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Abstract: The bismuth sulfide nanostructure has become a promising gas sensing material thanks to
its exceptional intrinsic properties. However, pristine Bi2S3 as a room-temperature sensing material
cannot achieve the highly sensitive detection of ppb-level NO2 gas. Herein, 1D nanorods with self-
assembled hierarchical Bi2S3 nanostructures were obtained via a simple hydrothermal process. The
as-prepared hierarchical Bi2S3 nanostructures exhibited outstanding NO2 sensing behaviors, such as a
high response value (Rg/Ra = 5.8) and a short response/recovery time (τ90 = 28/116 s) upon exposure
to 1 ppm NO2. The limit of detection of hierarchical Bi2S3 was down to 50 ppb. Meanwhile, the sensor
exhibited excellent selectivity and humidity tolerance. The improved NO2 sensing properties were
associated with the self-assembled hierarchical nanostructures, which provided a rich sensing active
surface and accelerated the diffusion and adsorption/desorption processes between NO2 molecules
and Bi2S3 materials. Additionally, the sensing response of hierarchical Bi2S3 nanostructures is much
higher at 100% N2 atmosphere, which is different from the chemisorption oxygen model.

Keywords: hierarchical Bi2S3; NO2 detection; high sensitivity; room temperature

1. Introduction

Nitrogen dioxide (NO2), as a typically hazardous gas released from the burning of
fossil fuels, can trigger serious environmental and health problems [1,2]. As reported,
continuous exposure to trace NO2 gas may cause respiratory diseases such as chronic
bronchitis, asthma, and emphysema [3–9]. The U.S. Environmental Protection Agency sets
53 ppb NO2 as the ambient exposure concentration standard. Meanwhile, ppb-level NO2
gas detection can contribute to auxiliary diagnoses of humans’ physical health, such as lung
disease and gastrointestinal disorder symptoms [10–12]. Chemiresistive gas sensors based
on metal oxides have shown superb NO2 sensing properties, such as high sensitivity and
a short response time [13]. However, such NO2 sensors generally need a high operating
temperature to obtain high sensitivity, fast response/recovery speed, and a low limit of
detection (LOD). The high working temperature brings about extra power consumption
and triggers safety problems, which seriously restrict their potential application in medical
treatment and environmental monitoring [14–16]. With the rapid development of the
emerging 5G network and the Internet of Things, it is very important to research new
room-temperature (RT) sensing materials for highly sensitive trace NO2 detection.

The layer metal chalcogenides as sensing nanomaterials were extensively researched
in the gas sensor field for recognizing low-concentration NO2 molecules at RT due to
their unique physicochemical properties. Among them, Bi2S3 nanostructured materials
have a tunable bandgap of 1.3–1.7 eV [17–20] and high carrier mobility of about 103 cm2

V−1 s−1 [21,22], which can facilitate the electron transfer process between Bi2S3-based
sensing materials and target gas molecules at RT. Bi2S3-based gas sensors have been used
for various gas detections, such as H2 [23], NH3 [24], H2S [25], etc. In recent years, Bi2S3
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nanostructures as RT NO2 sensing materials have gained widespread attention due to their
excellent affinity for NO2 molecules [26]. For example, Liu et al. reported that synthesized
Bi2S3 nanobelts showed superior RT NO2 sensing performance, such as a short response
time and superb selectivity [21]. Yang et al. reported that the Au/Bi2S3 heterojunction
nanosheets exhibited rapid sensing response and outstanding selectivity toward NO2 gas at
RT, which was associated with the increasing active sites and accelerated electron transfer
arising from sulfur vacancies [27]. Zhang et al. constructed a CuS/Bi2S3 nanosheet sensor,
which exhibited excellent NO2 sensing response at RT due to a mass of sensing active sites
and quantum size effect [28]. Unfortunately, Bi2S3-based gas sensors display some poor
RT NO2 sensing properties, such as a long recovery time and a high LOD, which severely
impede their spread and applications [21,29].

As we know, the morphology and structure characteristics of gas sensing materials
play a key role in improving sensing behaviors because the sensing properties depend
on the diffusion and adsorption/desorption processes between the sensing materials and
the target gas. Low-dimension nanostructures (nanobelts, nanorods, and nanosheets) eas-
ily stack and aggregate together, which would reduce the active surface to adsorb gas
molecules and obstruct gas diffusion and adsorption/desorption processes, weakening
the sensing materials intrinsic sensing properties. Low-dimensional nanostructures can
effectively avoid restacking together and obviously increase active surface via the con-
structed hierarchical nanostructures method, which can provide rich sensing active sites
and promote detection of gas diffusion and adsorption/desorption on the surface of nano-
materials. For example, Liu et al. prepared hierarchical SnS2 nanoflowers, which showed
excellent low NO2 LOD due to the mass of the available surface-active sites [30]. Wang
et al. synthesized the nanoplate-assembled SnSe2 nanoflowers, which exhibited a highly
sensitive response to ppb-level NO2 at RT [31]. Zhang et al. reported that hierarchical
MoS2 nanospheres improved the sensing behaviors toward NO2 gas due to the open 3D
nanostructure and abundant reaction active sites [32]. The hierarchical nanostructured
Bi2S3 (flower-like, urchin-like, sheaf-like, etc.) have been successfully prepared through
various means in order to elevate their functional properties [24,33–36]. For example, Fu
prepared a 3D Bi2S3 nanowire network, which showed excellent sensing properties for
NH3 at RT due to its large surface area [24]. Therefore, constructed hierarchical Bi2S3
nanomaterials are an effective approach to enhance their NO2-sensitive properties, which
may provide a new route for optimizing nanostructures to enhance the sensing behaviors
of low-dimensional nanomaterials.

Herein, 1D nanorods with self-assembled Bi2S3 hierarchical nanostructures were
prepared using a facile hydrothermal procedure. As-prepared Bi2S3 nanomaterials showed
hierarchical morphology, which was conducive to a mass of NO2 molecules rapidly diffused
inward and adsorbed on the surface of the hierarchical Bi2S3 nanostructure materials to
enhance their gas sensing performance. The NO2 sensors based on 1D nanorods and
self-assembled Bi2S3 sensing materials showed high sensitivity, rapid response/recovery
speed, and a low LOD for NO2 at RT. These findings demonstrated that the constructed
hierarchical Bi2S3 nanostructures serve as promising candidates for hypersensitive NO2
detection devices.

2. Materials and Methods
2.1. Synthesis of Hierarchical Bi2S3 Nanomaterials

Hierarchical Bi2S3 nanostructures assembled from 1D nanorods were obtained via
facile hydrothermal means inspired by the previous studies [37,38]. Typically, 303 mg of
Bi(NO3)3·5H2O powder was dispersed in 30 mL of deionized water with vigorous mixing
for 30 min, forming a milky suspension. Then, 476 mg of CH4N2S powder was added to
the above suspension, followed by continuous mixing for 60 min to form a yellow reaction
solution. The above mixture was sealed in a 50 mL hydrothermal reactor. Subsequently,
the above solution was heated to 140 ◦C and kept for 12 h. After naturally cooling down to
ambient temperature, the black powder was collected via centrifugation and washed with
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ethanol and deionized water 3 times. Finally, the obtained product was dried at 60 ◦C for
12 h.

To study the formation mechanism of the 1D nanorods self-assembled in Bi2S3 hierar-
chical structures, a series of samples were prepared by adjusting the hydrothermal reaction
time from 0 h to 24 h. The corresponding samples were named BS-X, where X stands for
the hydrothermal reaction time in an hour.

2.2. Material Characterizations

The crystal structure information of the as-prepared materials was acquired using a
Bruker D8 Advance X-ray diffractometer (Bruker Technology Co., LTD, Saarbrucken, Ger-
many). The scanning electron microscopy images of the as-prepared powder were acquired
with a Zeiss Sigma 300 (Carl Zeiss AG, Oberkochen, Germany). The high-resolution trans-
mission electron microscopy was carried out on a FEI Talos F200S (FEI Company, Hillsboro,
OR, USA). The information on the surface chemical states of the obtained product was
studied via X-ray photoelectron spectroscopy (Thermo Scientific K-Alpha spectrometer,
Thermo Fisher Scientific, Waltham, MA, USA). The Brunauer–Emmett–Teller (BET)-specific
surface area was measured with a Micromeritics ASAP 2460 apparatus (Micromeritics
Instruments Corporation, Norcross, GA, USA).

2.3. Gas Sensing Measurements

First, the mixture containing the as-prepared Bi2S3 powder (10 mg) and ethanol (1 mL)
was prepared. Then, the 20 µL above mixture was coated on an Al2O3 substrate with Ag-Pd
interdigitated electrodes to form a sensing film. Finally, the thin-film gas sensor was dried
in a vacuum chamber at 60 ◦C for 3 h. The detailed parameters of the sensing device are
shown in Figure S1.

Gas sensing properties were obtained using a homemade gas sensor test system,
as in our previous work [39]. The dynamic gas sensor test system was employed to
investigate the sensing mechanism (Figure S2). As-prepared sensors based on different
sensing materials were aged for 24 h under a 5 V voltage at RT before the sensing test. The
relative humidity (RH) of the testing chamber was controlled with the humidity generator.
The real-time resistance information of the sensors was recorded using the electrochemical
workstation. The known concentration of detection gas rapidly flowed through the testing
chamber. The sensing response value (S) was calculated using the equation: S = Ra/Rg
(when Ra > Rg) and Rg/Ra (when Ra < Rg), where Rg and Ra were the RT resistance values
recorded in detection gas and clean air, respectively. Herein, the response and recovery
times (τ90) were defined as the time to reach 90% of the total resistance variation during
gas-in and gas-out, respectively.

3. Results
3.1. Morphology and Structure

The hierarchical Bi2S3 nanostructures are obtained through a one-step hydrother-
mal process, and their structures are highly dependent on synthesized time (as shown in
Figure 1a). The as-prepared hydrolysis product shows 1D rod-like structures, as shown in
the SEM image (Figure 1b). According to the calculated method of standard deviation by
measuring 20 rod-like structures, the diameter of rod-like structures is about 1.2 µm. Subse-
quently, many nanowire-assembled microsphere structures appear after a hydrothermal
reaction for 1 h (Figure 1c). With increasing hydrothermal reaction for 12 h, the as-prepared
sample shows 1D nanorods of self-assembled hierarchical Bi2S3 structures with a diameter
of about 4.0 µm (Figure 1d). The length of self-assembled nanorods is approximately
2.0 µm, with a diameter of about 150 nm. The TEM and HRTEM images further show
the hierarchical nanostructures of the synthesized Bi2S3 sample (Figure 1e,f). These hier-
archical Bi2S3 nanostructures can efficaciously prevent the 1D nanorods from restacking
together, which may dramatically add exposure sensing sites and facilitate the diffusion
and adsorption/desorption processes of gas molecules. The 1D nanorods assembled into
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hierarchical nanostructures would show superior sensing behaviors than those of only 1D
nanorods [40,41]. The EDS mapping confirms the uniform distribution of Bi and S elemen-
tals along the full hierarchical Bi2S3 (Figure S3). The EDS spectrum of the as-prepared Bi2S3
sample further demonstrates the sample consists of Bi and S without other elementals, and
the atomic ratio of Bi to S of the sample almost meets the stoichiometry ratio.
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Figure 1. (a) Schematic illustration of the formation process of hierarchical Bi2S3 nanomaterials. SEM
images of the hydrolysis product (b), the as-prepared sample with a 1 h hydrothermal reaction time
(c), and the sample with a 12 h reaction (d); TEM (e) and (f) HRTEM images; and the EDS spectrum
of the BS-12h sample (g).

In order to obtain the formation mechanism of the hierarchical Bi2S3 nanostructures,
serious samples with different reaction times were prepared and analyzed, combined
with XRD patterns and SEM images. Firstly, Bi(NO3)3·5H2O powder was dispersed in
deionized water and generated hydrolysis, which resulted in the formation of a milky
solution. The obtained white hydrolysate shows 1D nanorod structures (Figure 1b). As
shown in Figure 2a, the appearing XRD spectrum peaks of the hydrolysis product conform
to the bismuth oxide hydroxide nitrate hydrate (JCPDF no. 70-1226). Subsequently, with
CH4N2S added to the homogeneous solution, the color of the above solution became yellow
due to [Bi(CH4N2S)n]3+ chelates from the strong reaction between Bi3+ and CH4N2S [34,42].
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Secondly, the CH4N2S of the reaction mixture could decompose to generate H2S under
140 ◦C, which would react with the Bi3+ to form Bi2S3 nanocrystals. At the early stage
of the hydrothermal reaction for 1 h, the Bi2S3 nanostructures were confirmed with the
XRD pattern. With increasing the reaction time from 2 h to 8 h, the microspheres gradually
transfer to 1D nanorods assembled into hierarchical nanostructures (Figure S4a–d) [43].
The microsphere structures of the BS-12h sample almost disappear, and the assembled 1D
nanorods of hierarchical nanostructures become sturdy and short, with the reaction process
lasting 24 h (Figure S4e–f). The diffraction peaks of as-prepared Bi2S3 samples at 2θ = 15.8◦,
17.6◦, 22.4◦, 24.9◦, 28.6◦, 31.8◦, 39.0◦, 46.5◦, and 52.6◦ match well with (020), (120), (220),
(130), (211), (221), (041), (431), and (351) planes of orthorhombic Bi2S3 (JCPDF no. 17-0320).
The intensity of diffraction peaks in the prepared sample shows inconspicuous variation
after hydrothermal reaction time over 4 h. The sharp diffraction peaks without any other
impurity phase confirm the high purity of the prepared Bi2S3.
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The information on the surface chemical states of the as-prepared hierarchical Bi2S3
sample was obtained via XPS. The XPS survey spectrum of the BS-12h sample is shown
in Figure 2b. The highly pure Bi2S3 is further confirmed. The high-resolution XPS spectra
of the Bi 4f and the S 2p are shown in Figure 2c. The Bi 4f core level spectrum of the
hierarchical Bi2S3 shows the Bi 4f7/2 and Bi 4f5/2 strong peaks at 158.6 and 163.9 eV,
respectively [44,45]. The peaks located at 161.3 and 162.5 eV can be assigned to S 2p3/2
and S 2p1/2, respectively, confirming the existence of S2− [44,45]. All the above results
demonstrate that the hierarchical Bi2S3 was prepared successfully.

3.2. Characterization of Gas Sensing Performance

In order to demonstrate the internal linkage between morphologies and structures
with sensing characteristics, the RT sensing properties of the as-prepared BS-8h, BS-12h,
and BS-24h samples were measured using a dynamic gas sensor analysis system. The RT
dynamic sensing response curves of the above sensors (BS-8h, BS-12h, and BS-24h) for
low concentration NO2 ranging from 0.1 to 1.0 ppm are shown in Figure 3a. All sensors
show typical n-type semiconductor sensing behaviors, and the sensing response resistance
gradually increases with increasing exposure to NO2 concentration. Figure 3b displays the
linear relationship of all prepared sensors between sensitivity and NO2 concentration. The
BS-12h sensor shows high sensitivity and a good linear relationship to trace NO2 gas at RT.
The RT response/recovery curves of the BS-8h, BS-12h, and BS-24h sensors upon exposure
to 1 ppm NO2 are shown in Figure S5. The sensors based on the hierarchical Bi2S3 display
superb response/recovery properties. The response and recovery time of the sensor based
on the BS-12h sample toward 1 ppm NO2 were 28 and 116 s, respectively. These results
show that the 1D nanorod self-assembled Bi2S3 structures have superior RT NO2 sensing
responses, which could be ascribed to the special hierarchical nanostructures. According to
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the test results, the BS-12h sample was chosen as a promising sensing material for sensors
after deeply appraising its NO2 sensing properties.
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The RT dynamic response curve of the BS-12h sensor with varied NO2 concentrations
is shown in Figure 4a. The recorded real-time response resistance value exhibits an in-
creasing trend when the concentration of NO2 increases from 50 ppb to 10 ppm. The main
reason may be associated with more NO2 molecules trapped on the surface of hierarchical
nanomaterials and obtaining more electrons from the surface of the Bi2S3 nanostructure.
Meanwhile, the BS-12h sensor displays fast response speed and full-recovery sensing prop-
erties, which could be ascribed to the hierarchical nanostructures of the Bi2S3 materials.
These results confirm the BS-12h sensor can effectively realize low-concentration NO2 de-
tection from 50 ppb to 10 ppm at RT. The sensor based on hierarchical Bi2S3 nanostructures
displays two sectional linear relations between sensitivity and NO2 concentration from 0.05
to 2 ppm and 2 to 10 ppm (Figure 4b). These phenomena were associated with decreasing
carrier mobility due to the scattering effects of adsorbed gas molecules on the surface of
sensing materials [46,47].

The humidity tolerance ability of the BS-12h sensor was investigated considering
the practical application of the gas sensor. The response resistance curves of the Bi2S3-
based sensors to 1 ppm NO2 under different relative humidity levels from 15% to 85%
are shown in Figure 4c. The sensor based on hierarchical Bi2S3 nanostructures displays
excellent response/recovery properties under different relative humidity conditions. The
RT resistance value of the BS-12h sensor sustainably declines as the relative humidity
gradually increases (Figure 4d), which may be attributed to the increased electron density of
Bi2S3 sensing materials. As ambient relative humidity increases, abundant H2O molecules
adsorbed on the surface of the Bi2S3 nanostructures act as electron donors [48–50]. The
electrons will transfer from H2O molecules to the surface of Bi2S3 nanostructures, which
leads to increased conductivity in the Bi2S3 sensor. The sensitivity of the BS-12h sensor
exhibits a downward trend from 5.8 to 4.1 as ambient humidity increases from 15% RH
to 85% RH. The calculated sensitivity deviation of the BS-12h sensor is less than 30%,
which could be ascribed to the surface-adsorbed H2O molecules occupying NO2 sensing
sites, which will decrease the adsorbed amount of NO2 gas molecules [31]. The relatively
small attenuation of the sensing response under a high concentration of H2O molecules
in the environment proves that the hierarchical Bi2S3 nanostructures have good anti-
humidity performance, which could be associated with the improved adsorption of NO2
molecules with the incorporation of H2O molecules in Bi2S3 [26]. Combined RT resistance
variation with sensitivity deviation, the hierarchical Bi2S3 sensor could be used to obtain
NO2 concentration information under different humidity atmospheres using the humidity
compensation method.
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The selectivity of the sensor based on the BS-12h sample was investigated to further
recognize the specific interaction between hierarchical Bi2S3 nanostructures and NO2
molecules. Figure 5a shows the sensing response of several kinds of interfered gases,
including the main hazardous gases (H2S, CO, SO2, and NH3) and green energy gas (H2)
existing in the atmosphere. The sensitivity of the BS-12h sensor at RT to 100 ppm H2S,
CO, SO2, NH3, and H2 gas is 1.64, 1.07, 1.02, 1.07, and 1.07, respectively. Compared with
the sensitivity of 5.8 to 1 ppm NO2, these results confirm the optimal RT NO2 detection
performance of Bi2S3 sensing materials. The intrinsic mechanism of the selectivity of
pristine Bi2S3 to NO2 has been investigated using first-principle calculations [26]. The
calculated adsorption energy between Bi2S3 nanomaterials and NO2 molecules is much
larger than that of the other interfered gases, which results in the excellent detection ability
of NO2 gas. Meanwhile, the newly formed O-S chemical bonds between NO2 molecules
and Bi2S3 further enhance the selectivity.

Repeatability and long-term stability are also key properties of gas sensors. The five
consecutive cyclic response/recovery curves of the BS-12h sensor are shown in Figure 5b.
Obviously, the fluctuation of the sensing response resistance of the BS-12h sensor is negligi-
ble, indicating the optimal NO2 sensing repeatability of the hierarchical Bi2S3 nanomaterials.
The long-term stability of the sensor based on the BS-12h sample was also acquired by mea-
suring the sensing behaviors toward 1 ppm NO2 at RT after aging for 60 days (Figure 5c).
The sensing response values are in the range of (5.6 ± 0.3) during 60 days of aging, which
shows the hierarchical Bi2S3 sensors can acquire stable NO2 concentration data. The insert
of Figure 5c shows the dynamic response data of the sensor based on the BS-12h sample to
1 ppm NO2 at RT after aging for 30 and 60 days. The BS-12h sensor, after different aging
times, displays fast response speed and full-recovery sensing properties at RT. In compari-
son to the dynamic resistance curve of the BS-12h sensor after aging for 60 days (Figure S6),
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the response/recovery time and RT resistance value display a negligible deviation. These
results demonstrate its superior stability.
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The NO2 sensing properties of typical metal sulfide-based gas sensors in the literature
and our prepared 1D nanorods with self-assembled Bi2S3 hierarchical structures are sum-
marized in Table 1. The Bi2S3 nanostructures display obviously competitive NO2 sensing
properties, such as high sensitivity, fast response, recovery speed, and low LOD at RT. Com-
bined with the simple prepared means, the synthesized hierarchical Bi2S3 nanostructures
as NO2 sensing materials are suitable for practical production.

Table 1. Comparison of NO2 sensing behaviors of reported metal sulfide nanomaterials and our
prepared hierarchical Bi2S3 nanostructures.

Materials NO2 Conc.
(ppm) Response τres/τrec

(s/s)
LOD
(ppb) Reference

WS2 nanosheets 10 1.4 45/60 2000 [51]
WSe2 nanosheets 1 1.3 66/1020 100 [52]
SnS2 nanograins 10 7.0 272/3800 1000 [53]
SnSe2 nanosheets 1 1.6 142/935 100 [54]
MoS2 nanograins 500 3.5 ~180/~480 25,000 [55]
MoSe2 nanosheets 5 1.4 450/600 5000 [56]
NbS2 nanosheets 5 1.2 ~3000/~9000 241 [57]
Bi2S3 nanobelts 1 6.9 72/400 500 [21]

CuS/Bi2S3 nanosheets 10 3.4 18/388 500 [27]
Au/Bi2S3 nanosheets 5 5.6 18/338 250 [28]

Bi2S3 hierarchical nanostructures 1 5.8 28/116 50 This study

3.3. Gas Sensing Mechanism

The sensing mechanism of metal sulfide nanomaterials relies on the electron-migration
case between the surface of nanostructures and adsorbed target gas molecules [58–60]. The
Bi2S3 nanomaterials as n-type semiconductors exhibit increased resistance during the
electrophilic NO2 sensing process. In order to confirm the role of O2 molecules during
the NO2 sensing process of Bi2S3 nanostructures, a dynamic gas dilution system was
adopted to control the O2 concentration during the NO2 sensing test process. The dynamic
NO2 sensing curve with different O2 concentrations and N2 as a balance gas is shown in
Figure 6. The BS-12h sensor based on hierarchical Bi2S3 nanostructures shows an optimum
dynamic response/recovery process to 1 ppm NO2 in different O2 concentrations. The
sensitivity of the BS-12h sensor displays a decline trend, which could be associated with
more O2 molecules trapped on the surface of Bi2S3 nanostructures with the increasing O2
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concentration [30]. The RT resistances of the prepared Bi2S3 nanostructures under different
O2 concentrations (N2 as a balance gas) are shown in Figure S7. The resistance value of
Bi2S3 nanostructures in a 100% N2 atmosphere is the smallest and exhibits a gradually
increasing trend with increasing O2 concentration. The phenomenon confirms that O2
molecules can be trapped on the surface of Bi2S3 nanostructures and capture electrons
from their conduction band to form O2

−. Upon exposure to NO2, these NO2 molecules
competitively adsorb on the sensing active sites and trap the electron to form NO2

−. The
little fluctuation in the sensing response of the Bi2S3 nanostructures can be associated
with the much bigger adsorption energy of NO2 molecules than that of O2 molecules [26].
The result confirms that ambient O2 molecules are not directly involved in NO2 sensitive
processes in Bi2S3 nanomaterials. The electron transfer process between the NO2 molecules
and Bi2S3 nanostructures could be depicted using the following equation:

NO2 (gas) + e− → NO2
− (ads) (1)
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Figure 6. Dynamic RT response/recovery curve of the hierarchical Bi2S3 sensor based on the BS-12h
sample to 1 ppm NO2 in 100% N2, 100% O2, and different O2 concentration with N2 as a balance gas.

The schematic diagram of the NO2 sensing mechanism of hierarchical Bi2S3 nanos-
tructures is shown in Figure 7. The NO2 molecules adsorb on the surface of the Bi2S3
nanostructure and trap electrons, which leads to decreased electron density in Bi2S3 and the
formation of an electron depletion layer. The formed electron depletion layer on the surface
of the sensing materials will cause the resistance of the Bi2S3 nanomaterials to increase.
When the Bi2S3 nanostructure is re-exposed to air, NO2 molecules gradually finish the
desorption process and release the electron to the surface of Bi2S3, which results in the
resistance value of the sensor recovering up to its baseline resistance.
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The enhanced RT NO2 sensing properties of as-prepared hierarchical Bi2S3 nanostruc-
tures assembled from 1D nanorods can be illustrated by the following factors. Firstly, the
1D nanorods self-assembled Bi2S3 nanostructure can adequately prevent the 1D nanorods
from restacking together, which will markedly increase the exposure-sensing active surface
of Bi2S3 materials for NO2 adsorption. The N2 adsorption/desorption cycles of as-prepared
hierarchical Bi2S3 nanostructures (BS-8h, BS-12h, and BS-24h samples) were used to calcu-
late the BET surface areas (Figure S8). The specific surface area of the above three samples is
3.6, 4.2, and 4.0 m2 g−1, respectively. The BS-12h sample shows a much larger active surface
than that of other samples. According to the process of growth of the hierarchical Bi2S3
nanostructures, the BS-12h sample displays more 1D nanorod-assembled Bi2S3 hierarchical
nanostructures than the BS-8h sample (Figure S4), which leads to much larger specific
surface areas than that of the BS-8h sample. With increasing the reaction time for 24 h, the
nanorods of assembled hierarchical Bi2S3 structures become short and thick due to their
continuous growth, which decreases the exposed active surface of the as-prepared BS-24h
sample. The BS-12h sensor shows superior RT NO2 sensing properties than that of the other
sample, in accordance with the specific surface area test value. The large specific surface
areas of the BS-12h sensor will provide a mound of NO2 sensing active sites, which enhance
the NO2 sensing response due to massive NO2 molecules adsorbing on the surface of hier-
archical Bi2S3 nanostructures and accelerating the electron transfer from the surface of Bi2S3
materials to NO2 molecules. In addition, the 1D nanorod-assembled Bi2S3 as NO2 sensing
materials exhibit fast response and recovery speed and full-recovery properties, which
could be associated with a special hierarchical nanostructure and intrinsic physicochemical
characteristics. As the mechanism diagram shows in Figure 7, these adjacent 1D nanorods
form a mass of open voids, which, as inner flow passages, will dramatically accelerate the
diffusion and adsorption/desorption processes between NO2 molecules and hierarchical
Bi2S3 nanostructures. When NO2 molecules adsorb on the 1D nanorods assembled in Bi2S3
hierarchically, the NO2 molecules rapidly diffuse inward through the inner spread path. On
the contrary, upon re-exposure to air, the adsorbed NO2 molecules rapidly and fully desorb
from the surface of hierarchical Bi2S3 nanostructures and diffuse into the air. Therefore,
the sensor based on the 1D nanorods assembled in Bi2S3 hierarchical structures shows
short response/recovery times and full recovery performance. Additionally, the Bi2S3
materials have high carrier mobility and a narrow bandgap [17–22]. These superb physical
properties endow Bi2S3 with fast electron transfer speed, which will further shorten the
response/recovery time. Above all, the special hierarchical nanostructures and unique
intrinsic properties of Bi2S3 are advantageous in obtaining high sensitivity and a short
response/recovery time at RT.

4. Conclusions

In conclusion, 1D nanorods with a self-assembled Bi2S3 hierarchical nanostructure
were successfully prepared via a simple hydrothermal process and showed improved RT
NO2 sensing properties. The hierarchical Bi2S3-based gas sensor showed a high sensitivity
(Rg/Ra = 5.8 at 1 ppm), a low LOD (50 ppb), optimum selectivity, and anti-humidity. The
outstanding RT sensing properties were associated with the special hierarchical nanos-
tructures and unique intrinsic properties of Bi2S3 materials, which accelerate diffusion,
adsorption/desorption, and electron transfer processes between NO2 molecules and hier-
archical Bi2S3 nanostructures. Additionally, hierarchical Bi2S3 exhibited almost the same
sensing response in the absence of O2 gas. The phenomenon confirms that the sensing
mechanism of Bi2S3 is different from the chemisorption oxygen model. This study focuses
on the fundamental sensing mechanism of the hierarchical Bi2S3 and provides a kind of
novel nanostructure material for low-concentration NO2 detection at RT.
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