which is lower than the
temperature observed in a pristine ZnO sensor. In Figure 6a, one can observe that the response
trend increases with a rising operating temperature. It reaches its maximum at 150 ◦C and then
decreases gradually.
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The exposing steps were repeated in the reverse order to verify the presence of “hysteresis” effects
and the repeatability of the responses. Figure 6b depicted the results obtained, highlighting that little
or no hysteresis effects are retained. The response values obtained for increasing H2 concentrations
are almost the same ones obtained when the H2 concentrations decrease, which suggests that the gas
sensing process is reproducible and the device has a good repeatability.

The calibration curve in linear scale is shown in Figure 6c. The response curve increases rapidly
with the increase of the H2 concentration below 25 ppm. However, the response growth becomes
slower when the H2 concentration is above that value, which indicates that the sensor exhibits excellent
sensing performance for a low concentration of H2. For H2 concentrations higher than 25 ppm, the
current reaches saturation during the gas exposure. The log-log scale (see Figure 6d) allows us to
appreciate that the limit of detection (LOD) for hydrogen of the Co-doped ZnO sensor is effectively
very low at around 1 ppm.

4. Conclusions

In summary, pristine and Co-doped ZnO NPs were synthesized via the sol-gel method for
electrical and gas sensing studies. The synthesized NPs were characterized by XRD and TEM. Electrical
resistance measurements showed that the pristine ZnO sensor displayed a high response to hydrogen
at a low concentration in air but with poor selectivity. Co-doping in ZnO reduced the response to
hydrogen. However, we noted that the selectivity increased. This effect has been attributed to the
changes of some chemical and physical parameters such as the acid-base characteristics, the p-type
behavior, and the decrease of oxygen vacancies occurring in the Co-doped ZnO sensing layer. These
peculiar characteristics were allowed to realize a high performance breath hydrogen sensor based on
the synthesized Co-ZnO nanocomposite, which displays a limit of detection at around 1 ppm and
good selectivity for H2 in human breath.
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