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Abstract: In recent years, the development of highly sensitive sensors has become a popular research
topic. Some functional nanomaterials occupy an important position in the sensing field by virtue of
their unique structures and catalytic properties, but there are still problems such as low sensitivity
and poor specificity. Single-atom nanomaterials (SANs) show significant advantages in amplifying
sensing signals and improving sensor interference resistance due to their high atomic utilization,
structural simplicity, and homogeneity. They are expected to achieve high sensitivity and high
specificity monitoring by modulating the active sites. In this review, the recent progress on SANs
for electrochemical sensing applications was summarized. We first briefly summarize the features
and advantages of single-atom catalysts. Then recent advances in the regulation of reaction sites in
noble and non-noble metal-based SANs, including the introduction of defects in the carrier, other
metal atoms, and ligand atoms, were highlighted. After that, the SANs for the construction of
electrochemical, electrochemiluminescent (ECL), and photoelectrochemical (PEC) sensors and their
applications in biochemical and environmental analysis were demonstrated. Finally, the future
research aspect of SANs-based electrochemical sensing and the challenges of the SANs design and
structure-properties revelation were illustrated, giving guidance on sensitive and accurate biosensing
toward clinic diagnostic and environmental analysis.
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1. Introduction

Electrochemical analysis is a technique that involves the measurement of electrical
signals from chemical reactions occurring at the electrode interface [1]. Because of the
obvious advantages of high sensitivity, fast response time, simple operation, and minia-
turization, electrochemical sensors have become an important analytical tool in areas such
as environmental and biological samples [2]. In recent years, as researchers have been
studying the physicochemical properties of nanomaterials, it has been possible to achieve
precise modulation of their structure and size to a large extent, which has led to many
critical breakthroughs in the utilization of nanomaterials as sensing interfaces for signal am-
plification and interfacial biomolecule recognition [3]. However, the extensive application
of electrochemical sensors is still limited by their low sensitivity for the detection of trace
substances, and their specificity in complex biological systems is yet to be improved. Since
the chemical and physical features of nanomaterials are highly correlative to their intrinsic
properties such as surface areas, numbers of active sites, morphologies, etc., precise control
of their structures can not only improve catalytic activity and amplify signals but also facili-
tate specific identification of the analytes to be detected, thus promoting the performance
of electrochemical sensors in clinical diagnosis, environmental analysis, and so on [4,5].
In these years, SANs have received much attention since their introduction due to their
special geometry and electronic structure, and the precise metal sites of SANs cater to the
challenges encountered in the sensitivity and specificity of electrochemical sensors [6].
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SANs are distinguished by the isolated metal atoms dispersed on the support material
and the absence of metal–metal bonds. SANs not only maximize atomic utilization and have
unique electronic structures and atomic coordination environments, but more importantly,
the simplicity and homogeneity of their structures facilitate the accurate identification and
characterization of active sites, which can provide insight into the structure–activity rela-
tionship and make reasonable regulation of them possible [7,8]. These merits enable SANs
to be effective materials for the development of sensors with high analytical performance
and defined mechanisms. The presence of a large number of unsaturated, low-coordinated
metal atoms in SANs facilitates signal amplification and also improves the selectivity of
detection by adjusting the metal centers and their coordination environment, which is
conducive to achieving sensitive detection of trace substances. By adjusting the structure of
SANs, researchers have continuously optimized their sensitivity, selectivity, and stability in
sensing, making them great candidates for development in analytical chemistry [1,9,10].
According to the classification of support materials, they broadly include metal–carbon-
based materials [11–16], metal–metal oxides [17–19], metal–metal sulfides [20–22], and
metal–metal substrates [23,24] (i.e., single-atom alloys) synthesized mainly through three
strategies, including defect engineering strategy, spatial confinement strategy, and sacrificial
template-assisted strategy (Figure 1).
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Figure 1. Schematic illustration of the main content of this review.

In this review, we systematically summarize recent advances in SANs for applica-
tions in catalytic performance optimization and electrochemical sensing. Firstly, the recent
achievements in the modulation of the active sites, including the noble and non-noble
metal-based SANs, are presented. The active centers of SANs are mostly the metallic atoms
in them, which are not only affected by the metal species but also the numbers of the
metal centers as well as their coordinative environment. In this way, the properties of the
SANs can be modulated by the central metal atoms and their coordination environment.
Then, the research progress of SANs in electrochemistry [25–27], electrochemilumines-
cence (ECL) [28,29], and photoelectrochemical (PEC) [30,31] sensing for environmental and
biochemical sample analysis was highlighted, which has demonstrated large potential
for in vivo and in vitro detection of biological samples as well as environmental sam-
ples. Finally, the challenges and opportunities for the application of SANs in the field of
electrochemical sensing are illustrated (Figure 1).

2. Active Centers Modulation of SANs

The active sites are the catalytically active parts of the SAN, including the metal center
and its coordination atoms, which directly affect the catalytic activity and selectivity of the



Chemosensors 2023, 11, 486 3 of 22

SAN. The metal centers of the SANs are generally transition metals. Most conventional
electrocatalysts are based on noble metals, which have been widely used in catalysis due to
their unique intrinsic properties and irreplaceable catalytic activity, such as Pt [18], Pd [32],
Ru [33], Rh [34–36], Ir [37], Ag [35,38], Au [39], etc. In order to solve the problems of
high cost and low reserves, a series of non-noble metal elements with highly active and
economical alternatives have been developed in recent years, such as Fe [40,41], Co [42–44],
Cu [45,46], Mn [47], Mo [48], Zn [49], Ni [50,51], etc. The transition metals have empty d or
f orbitals and can form coordination bonds with substrate molecules, which facilitates the
binding of analytes to SANs [52]. These metals can be dispersed on the supports as single or
multiple atoms, and the specific recognition of the analyte can be achieved by modulation
of the metal centers. The metal atoms in SANs are isolated and confined within the support
materials and are given specific coordination environments. The differences in coordination
environments result in distinct electronic structures and densities and thereby can affect
the binding energy between substances and SANs as well as the adsorption energy of some
reaction intermediates and products, which are important factors in determining catalytic
activity and the specificity of sensing. Therefore, methods such as heteroatom doping and
axial ligand modulation are also effective ways to modulate the sensing performance of
SANs. The following section reviews the work on improving the catalytical activities of
noble metal-based and non-noble metal-based SANs by modulating the active centers.

2.1. Noble Metal-Based SANs

Noble metals have been widely studied in the fields of catalysis and sensing due to
their superior properties, but high costs and small reserves have severely limited their
large-scale applications. The most significant advantage of SANs is the maximization of
atomic utilization, which means less waste of active sites and the promise of achieving the
same activity with reduced metal loading. Therefore, combining noble metal materials with
single-atom strategies is undoubtedly the most effective way to reduce costs. By modifying
single Pt atoms on carbon nitride nanorods, SA–Pt/g–C3N4–K with peroxidase (POD)-
mimicking activity was obtained and used to construct H2O2 and antibiotic sensors [53].
After experimental investigation, the enzyme activity of SA–Pt/g–C3N4–K was found
to be the highest at pH = 4 and 48 ◦C. Moreover, compared with the natural enzyme
horseradish peroxidase (HRP), SA–Pt/g–C3N4–K can maintain catalytic stability over a
wider temperature range. The POD activities of SA–Pt/g–C3N4–K, g–C3N4–K, and HRP
were compared by colorimetric method using UV-vis absorption spectroscopy with 1 mM
tetramethylbenzidine (TMB) and 1 mM H2O2 at pH = 4. It was found that SA–Pt/g–C3N4–
K exhibited higher POD-like activity (Figure 2), which could be targeted to improve the
sensitivity of detecting H2O2. More than just H2O2 sensors, Pt-based SANs can also be
utilized for the detection of glucose. A Pt single-atom material on Cu@CuO core-shell
nanowires (NWs) has been fabricated by Zhao et al [54]. Cu NWs were first synthesized and
further oxidized to Cu@CuxO core-shell NWs by oxidation with H2O2, and then Pt atoms
were anchored to Cu@CuO NWs by an impregnation method and were modified on a glassy
carbon electrode (GCE) for glucose sensing. Pt1/Cu@ CuO NWs can catalyze the oxidation
of glucose and exhibit a lower onset potential and higher response current than Cu@CuO
and Cu NWs. The introduction of the oxidation layer and single Pt atom improved the
electron transfer ability and glucose adsorption ability of the nanomaterials, and this
Pt1/Cu@CuO NWs-based glucose sensor not only had high sensitivity but also good anti-
interference ability and long-term stability. Theoretical calculations show that the excellent
sensing performance of Pt1/Cu@CuO NWs stems from the synergistic effect between
single Pt atoms and Cu@CuO core-shell NWs, which results in the strong binding energy
of glucose on the NWs. Since the doping of other elements (e.g., O, P, S, B, and Cl) in SANs
with metal–N–C coordination structures (M–N–C) can modulate the electronic structure
of the central metal atom through the electronegativity difference of the heteroatoms, this
has become an effective strategy to improve the catalytic activity of SANs. A single-atom
nanozyme (SAE) with unique Pt1–N3PS active centers has been designed by Chen et al. [55],
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and in this work, the direct atomization of Pt nanoparticles (NPs) into single atoms by
reversing the thermal sintering process was first reported. This Pt SAN exhibited significant
POD-like catalytic activity and kinetics that far surpassed those of Pt NPs. High-angle
annular dark field-scanning transmission electron microscopy equipped with a spherical
aberration corrector (AC HAADF-STEM) image provided a bright contrast of metal atoms
against the low background, in which the atomically dispersed Pt sites could be clearly
observed. No Pt–Pt peaks were observed in Fourier-transformed extended Pt L-edge X-ray
absorption fine structure (EXAFS) spectra, which suggested that the Pt atoms exist as
isolated single-atoms. Pt L3-edge X-ray absorption near edge structure (XANES) curves
indicated that the adsorption threshold of Pt single-atom nanozyme (PtTS-SAzyme) was
located between those of PtO2 and Pt foil, showing that the Pt species carry a positive
charge. The EXAFS fitting analysis results revealed that a Pt atom is coordinated to N, S,
and P with coordination numbers 2.5, 1, and 1, respectively. The experimental XANES
spectrum of PtTS-SAzyme matched well with the calculated XANES spectra, further proving
the existence of the Pt1–N3SP site (Figure 3A–D). The excellent catalytic performance for
oxygen reduction reaction (ORR) of SANs has been investigated for the amplification of
electrochemiluminescence (ECL) sensing signals to improve the sensitivity of detection [56].
Therefore, improving the ORR catalytic performance of SANs through ligand environment
modulation also has an important role in the sensing field. Qin et al. [57] have reported
a Ru-based SAN more durable than the 3D transition metal-based SANs, in which the
second coordination shell of Ru centers was doped with S anions bonded to N. S anions
in the second coordination shell modulated the energy barrier in the ORR reaction by
adjusting the electronic structure of Ru centers, resulting in higher ORR catalytic activity
than commercial Pt/C. The Bader charge analysis of RuN4–S and RuN4 without S revealed
that the S coordination leads to a significant increase in the charge density of the Ru sites,
reducing their binding energy to OOH*, O*, and OH*, which results in a higher ORR
catalytic activity of Ru–SAN/SNC than Ru–SAN/NC (Figure 4A–D). RuN4–S (S bonded
to the N atom of the second shell layer) and RuN3S (S bonded directly to the Ru atom
of the first shell layer) were also compared, and the evaluation result showed that the
binding energy of RuN4–S is greater than that of Ru–N3S, thus the RuN4–S conformation
is more easily formed. The introduction of other metal atoms in the active site can also
optimize the sensing performance through synergistic effects. Catalysts with atomically
dispersed Ru3 sites were reported by Wu et al. to have higher electrocatalytic activity for
uric acid (UA) than Ru SAN [58]. This was due to the optimized electronic structure of the
multi-atom sites, which facilitates the adsorption of hydroxyl anion intermediates. Owing
to the excellent catalytic activity for the oxidation of small biomolecules of Ru3/NC, it
could be used to construct electrochemical sensors with high sensitivity for UA detection
in serum samples, which had broad practical application prospects.
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experimental Pt L3-edge EXAFS signals of PtTS-SAzyme, Pt foil, and PtO2. (B) EXAFS fitting analysis
of PtTS-SAzyme in R space. Curves from top to bottom are the Pt–N, Pt–P, and Pt–S three-body
backscattering signals, the fitting curve total signal (pink line), and the experimental signal (gray
line). (C) Pt L3-edge XANES spectra of PtTS-SAzyme, Pt foil, and PtO2. (D) Comparison between the
experimental XANES spectra (pink line) and the theoretically simulated XANES spectra (blue line) of
PtTS-SAzyme (a, b and c indicate the comparison of the shapes of the two spectra.) [55]. Copyright ©
2021 American Chemical Society.
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Figure 4. (A) Schematic atomic model of Ru–N bond length changes before and after S introduction.
Color scheme: blue for Ru, yellow for S, pink for N, and gray for C. (B) Relationship between Bader
charge and OH* binding energy of single-atom Ru in RuN4 and RuN4–S, respectively. Insert: the
corresponding schematic models of the samples. Color scheme: blue for Ru, yellow for S, pink for
N, and gray for C. Charge density difference between (C) S as the target and (D) Ru as the target in
the RuN4–S moiety. Color scheme: blue for Ru, red for S, pink for N, and gray for C. Yellow regions
indicate charge accumulation, while cyan regions indicate charge depletion [57]. Copyright © 2022
American Chemical Society.

2.2. Non-Noble Metal-Based SANs

The high cost and limited availability of noble metals pose a significant challenge to
sustainability. Non-noble metals are now widely used in various fields as cost-effective
and sustainable alternatives to other commonly used, expensive transition metals, and
their fabrication into single atoms can further amplify the advantages and improve their
performance in analysis. As the most widely studied SAN, Fe SANs have demonstrated
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excellent catalytic performance and application potential, especially their ORR catalytic
ability and enzyme-like activity. A nanozyme with single Fe atoms anchored on N-doped
carbon nanotubes (CNT/FeNC) was proposed by Cheng et al. [59], in which the individual
iron atoms were all surface atoms and had high structural similarity to the active center
in natural PODs, thus possessing the most adequate enzyme-like reaction active centers
and better POD-like activity. Its application as a signal element in the construction of a
series of paper-based biosensors has successfully achieved the sensitive detection of H2O2,
glucose, and ascorbic acid (AA), providing a novel and efficient signal element for the
construction of future biosensors. The synergy of two non-noble metal atoms has also
proven to be an effective way to improve detection sensitivity [60]. Using amphiphilic
poly(vinyl alcohol) (PVA) aerogel as a substrate material for stabilizing metal single-atoms,
Ma et al. [61] obtained a Zn/Mo dual single-atom nanomaterial supported on the macro-
scope aerogel (Zn/Mo DSAN-SMA) by soaking the aerogels with acetonitrile solutions
of supramolecular coordination complexes/polyoxometalates (SCCs/POMs) followed by
carbonization, which can be used as a novel nanozyme with ultra-long-term stability as a
POD mimetic (Figure 5A). The constructed sensors can be used for the detection of glucose,
AA, cholesterol, and H2O2 (Figure 5B). Theoretical calculations indicated that the Zn/Mo
site is the main active center, and the synergistic effect between Zn and Mo atoms led to the
superior activity of Zn/Mo DSAN-SMA. Achieving controlled synthesis and modulation
of diatomic sites is essential for optimizing the performance of dual-atom nanomaterials
(DANs). Due to the influence of geometry on the local electronic structure, the atomic sites
at the edges are very different from those on the base surface of the supported materials
in terms of electron density. The introduction of defects in the substrates is an effective
way to increase the number of active sites at the edges while also facilitating material
migration and the exposure of active sites. Kim et al. [62] designed a large number of
defects on N-doped mesoporous carbon NPs using OH· generated by the decomposition
of H2O2 under a hydrothermal process at 180 ◦C to etch the carbon-based support, and
these defect edges provided anchor sites for Fe atoms (Figure 6A). Such edge sites exhibited
significantly enhanced POD and oxidase (OXD)-like properties. Theoretical calculations
suggested that the increased activity is due to the higher electron density of the N atoms at
the edge sites, allowing for new reaction pathways at the edge sites (Figure 6B). Similar to
noble metal-based SANs, modulating the metal coordination environment of non-noble
metal-based SANs, such as the introduction of axial ligands or heteroatoms, can also affect
the electronic structure of the active sites, thereby improving the catalytic activity as well
as the specific recognition of the catalytic substrate [63,64], and the design of these SANs is
also expected to be applied in the field of electrochemical sensors. A boron-doped Fe–N–C
(FeBNC) nanozyme was developed by Jiao et al. [65] by mimicking the active sites of
natural POD, in which the B atoms in the second coordination shell induced the electronic
rearrangement of iron. The FeBNC nanozyme specifically enhanced the POD-like activity
compared to the FeNC nanozyme. Axial nitrogen ligands play a crucial role in stabilizing
the active structure and enhancing enzyme activity. By mimicking the structure of natural
enzymes, a five-coordinated Fe-based single-atom nanozyme has been synthesized, display-
ing 7.64-fold higher POD-like activity than Fe–N4 nanozyme [66] (Figure 7A). Theoretical
calculations suggested that this reason is that Fe–N5 molecules exhibit higher affinity for
H2O2 and better activation ability (Figure 7B,C).
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3. Types of SANs-Based Electrochemical Sensing

Integrating the virtues of SANs with electrochemical analytical methods has become a
popular approach for constructing highly sensitive and selective analytical sensors, and the
following section specifically describes the application of SANs in the fields of electrochem-
ical sensing, electrochemiluminescent sensing, and photoelectrochemical sensing.

3.1. SANs-Based Electrochemical Sensing

Electrochemical analysis refers to a set of techniques used to study and analyze the
behavior of chemical substances and processes, involving the measurement and interpre-
tation of electrical properties such as current, potential, cuductivity, and so on, arising
from chemical reactions occurring at the electrode interface. The use of SANs in electro-
chemical sensors offers numerous advantages, including enhanced sensitivity, selectivity,
faster response times, stability, miniaturization, and energy efficiency because of the high
catalytic activity and specificity of SANs. These characteristics make single-atom materials
promising candidates for the development of advanced sensing devices with improved
performance and wider practical applications.

The main class of electrochemical sensors constructed by SANs are those based on
current analysis, that is, a certain voltage is applied and a corresponding current is gen-
erated by the redox reaction of the substance to be measured at the electrode through
electrochemical catalysis, thus allowing quantitative analysis (Table 1). The amperometric
method is currently a very popular method in electrochemical sensing. The four-electron
pathway of ORR plays a very important role in electrochemical oxygen sensing, but the
commonly used Pt/C catalysts for the analysis of oxygen in complex systems need to be
improved due to the current influence of the H2O2 reduction reaction. A SAN with Co–N4
as the active center was designed, which can effectively promote the four-electron ORR
in a potential- and loading density-dependent manner under neutral conditions [67]. A
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hydrophobic hexamine monomolecular layer was electrochemically applied to the carbon
fiber microelectrode (CFE) surface by CV scanning, and then the Co–N4/C catalyst was
adsorbed onto the modified CFE via hydrophobic interactions. The CFE was implanted as
a working electrode (WE) in the right cortex of the rat brain, and oxygen was effectively
detected by a typical amperometric response. The weak interaction between H2O2 and the
active sites led to its highly selective sensing of oxygen, thus realizing real-time specific
sensing of oxygen in vivo. Li et al. [68] prepared a Fe-based SAN using two-dimensional
nitrogen-doped graphene as a support. It possessed a larger specific surface area to ensure
high loading of active sites than 1D carbon substrates. And the distance between adjacent
active centers in the catalyst matched the -O–O- bridge adsorption mode, allowing the
H2O2 reduction reaction to occur in a 2-electron transfer path with higher catalytic activity
compared to the 1-electron path occurring in the 1D NW-loaded SAN. Fe–SAN/NW was
modified onto GCE and then Nafion solution was deposited onto the sensor surface to
obtain an electrochemical sensor for remarkably sensitive detection of H2O2, which can
also be used for in situ monitoring of H2O2 release from cells. H2O2 was catalyzed by the
Fe active centers on the electrode surface for reduction to produce water, and the current
was linearly related to the H2O2 concentration. The introduction of synergistic components
in SANs can optimize the electronic and geometric structure of metal atoms, which enables
efficient electrochemical sensing. Aiming to improve the POD activity of SAN, Fe single
atomic sites with carbon-encapsulated Fe3C crystals (Fe3C@C/Fe–N–C) were synergized
by Wei et al. [69] to enhance the adsorption of H2O2 molecules on Fe sites by transferring
electrons from Fe3C@C to single atomic Fe sites. It was used to construct a hydrogen perox-
ide electrochemical sensor with a high sensitivity of 1225 µA/mM·cm2 and a low detection
limit of 0.26 µM. In addition to the amperometric method, differential pulse voltammetry
(DPV) is one of the commonly used techniques, in which square pulses are applied to a
linear potential sweep. An ultrasensitive dopamine (DA) electrochemical sensor has been
constructed by doping Mn atoms on electrodeposited MOS2 nanosheets (Mn–MoS2) and
using Mn–MoS2 as WE [70]. DA was catalytically oxidized on the electrode surface, and
the current measured using the DPV method increased with increasing DA concentration.
In contrast to MoS2, Mn–MoS2 had higher selectivity and sensitivity for DA detection, with
limits of detection (LOD) of 50 pM, 5 nM, and 50 nM in buffer, 10% serum, and artificial
sweat, respectively. The Mn atoms took the place of Mo atoms in the MoS2 lattice (MnMo)
or adsorb on Mo atoms (MntopMo), and the former was more energetically favorable com-
pared to the latter. DA molecules were physisorbed on MnMo, unlike chemisorption on
MntopMo, where the former dominated at low DA concentrations and the latter dominated
at high concentrations. There are also studies in which the linear sweep voltammetry (LSV)
method was used for electrochemical quantification. Ding et al. [71] doped iron single
atoms onto polypyrrole-derived carbon NW to synthesize Fe–N–C-based single-atomic site
catalysts (Fe–SASC/NW), which featured Fe–Nx structures that can mimic the active sites
of heme enzymes. The electrochemical sensor constructed by modifying Fe–SASC/NW
onto the electrode can achieve highly sensitive detection of H2O2, and the LSV results
demonstrated that the Fe–SASC/NW modified electrode can produce a linear current
response to H2O2 with a linear concentration range from 5.0 × 10−10 M to 0.5 M and a LOD
of 46.35 × 10−9 M.

In some studies, potentiometric analysis is used, i.e., the potential difference between
the WE and the reference electrode in the open circuit is recorded and used as the output
signal for the quantitative analysis of chemical substances. Pan et al. [72] coupled SAN
with galvanic redox potentiometry (GRP) for the detection of H2S in living mouse brains.
(Figure 8) GRP is achieved by constructing a “ galvanic cell “ that spontaneously forms a re-
dox process with the substance to be measured and by recording the open-circuit potential
(OCP) without an applied polarization voltage. To avoid other coexisting neurochemicals
with similar redox potentials from affecting the H2S detection, they constructed an electro-
chemical sensor with high selectivity for H2S by hydrophobically adsorbing hollow carbon
spheres loaded with single Ni atoms onto the electrode to promote electrochemical H2S
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oxidation at very low potentials, thus driving spontaneous bipolarization of a single carbon
fiber. Almost no current flowed in the circuit during the measurement, so the process did
not electrically affect or interfere with the nervous system.
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Figure 8. Schematic illustration of the NiN4–SACs–GRP microsensor for H2S sensing. The inner
pole of the carbon fiber was immersed in an artificial cerebrospinal fluid (aCSF) solution containing
10 mM K3Fe (CN)6 and K4Fe (CN)6 (yellow). The outer pole of the carbon fiber was modified with
NiN4-SACs to catalyze the electrochemical oxidation of H2S in bulk media (blue) [72]. Copyright ©
2022 American Chemical Society.
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Fe3C@C/Fe–N–C H2O2 1225 cm−2 1~6000 0.26 [69]

Cu1/C3N4 H2O2 0.155 - - [73]

Fe–SASC/G 1 H2O2
3214.28 cm−2

1785.71 cm−2
10~920

920~7020 0.2 [68]

Fe Sas–N/C H2O2

86.99
32.66
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1~54
54~764

764~9664
0.34 [74]

Ni–SAC H2O2 - 2 × 10−5~2.22 × 104 6.87 × 10−6 [75]

Se SA/NC H2O2 403.9 cm−2 40~1.11× 104 18 [76]
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Ni–MoS2 DA - 1 × 10−6~1000 1 × 10−6 [79]
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Ru3/NC DA
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5 NG—nitrogen-doped graphene; 6 MOF—metal-organic framework; 7 SANb-BCN—single-atom niobium-doped
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3.2. SANs-Based Electrochemiluminescence Sensing

ECL consists of an electrochemical initiation step and an optical readout step and
is a luminescence process resulting from the relaxation of electronically excited products
to the ground state following an electrochemical reaction. It has been widely used in
biomedical fields because it does not require an excitation light source, giving it a lower
background compared to other optical methods, and is potential and spatially controlled.
Combining the high activity and large surface area of SANs, SANs offer the advantages of
enhanced ECL signal intensity, tunable emission properties, high stability, fast response
time, selectivity and specificity, integration with nanostructures, and miniaturization. In ad-
dition, the performances of SANs can be enhanced by their controlled atomic structure and
strong bonding interactions; as a result, the sensitivity and selectivity of SANs-based ECL
sensors can be improved for a wide range of applications, such as biomedical diagnostics,
environmental monitoring, and chemical analysis.

The sensitivity of ECL sensing is significantly related to the efficiency of photon
generation; therefore, SANs can act as co-reaction accelerators by virtue of their high
catalytic activities to effectively promote the generation of excited luminescent substances at
the surface of the electrode. Luminol, a classical luminescent, has a low oxidation potential,
which reduces interference from other reactions. There have been many studies using SANs
to catalyze the generation of reactive oxygen species (ROS) from the co-reactant to achieve
signal amplification. Gu et al. [56] modified the electrode with Fe-based SAN containing Fe-
N4 active sites, which showed better enhancement of ECL efficiency than nitrogen-doped
carbon and Fe3O4 NPs. (Figure 9A,B) To verify the ECL signal enhancement mechanism,
they added isopropanol (IPA) or benzoquinone (BQ) as ·OH and O2

·− radical scavengers,
respectively, to the Fe–N–C–luminol system, and the significantly decreased luminescence
signal proved that the SAN promoted the ECL reaction through the radical pathway. FeN4
active sites catalyzed the generation of ROS from dissolved oxygen at the electrode surface,
amplifying the ECL signal of luminol. Exploiting the fact that antioxidants can eliminate free
radicals to inhibit ECL, a Trolox sensor was constructed with a linear range of detection from
0.8 µM to 1.0 mM (Figure 9C). To further investigate the ECL mechanism, they later also
designed two carbon-supported nickel SANs with Ni–N4 and Ni–N2O2 for catalytic ORR,
demonstrating four- and two-electron pathways, respectively [85]. The results showed
that the Ni–N4 active site had a better enhancement of the ECL signal and that O2

·− was
the main active intermediate species for the ECL reaction. The Ni–N4/C–luminol ECL
system was used to detect AA in the linear range of 70 µM to 350 nM. The plasma exciton
effect, a collective oscillation of dense electrons, is capable of converting light energy into
electronic excitation, and combining it with ECL is considered to be an efficient way to
improve detection sensitivity. Au@SiO2 and Fe–SAN were coupled by Bushira et al. [86] to
enhance the ECL of the luminol-dissolved oxygen system by plasmon effect and construct
sensitive and stable ECL sensors for the detection of DA, heme, and mercury (Hg2+). The
relationship between the cathodic ECL behavior of the luminol-oxygen system and the
ORR electrocatalytic activity of SANs was examined by Xia et al. [87], and the results
showed that the ECL intensity was positively correlated with the ORR catalytic activity.
Two Fe-based SANs with different active sites, Fe–SAN and Fe–SAN(O), were designed,
and enhanced luminescence signals were detected at the cathode without direct luminol
electrochemical oxidation. Fe–SAN and Fe–SAN(O) generated electrocatalytic ORR via
four-electron and two-electron pathways, respectively, and the difference in the electronic
structure of the metal centers caused significant differences in the ECL signals. Among
them, Fe-SAN with a 4e−-pathway tended to generate more kinds of ROS with stronger
ECL intensity. This work achieved the tuning of the cathode ECL performance, and the
ECL sensor constructed based on Fe–SAN had a detection limit of 0.10 nM for AA. Recently,
some researchers have also employed SANs in the ECL system of Ru(bpy)3

2+/S2O8
2−.

Fe–SAN effectively activated S2O8
2− to SO4

·− and significantly enhanced the cathodic ECL
emission of Ru(bpy)3

2+ [88].
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SAN is not only able to act as a co-reaction accelerator to promote the generation of
ROS but also as an ECL probe in some systems. Ma et al. [89] modified Ni SANs with
polyethylene glycol (PEG) to enhance their hydrophilicity and promote catalyst dispersion
in water, and the functionalized Ni SANs could be used as ECL probes to label biomolecules.
They labeled phage recombinant cell-binding domains with PEGylated Ni SANs (Ni@PEG)
for recognizing methicillin-resistant Staphylococcus aureus (MRSA) and modified porcine
IgG as a capture molecule on GCE deposited with gold nanoparticle membranes to construct
a sensor for MRSA with a detection limit of 25 CFU/mL. In addition to oxygen, SANs also
have similar applications in the ECL system of Luminol/H2O2. By combining Cu–SAN
and CdS quantum dots as a cathodic luminophore, Eu MOF-loaded isoluminol–Au NPs
as an anodic luminophore, and modifying human epithelial protein 4 (HE4) Ab2 and
carbohydrate antigen 125 (CA125) Ab2 on the two luminophores, respectively, a sandwich
immunosensor was constructed for the simultaneous detection of two different markers [90].
CuSAN was used as a co-reaction accelerator to catalyze the generation of large amounts
of ·OH and O2

·− from H2O2 to promote luminescence.

3.3. SANs-Based Photoelectrochemical Sensing

PEC is composed of two processes: photoelectric conversion and electrochemical
processing. Firstly, the PEC active material is excited by absorbing photons under light irra-
diation, and the photogenerated carriers generate photovoltage or photocurrent through
charge transfer and transmission, thus realizing photoelectric conversion. Then the pho-
togenerated carriers are transferred to the loaded electrode or solid–liquid interface, and
charge exchange occurs at the interface, completing the redox reaction and transforming
the chemical information into electrical signals [3]. The development of PEC materials
with high photoactivity by using the huge surface active sites of SANs to trigger unique
surface reactions is crucial to improving the analytical performance of PEC sensors [91].
Single metal atoms can effectively modulate the energy band and electronic structure of
semiconductor frameworks, thus improving their corresponding light trapping and charge
transport behaviors. At the same time, single atoms can significantly accelerate interfacial
redox reactions due to their high catalytic activity and thus reduce the aggregation of
charge carriers.

A Pt-based SAN has been synthesized by anchoring Pt atoms on the surface of hollow
CdS (HCdS–Pt1) [92], which was used as a PEC sensing platform. The introduction of Pt1
increased the carrier density, leading to higher PEC activity in HCdS–Pt1 compared to HCdS
and HCdS–PtNPs. A biomolecular sensor was constructed by encapsulating HRP and
glucose oxidase (GOx) in DNA flowers (HRP and GOx-DFs) as recognition elements and
exploiting the phenomenon that target exosome-enriched HRP and GOx-DFs irreversibly
bio-etch HCdS–Pt1 in the presence of glucose, thereby causing changes in the photocurrent
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intensity. Since Pt is an ideal PEC photoactive material and its strong ability to provide
electrons through chemical Pt–S interactions with CdS provides high photocurrent signal
output, Qin et al. [93] prepared Pt single atoms dispersed on CdS nanorods (Pt SAs–CdS)
that exhibited favorable ability for the separation of electron-hole pairs and constructed
a prostate-specific antigen (PSA) sensing platform. The secondary antibodies (Ab2) were
labeled with CuO, and under acidic conditions, CuO NPs can dissociate into Cu2+ ions,
which changed the PEC properties of Pt SAs–CdS photoelectrodes by reacting with them.
Therefore, the addition of PSA led to a decrease in photocurrents, and the enzyme-free
PEC immunosensor constructed using this principle was used to detect PSA in the linear
range of 5 pg/mL to 10 ng/mL with a detection limit of 0.92 pg/mL. To improve the
photoactivity and stability of pure CdS loaded with single atoms, CdS has been replaced
with Zn0.5Cd0.5S, which can improve the photogenerated holes/electrons mobility, thus
reducing the bulk hole-electron complex and the oxidation of divalent sulfide ions by
photogenerated holes [94]. The constructed PEC sensor had a detection limit of 0.22 pg/mL
for PSA. Except for Pt, the very commonly used Fe-based SAN can also improve PEC
sensing performance by promoting interfacial reactions in a typical p-type semiconductor
of Cu2O. Fe SANs have also been integrated with Cu2O/Ti3C2Tx by Qin et al. [31] to
construct a highly sensitive PEC biosensor by enhancing the ORR catalytic activity at
the interface and thus the PEC signal (Figure 10). Fe SANs were also found to exhibit
superior POD activity and could catalyze the oxidation of 4-chloro-1-naphthol (4-CN) on
the photoelectrode surface to form insoluble precipitates and thus weaken the PEC signal.
Since acetylcholinesterase (AChE) was able to catalyze the hydrolysis of acetylcholine (ACh)
to form acetic acid, which led to a change in the pH value of the solution, thus affecting
the POD activity of Fe SANs/Ti3C2Tx/Cu2O, the PEC sensor constructed based on this
principle provided highly sensitive detection of AChE activity and organophosphorus
pesticides (OPs, AChE inhibitors). TiO2, as a semiconductor with chemical stability and
strong light absorption ability, when combined with gC3N4 to form a heterojunction, can
achieve effective separation of carriers. Bott-Neto et al. [30] modified TiO2 and graphitic
carbon nitride anchored with nickel single atoms (Ni–gC3N4) to form heterojunctions on
screen-printed carbon electrodes (SPCEs) and functionalized TiO2 with electrodeposited
aryl diazonium salts to anchor antibodies and facilitate the separation of charge carriers. A
miniaturized 3D-printed PEC device that can detect PSA under visible LED light irradiation
with good stability and a detection limit of 0.06 fg/mL was constructed using the synergy
of these three materials.
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4. Applications of SANs in Analytical Chemistry

SANs-based sensors have been used in a wide range of analytical applications. Some
trace biological and environmental samples require high sensitivity for detection, and
SANs have shown great applicational values in electrochemical sensing of biomolecules
and environmental contaminants in vivo and in vitro with their powerful structural and
performance advantages. The following section focuses on their application in environmen-
tal and biochemical analysis.

4.1. Applications of SANs in Biochemical Analysis

The detection of some signaling molecules in living organisms is of crucial impor-
tance for the prevention and diagnosis of diseases. The development of SANs has led
to non-negligible progress in this research area of constructing highly sensitive biosens-
ing platforms [27,71,78]. The analysis of endogenous substances generated by cells is a
typical class of application. For example, NO, as an endogenous cellular substance associ-
ated with a variety of physiological and pathological conditions, requires high sensitivity
and transient recording capability on the sensor. A Ni-based SAN has been designed
by anchoring Ni atoms on nitrogen-doped hollow carbon spheres (Ni SANs/N–C) by
Zhou et al. [95], which can effectively catalyze the electrochemical oxidation of NO, and
constructed a stretchable electrochemical sensor by confining Ni SANs/N–C on a flexible
dimethylsiloxane (PDMS) substrate (Figure 11A,B). This sensor had good biocompatibility,
realized real-time detection of NO release from endothelial cells during drug and traction
stimulation, and also provided a new idea for the design of sensing platforms for chemical
signals in the environment of living cells. H2O2, an important representative of ROS, is
generated by intracellular oxygen metabolism and plays a crucial role in stimulating cell
proliferation, differentiation, and migration. The construction of sensors that can provide
accurate, real-time detection of H2O2 produced by living cells has been an important topic.
Liang et al. [74] constructed an electrochemical sensor for H2O2 detection with a detection
limit of 0.34 µM by modifying Fe SAs–N/C prepared by high-temperature calcination
carbonization of hemin@zeolitic imidazolate framework-8 (hemin@ZIF-8) on GCE and
exploiting the POD activity of Fe–Nx active sites.
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Achieving in vivo monitoring of neurochemicals and then studying brain function is
crucial and challenging. An enzyme-based electrochemical sensor for glucose has been
designed using the property that Co-based SAN can catalyze the oxidation of H2O2 at
low potentials [96], which in turn enabled online monitoring of glucose in rat brain mi-
crodialysate. This sensor inherited the superiority of electrochemical analysis and SANs,
with a good response to glucose and no interference from other electroactive substances.
This work provided a new idea for in vivo analysis that can also be applied to the analysis
of other chemicals. An effective method for the detection of H2O2 is to use a hydrogen
peroxide reduction reaction (HPRR), but the detection process is often disturbed by ORR.
To improve the selectivity of H2O2 detection. Gao et al. [73] dispersed single Cu atoms on
mesoporous graphitic carbon nitride through the impregnation method, and the obtained
Cu1/C3N4 was proved to have better HPRR electrocatalytic performance than ORR in
neutral media by theoretical calculation. Based on this, a microsensor with high selectivity
for hydrogen peroxide was designed and implanted into the rat brain to achieve selective
monitoring of H2O2 fluctuations in vivo.

In addition, electrochemical sensors based on SANs have also been used for some other
biological small-molecule detection or immunoassays. To address the problem that the
detection of UA in serum is difficult to achieve an ultra-wide linear range and an ultra-low
detection limit, and the detection mechanism is unclear, an electrochemical UA sensor has
been developed by Hu et al. [97], relying on a Co single-atom nanozyme (A–Co–NG) for
the first time. These Co atoms in the prepared A–Co–NG nanozyme were coordinated to
3.4 N atoms on average in the form of Co2+. The detection range of this A–Co–NG sensor
was 0.4 to 41,950 µM, and the detection limit was 33.3 ± 0.024 nm, which was significantly
better than the previously reported sensors based on various nanomaterials. This work
provided excellent material for realizing a UA sensor with a wide detection range and
low detection limit, which met the need for practical diagnosis and provided new ideas to
guide the exploration of other biosensing processes. An electrochemical sensor that can
detect DA and UA simultaneously was designed by Xie et al. [80] through dispersing Ru
atoms on a C3N4 substrate, with linear ranges of 0.06 to 490 µM and 0.5 to 2135 µM for DA
and UA, respectively, and detection limits of 20 and 170 nM, respectively. Furthermore,
an immunosensor for the detection of PSA was also constructed by inducing PEC signal
inhibition by CuO NPs-labeled sandwich immunocomplexes.

4.2. Applications of SANs in Environmental Analysis

SANs have also been applied to the detection of some heavy metal ions in environ-
mental samples. For instance, an ultrasensitive electrochemical sensor for the heavy metal
ion Pb2+ has been designed by Zhou et al. [98] through doping Mn atoms into MoS2
nanosheets, in which Mn atoms took the place of some Mo atoms. The introduction of
Mn atoms caused lattice destabilization and sulfur vacancies (VS) on the one hand and
phase changes on the other, adding another 1T-phase to Mn–MoS2 compared with pure
MoS2 containing only 2H-phase. Defect- and phase-engineering enabled Mn–MoS2 not
only to have excellent electronic properties but also to form Pb–S bonds with lead ions,
which significantly promoted in situ catalytic redox reactions. Yao et al. [99] synthesized a
homogeneous dodecahedral N-doped carbon modified by a Fe–N–C SAE and modified
it onto the gate electrode of the solution-gated graphene transistor (SGGT) to construct
an electrochemical sensor for real-time monitoring of Hg2+ in environmental samples.
(Figure 12) Combining the excellent electrocatalytic performance of Fe–N–C SAE with the
high signal amplification efficiency of SGGT, this sensor has good sensitivity and selectivity
for Hg2+ with a detection limit as low as 1 nM. Li et al. [100] realized that Co-based SANs
have great superiority in the field of detection of trace-level As(III). The Co atoms anchored
on the N-doped carbon substrate were active sites for catalyzing the reduction reaction
of H3AsO3 with the formation of Co–O hybridization bonds, which resulted in a Co SAN
that was more favorable than Co NPs in terms of both kinetics and thermodynamics. The
As (III) electrochemical sensor constructed based on Co SAN had a good selectivity and a
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sensitivity of 11.44 µA ppb−1. Some other environmental pollutants, such as nitrobenzene
(NB) and hydroquinone (HQ), also have problems in terms of sensitivity and selectivity
for detection, and the development of SAN provides a new idea for them. Four different
scales of Mo-based nanostructures were prepared by Cong et al. [101], including Mo2C NPs,
Mo2C nanodots, Mo nanoclusters, and Mo single atoms, on N, P, and O co-doped carbon
substrates to compare their performance for electrochemical detection of HQ. The results
showed that Mo single atoms exhibited the most sensitive results with a wide linear range
(0.02 to 200 µM), a low detection limit (0.005 µM), and good anti-interference ability. Nb
SAN has been prepared by Li et al. [84] using boron–carbon–nitrogen nanotubes as supports
and modified onto GCE for the construction of electrochemical sensors for NB. Compared
with bare GCE, SANb–BCN/ GCE for catalytic reduction reactions exhibited higher current
intensity and could achieve detection limits as low as 0.70 mM, which was able to be used
for the detection of NB in water samples. They also tested the anti-interference ability of
the sensor using various inorganic and organic substances and found little effect on the
detection signal, indicating a high specificity of the sensor for NB. Luo et al. [102] applied
the ORR activity of the Ir SAN catalyst to electrochemical detection. They achieved the
monitoring of AChE activity by exploiting the inhibitory effect of thiocholine (TCh) on the
ORR activity of Ir–Nx sites, and the AChE–Ir SAN-based biosensor can be used to detect
OPs in environmental samples. The linear range of OPs detection was 0.5 to 500 ng mL−1,
with a low detection limit of 0.17 ng mL−1.
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5. Summary and Outlook

In this review, we first introduced the structural characteristics of SANs and the
advantages that exist compared to conventional nanomaterials. Then, we highlight the
progress made by researchers in recent years in tuning and optimizing the composition
and structure of the active sites of SANs to improve catalytic performance, classified
according to noble and non-noble metals, where the main approaches include the synergy
of two or three metal atoms and the tuning of the coordination environment of metal
atoms. Recent advances in the application of SANs in electrochemical sensing were also
presented, including three types of sensing: electrochemical sensors, ECL sensors, and
PEC sensors. Finally, the practical applications of SANs were presented according to
the classification of biochemical and environmental analysis, which are promising for
application in the sensitive detection of signaling molecules in living organisms and in vitro,
as well as environmental pollutants. However, there are still some problems with SANs for
applications in electrochemical sensors.

Firstly, SANs still face important challenges in their synthesis. Traditional synthesis
methods still have difficulty achieving the desired metal loading, which hinders their
large-scale application in practical production and is unfavorable to their application in
the construction of highly sensitive sensors. There is a need to continue to develop new
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synthesis methods that should ensure high metal loading while avoiding the aggregation
of metal atoms into clusters or NPs. The dispersion of the metal is also very importantly
related to the interaction between the metal and the support, so further search for suitable
supports and optimization of their surface properties to make them more suitable for
anchoring single metal atoms are needed. In addition to this, the active sites of some SANs
may be encapsulated in the supports, which greatly reduces the utilization of the atoms.
Ultrathin, ultrasmall supports such as carbon dots and monolayer 2D nanomaterials appear
to increase the exposure of metal atoms significantly over bulk materials.

Secondly, the performance of SANs for biosensing still needs to be further optimized.
The catalytic activity and specificity of SANs are far less than those of biological enzymes,
so the synthesis of SANs with better performance needs to be realized through the pre-
cise analysis of the electronic structure and coordination environment of metal atoms to
understand the structure-function relationship. Moreover, SANs still have a series of prob-
lems in terms of biocompatibility, targeting, and stability that need to be considered for
bioanalytical applications, especially in vivo analysis.

Third, the application of SANs in wearable sensors is yet to be developed. Wearable
sensors are powerful tools to monitor human health, but one of the major problems they
are currently facing is the fast energy consumption due to miniaturized batteries, which
prevents continuous monitoring for a long period of time. The development of wearable
self-powered sensors is the most effective way to address this problem, and the key to it is
to design a continuous and efficient power supply. Due to the excellent performance of
SANs in catalysis, some researchers have already used SANs to construct self-powered
sensors, such as using a SAN as the ORR catalyst for zinc-air batteries, which provided
long-term stability and high power density and can be utilized for sensitive detection of
glucose when integrated with glucose oxidase [103]. Recent work has also combined a SAN
with enzymatic activity with photoactive materials to construct highly active PEC fuel cells
that can be used for long-term and sensitive electrochemical sensing [104]. Because fuel
cells and metal-air batteries are efficient sources of power supply in self-powered systems,
coupled with the fact that SANs have shown great potential in catalyzing ORR, one of
the two half-reactions essential to these two novel energy storage and conversion systems,
SANs will surely play an indispensable role for self-powered sensors in the future.

In the future, with a further understanding of the conformational relationships and
catalytic mechanisms of SANs, we believe that SANs will have great potential in the field
of sensing.
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