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Abstract: Screen-printed electrode (SPE) modified with carbon black nanoparticles (CB) 

has been tested as a new platform for the stable deposition of caffeic acid (CFA) on the 

electrode surface. The electrochemical performance from varying the amount of CFA/CB 

composite has been tested with respect to NADH determination. The electrocatalytic activity 

of CFA/CB has also been compared with that of SPEs modified by a single component of the 

coating, i.e., either CFA or CB. Finally, glycerol dehydrogenase, a typical NADH-dependent 

enzyme, was deposited on the CFA/CB coating in order to test the applicability of the 

sensor in glycerol determination. 
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1. Introduction 

Many chemical parameters that identify the quality of foodstuffs can be evaluated by biosensors, 

containing a suitable enzyme as the recognition element. A particularly high portion of the enzymes 

used belongs to the family of hydrogenases, which involves nicotinamide adenine dinucleotide (NAD+) 

as the co-factor. For this reason, the development of efficient amperometric systems capable of 

accurately determining NADH generated by the enzymatic reaction constitutes an essential issue for 

the development of biosensors suitable to detect target chemical species. 

Different electrode coatings have been proposed [1–3], with the aim of solving the problems arising 

in the direct electrochemical oxidation of NADH at bare electrodes: (i) the high charge transfer 

overvoltage that shifts the electrochemical process at quite high positive potentials, where the oxidation 

of interfering species may also take place; and (ii) the massive electrode passivation due to products of 

the oxidation reaction. 

In this framework, it is widely accepted that the o-quinone/o-hydroquinone redox couple constitutes 

an effective redox mediator for NADH oxidation, according to the reactions: 

1,2-dihydroxybenzene  1,2-benzoquinone + 2H+ + 2e−  

1,2-benzoquinone + NADH  1,2-dihydroxybenzene + NAD+  

Thanks to the occurrence of this electrocatalytic process, NADH oxidation occurs at a notably lower 

potential value with respect to bare electrode surfaces, i.e., at the potential at which o-hydroquinone is 

oxidized to o-quinone [1–3]. One of the main problems in the realization of efficient amperometric 

sensors lies in the stability of the anchoring of a similar soluble redox mediator on the electrode 

surface. Stable chemical bonds can be obtained by using some o-quinone derivatives, mainly 

consisting of 3,4-dihydroxybenzaldehyde [4], caffeic acid (CFA; see Figure 1) [5,6] or chlorogenic 

acid [7]. They all undergo reversible charge transfer processes, according to the mechanism described in 

Figure 1 for the case of CFA. 

 

Figure 1. Schematic representation of caffeic acid (CFA) and the relevant oxidized,  

o-quinone form. The colored functional groups represent the potential Michael acceptors 

exploitable for anchoring the molecule at the carbon-based electrode. 

Although the mechanisms through which these species are fixed onto carbon-based surfaces are not 

univocally accepted, the literature is concordant in concluding that it is based on a Michael  

addition [4,5,7] performed by carboxyl groups present on the electrode surface, toward the  carbon of 

an - unsaturated carbonyl moiety (see Figure 1). Aiming at increasing the number of carboxylic 

groups at the electrode|solution interface, in most cases, the electrode is electrochemically pre-treated 

by voltammetric scans toward positive potentials [8–10], performed either in acid or basic  

aqueous solutions. 
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Great attention should be paid to the pH of the deposition solution, in order to address the 

functionalization of the electrode surface to the expected result [4,5,7]. In particular, the presence of 

nucleophilic species (e.g., hydroxide ions or deprotonated carboxyl derivatives) in solution may 

compete with the reactive groups at the electrode surface in the nucleophilic attack to the Michael 

acceptor. On the other hand, low pH values partially or completely prevent the reaction, due to the 

protonation of carboxylic groups on the carbon electrode. As an example, in the case of CFA, the 

highest coverage is obtained at pH 4 [5,6], i.e., a value slightly lower than pKa (= 4.62). In this case, 

however, the literature does not agree in defining whether the nucleophilic attack involves o-quinone 

produced during the electrochemical oxidation (blue-colored in Figure 1) [5] or the Michael acceptor 

external to the o-hydroquinone ring (red-colored in Figure 1) [6]. 

Among different carbon-based electrodes, nanostructured surfaces should be preferred as the 

substrate to anchor the redox mediator [11–14]: they attract a great deal of attention in a number of 

applications, electroanalysis included. One of the most notable advantageous characteristics 

acknowledged for similar materials lies in the high number of atoms present in correspondence with 

edge-plane defects. The unsaturated coordination of these atoms renders them particularly efficient in 

the activation of fast charge transfers occurring via inner-sphere mechanisms, i.e., in promoting 

electrocatalytic processes. Among the different carbon-based nanosized materials, carbon black 

nanoparticles (CB) [15–20] show properties very similar to carbon nanotubes, being however 

characterized by a much lower price, which allows envisaging possible large-scale production of  

cost-effective devices. 

In this paper, we report the development of a screen-printed electrode (SPE) where the surface of 

the working electrode is modified by a CFA/CB coating, to obtain the CFA/CB/SPE sensor system.  

The underlying CB layer allows a high number of CFA molecules to be stably deposited, suitable to 

act as redox mediators for NADH oxidation. The performance of the device at varying the deposition 

conditions is tested with respect to the electrochemical determination of such an analyte. In particular, 

CFA was deposited onto an electrochemically-activated carbon surface according to different 

procedures: (i) electrochemical deposition by cycling the potential within the range where CFA is 

reversibly oxidized; and (ii) adsorption of the molecule according to a so-called drop-casting method. 

CFAel/CB/SPE and CFAads/CB/SPE sensor systems were finally obtained, respectively. The 

advantages of the use of CFA/CB/SPEs are demonstrated in comparison with SPEs modified by a 

single component, namely CFA/SPE and CB/SPE. 

The glycerol dehydrogenase enzyme is finally anchored on the CFA/CB/SPE, in order to 

preliminary test the applicability of the device as an amperometric biosensor for the determination of 

glycerol. This chemical species was selected as a typical quality benchmark of grapes [21] and wines [22], 

in view of potential applications of the investigated biosensor system in food quality control. 

2. Experimental Section 

2.1. Instruments and Chemicals 

Electrochemical measurements have been carried out with a handheld PalmSens 

potentiostat/galvanostat (Utrecht, The Netherlands) interfaced with a personal computer. SPEs were 
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acquired from EcoBioServices (Florence, Italy) and consisted of a graphite working electrode ( = 3 mm), 

an Ag pseudo-reference electrode and a graphite auxiliary electrode. 

All reagents were of analytical grade and supplied by Sigma-Aldrich. All solutions used for 

electrochemical tests were prepared with ultrapure water (18 MΩ∙cm resistivity) and contained  

0.1 M KCl supporting electrolyte to stabilize the potential of the reference electrode. 

Commercial CB N220 (19–25 nm diameter, 124 m2·g−1 surface area) was supplied by Cabot 

Corporation (Ravenna, Italy). 

Glycerol dehydrogenase enzyme (GDH, E.C. 1.1.1.6, 112 U· mg−1) from Cellulomonas sp. was 

acquired from Sigma (Milan, Italy) and used without further purification. 

2.2. Preparation and Tests of the Sensor for NADH Detection 

CB/SPEs were prepared by modifying the working electrode of SPEs with different aliquots (from  

2 to 12 L) of 1 mg·mL−1 CB dispersion in CH3CN, obtained after 1 h ultrasound sonication. 

CFAel/SPE and CFAel/CB/SPE were obtained from bare SPE and CB/SPE, respectively, by a  

two-step electrochemical procedure. In the first step, SPE and CB/SPE were activated in 1 M H2SO4 

aqueous solution, by performing ten subsequent voltammetric cycles between +1.7 to −1.0 V, at a  

0.1 V·s−1 potential scan rate [23]. The procedure was stopped at +1.7 V, in order to finally obtain a 

carbon surface at the highest oxidation degree. CFA was deposited in a subsequent step, by dipping the 

modified SPEs in a 1 mM CFA, 0.1 M acetate buffer solution (pH 4.0) and by performing ten 

subsequent potential scans from +0.8 to −0.1 V at 0.02 V·s−1 rate. 

Alternatively, CFA was deposited by letting the activated surface of the CB-modified SPE (see 

above) in contact with a drop of 1 mM CFA, 0.1 M acetate buffer solution (pH 4.0), for 1 h, according 

to the so-called drop-casting method. The electrode surface was then carefully rinsed with abundant 

distilled water, in order to remove weakly adsorbed molecules. In this case, the device is indicated with 

the acronym CFAads/CB/SPE. 

In both cases, the effectiveness of CFA deposition was ascertained by performing cyclic 

voltammetric (CV) experiments in 0.1 M phosphate buffer solution (PB) at pH 7.0. NADH was then 

added to the same solution, in order to test the electrocatalytic performance of the modified electrode. 

The performance of CFAads/CB/SPEs with respect to CFAel/CB/SPEs has been evaluated by 

potentiostatic (E = +0.25 V) amperometric measurements in NADH stirred solutions in the 3–60 M range 

of concentrations. Three electrodes realized under the same conditions were tested, and the whole 

calibration plot was repeated twice on each electrode. The mean slope and the relevant standard deviation 

were calculated on the basis of the six replicates for each kind of modified SPE. The degree of repeatability 

of the sensor (D.Repe) has been calculated from the difference between the slope values obtained with the 

same electrode with respect to the relevant mean value. The value finally reported in Table 1 is the mean 

between the results obtained for three similar electrodes. The degree of reproducibility (D.Repr) has been 

calculated from the relative standard deviation of the slope values obtained for three similar electrodes. 

2.3. Preparation and Tests of the Sensor for Glycerol Detection 

For the detection of glycerol, CFAads/CB/SPE was modified by a two-step procedure: In the first 

step, 1% (v/v) glutaraldehyde solution (2 μL) was spread onto the surface and allowed to dry for 2 h. 
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Afterwards, 1.4 μL of PB (pH 8.0), 2.8 UI of GDH and 1.4 μL of 1% (v/v) neutralized Nafion® 

solution, after carefully mixing, were deposited onto the electrode surface and left to dry overnight. 

The sensor was tested by recording CV curves in 0.1 M PB (pH 8.0), 2 mM NAD+, in the absence 

and in the presence of glycerol at different concentrations, respectively. 

3. Results and Discussion 

The activation of carbon-based surfaces by electrochemical treatment constitutes a procedure 

widely described in the literature [8–10]. Although a high number of different methods have been 

proposed, in all cases, the exact nature of the resulting electrode surface remains almost unclear. 

In analogy with an effective surface activation procedure previously exploited by us for glassy 

carbon surfaces [23], SPE and CB/SPEs obtained by depositing different amounts of CB were 

subjected to ten subsequent voltammetric scans in 1 M H2SO4 solution. As observed in Figure 2, the 

voltammetric path shows, in the forward scan, a well-significant current increment at E > +1.2 V and 

quite a broad reduction peak in the backward scan. 

Due to the similarity of these responses with those obtained at Au electrode surfaces [24], it is 

spontaneous to hypothesize that oxidized functionalities form at the CB electrode|solution interface 

during the forward scan, most probably under the form of carboxyls. They are subsequently reduced in 

the following scan to negative potentials. This assumption is supported by the evidence that the charge 

spent in the cathodic reduction increases at increasing the amount of CB. This signal, in terms of the 

corresponding charge spent, can be exploited to give direct evidence of the increase of the apparent 

electroactive area as a consequence of the deposition of a nanostructured material on the electrode 

surface [20]. 

As observed in the inset of Figure 2, the electroactive area increases almost linearly up to the 

deposition of 6 L of CB, whereas no significant variation is evident for the deposition of higher 

amounts of nanostructured material. The apparent electroactive area is estimated to increase one order 

of magnitude with respect to bare SPE. Similar tests performed on three SPEs modified by CB under 

the same experimental conditions give an indication of the good reproducibility degree of the different 

CB/SPEs (see the inset of Figure 2). 

CFA was deposited on the different CB/SPEs by using either an electrochemical approach or by 

allowing the solution to be in contact with the activated carbon-based surface. The different 

CFA/CB/SPEs realized have been tested in pure electrolyte solution, in order to verify the 

effectiveness of CFA deposition by both deposition methods. In all cases, the voltammetric curve 

recorded shows a well-defined anodic-cathodic peak system, typical of the quinone-hydroquinone 

redox couple (see the blue curve in Figure 3A). As expected [4,7], the relevant peak currents 

progressively decrease during the first potential cycles and at a much lower rate in the following scans. 

The current peak values result in being directly proportional to the potential scan rate within the range 

0.02–0.50 V·s−1, indicating the occurrence of a surface-confined electrochemical process. 

CFA/CB/SPEs were tested with respect to the determination of NADH. As observed in the 

exemplificative voltammograms reported in Figure 3A, the peak due to oxidation of the CFA redox 

mediator increases at increasing concentration of NADH in solution, indicating the active role played 

by this chemical species in the electrocatalytic oxidation of the analyte. Qualitatively similar results 
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were obtained using different CFA/CB/SPEs, independently of the amount of the deposited CB and of 

the procedure followed for CFA deposition. 

A deeper investigation concerning the effect of the amount of CB deposited on the response of the 

sensor system was carried out with CFAel/CB/SPEs. As observed by comparing the responses obtained 

in 1 mM NADH, subtracted by the relevant background signal, the sensitivity of the sensor response 

increases by increasing the volume of CB dispersion deposited on SPEs up to 6 L (see Figure 3B). 

For this reason, SPEs modified with this amount of CB were chosen for further investigations. 

 

Figure 2. Tenth voltammetric scan obtained at the SPE and at different CB/SPEs in 1 M 

H2SO4, 0.1 M KCl solution by varying the amount of CB deposited on the electrode 

surface; 0.05 V/s potential scan rate. The relevant trend of the charge spent in the reduction 

peak vs. the volume of CB dispersion deposited is reported in the inset. The error bar length 

accounts for twice the standard deviation of four replicates for each deposition condition. 

 

Figure 3. (a) Typical CV responses of CFA/CB/SPEs in 0.1 M PB (pH 7.0), 0.1 M KCl in 

the absence (blue line) and in the presence of different NADH concentrations: 0.1 mM (red 

line), 0.3 mM (green line) and 1.0 mM (purple line); 0.02 V·s−1 potential scan rate.  

(b) Trend of 1 mM NADH (ip,NADH), subtracted by the relevant background signal (ip,CFA), 

vs. the volume of CB dispersion deposited on CFAel/CB/SPEs. The error bar length 

accounts for two-times the standard deviation, computed by considering results coming 

from three similar CFAel/CB/SPEs. 
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The effectiveness of CFA/CB coating in promoting the electrocatalytic activity toward NADH 

oxidation was also proven by comparing the responses obtained with those on SPEs modified with  

a single component of the coating, i.e., either CFA or CB. As observed in Figure 4, NADH oxidation is 

significantly anticipated for CFA/SPE and CFA/CB/SPE, with respect to CB/SPE. Concurrently, 

significantly higher current peaks can be obtained when CFA is anchored on an underlying CB coating, 

with respect to CFA/SPEs, in which the redox mediator is directly deposited on bare  

carbon electrodes. 

 

Figure 4. CV responses of 0.5 mM NADH, subtracted by the relevant blank signal, collected 

in 0.1 M PB (pH 7.0), 0.1 M KCl at the different modified SPEs. 

It is, thus, possible to conclude that the use of CFA/CB/SPEs allows the application of particularly 

low potential values for potentiostatic amperometric determination of NADH, namely +0.25 V. On the 

contrary, the application of a potential value as high as +0.50 V is necessary in the case of CB/SPE, in 

order to reach the constant current values. This aspect is of utmost importance in the case of 

amperometric biosensors, because the interference of additional species present in the solution can  

be avoided. 

Repeated tests for NADH determination have been performed with CFA/CB/SPEs, in order to 

evidence possible differences in the sensor performance due to the dissimilar procedure used for CFA 

deposition. In this respect, it has to be evidenced that the electrochemical deposition is the procedure 

generally reported by the literature [5–7,25]. However, by considering that the mechanisms proposed 

for CFA deposition on carbon surfaces are based on Michael addition, the drop-casting method 

represents an alternative deposition approach, which gives the CFAads/CB/SPE sensor system. [26]. In 

principle, only the Michael acceptor external to the o-hydroquinone ring (red-colored in Figure 1) 

should be involved in the covalent bond with the oxidized moieties on the carbon surface. On the 

contrary, electrochemical deposition may also involve direct attack of the phenyl ring (blue-colored in 

Figure 1), once o-quinone is produced from the electrochemical oxidation of CFA. 

The performance of the two sensor systems has been defined by amperometric tests carried out at a 

fixed applied potential of +0.25 V. The relevant parameters defining the effectiveness of the sensing 

systems are reported in Table 1. 
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Table 1. Performance of CFA/carbon black (CB)/screen-printed electrodes (SPEs) toward 

NADH determination calculated from amperometric measurements at a +0.25 V constant 

potential; the relevant standard deviation, calculated by considering three similar SPEs, is 

reported within brackets. 

 CFAel/CB/SPE CFAads/CB/SPE 

ip, CFA (A) * 0.85 (0.26) 0.49 (0.16) 

sensitivity (𝛍𝐀 ∙ 𝛍𝐌𝐍𝐀𝐃𝐇
−𝟏 ) 0.007 (0.003) 0.012 (0.001) 

LOD (M) 3.7 1.6 

D.Repe (%) 95.6 96.6 

D.Repr (%) 56.4 89.7 

* This value is calculated from voltammetric traces collected in pure electrolyte solution at a 0.02 V·s−1 potential scan rate. 

The values of the current peak due to CFA oxidation in PB solution (ip,CFA) indicate that the amount 

of redox mediator fixed on the substrate is higher when using the electrochemical method. On the 

contrary, the sensitivity for NADH detection is surprisingly higher in the case of CFAads/CB/SPE. This 

fact suggests that better sensor performance, in terms of sensitivity, is obtained when the anchoring 

method leaves the catechol functionality unreacted. 

It is also worth evidencing that the higher sensitivity observed in the case of CFAads/CB/SPE is 

associated with lower noise in the signal registered, i.e., the values of the standard deviation of both the 

slope and intercept of the calibration line are lower in this case. This fact positively affects the  

value of the relevant limit of detection (LOD), calculated as the quantity corresponding to a signal 

obtained by the intercept value plus three-times the relevant standard deviation. Finally, it should be 

noticed that this simple deposition method combines the high repeatability degree, observed for any kind 

of CFA/CB deposit, with quite a high reproducibility degree, which constitutes a drawback in the  

case of CFAel/CB/SPE systems. This last aspect constitutes quite a critical point in the case of  

disposable devices. 

Thanks to these encouraging results, the CFAads/CB/SPE system was tested as a platform for the 

deposition of GDH, in order to envisage a sensor for the detection of glycerol, namely 

GDH/CFAads/CB/SPE. The stable anchoring of the enzyme at the electrode-solution interface was 

achieved by exploiting one of the most diffused approaches, namely cross-linking with glutaraldehyde. 

Due to the high activity of this enzyme in slightly alkaline media [27], the measurements were carried 

out in PB at pH = 8.0. 

As expected, the current peak due to CFA oxidation shifts to less positive potentials with respect to 

that recorded in voltammetric tests at pH 7.0. This implies that constant current values for NADH 

oxidation in amperometric tests can be reached at potential values as low as +0.20 V. As observed in 

Figure 5, the addition of glycerol in solution leads to a current increment in the correspondence of 

CFA oxidation. In these explorative tests, an increase of the voltammetric peak current at increasing 

concentration is verified. This behavior evidences that the GDH/CFAads/CB/SPE sensor system can be 

reasonably thought to constitute an efficient system for the quantification of such an analyte. 
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Figure 5. CV responses of glycerol dehydrogenase enzyme (GDH)/CFAads/CB/SPEs in  

0.1 M PB (pH 8.0), 0.1 KCl, 2 mM NAD+ in the absence and in the presence of glycerol at 

different concentrations; 0.005 V·s−1 potential scan rate; the inset reports the plot of the 

current values registered at +0.20 V with respect to the relevant glycerol concentration. 

4. Conclusions 

A new disposable sensor, consisting of a CFA/CB-modified SPE, has been developed and finalized 

to the determination of NADH, a species of outstanding importance in the framework of enzymatic 

biosensing. The presence of CFA induces effective electrocatalytic activity with respect to the 

oxidation of this species, finally resulting in a significant anticipation of the electrochemical response. 

At the same time, the use of a carbon nanostructured surface allows a high number of CFA molecules 

to be stably anchored on the electrode, which strongly enhances the sensor sensitivity in comparison 

with similar systems that only contain CFA molecules. 

Further modification of CFA/CB/SPE with glycerol dehydrogenase enzyme leads to a sensor 

system for glycerol detection. The first tests in this direction encourage deepening the potentialities of 

this biosensor in view of the potential applications in food quality control. 
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