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Abstract: Enzyme-linked immunosorbent assay (ELISA) is one of the most commonly used method
for the detection of staphylococcal enterotoxin B (SEB), the main protein toxin causing staphylococcal
food poisoning. However, the traditional ELISA reaction needs to be stopped by sulfuric acid to obtain
stable colorimetric signal, and it is easily influenced by a colored sample. In order to address this
problem, a new ELISA method using zeolite imidazolate skeleton-8 metal-organic framework (ZIF-8
MOF) as a light scattering (LS) reporter for SEB detection was developed in this work. ZIF-8 MOF has
the characteristics of high porosity, large specific surface area, clear pore structure, and adjustable size,
which is one of the most representative MOFs constructed from Zn2+ and 2-methylimidazole (2-mIM).
The 2-mIM ligand of ZIF-8 exhibited antioxidant activity and can strongly react with H2O2, which
could destroy the structure of ZIF-8, resulting in the obvious decrease in LS intensity. We combined
this specific reaction with the sandwich immune reaction to construct the LS ELISA method for the
successful detection of SEB. This method is more reliable than commercial tests kits for the detection
of colored samples, and it is simple, sensitive, and selective, and has great potential in the detection
of other toxins by simply changing the corresponding recognition units.

Keywords: ELISA; light scattering; metal organic framework; ZIF-8; staphylococcal enterotoxin B

1. Introduction

Staphylococcal enterotoxin B (SEB) is one of the main protein toxins causing staphylo-
coccal food poisoning [1]. It is resistant to high temperature, acid, and alkali, and easy to
formulate as an aerosol. It has been not only linked to food poisoning but also classified
as a potential Class B biological warfare agent by the US Centers for Disease Control
and Prevention (CDC). Therefore, it is highly important to develop sensitive method to
detect SEB. The traditional SEB detection methods include chromatography [2], mass spec-
trometry [3,4], spectral method [5], electrochemical method [6], Raman spectroscopy [7],
enzyme-linked immunosorbent assay (ELISA) [8], and so on. At present, the detection limit
of SEB reported in the literature has been as low as 4.29 fg/mL [9]. Among these meth-
ods, ELISA has attracted a lot of attention because of its high sensitivity, throughput, and
specificity. Generally, the ELISA method for SEB detection depends on the double-antibody
sandwich system and the colorimetric signal is produced by the specific reaction between
3,3’,5,5’-Tetramethylbenzidine (TMB) and H2O2 catalyzed by horseradish peroxidase (HRP)
that is labelled to the secondary antibody. Although this reaction is highly efficient, it
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needs to be stopped by sulfuric acid, which is highly corrosive. In addition, the signal of
colorimetric ELISA is easily influenced by a colored sample. Therefore, it is necessary to
develop a new ELISA method for the detection of SEB.

Light scattering (LS) signal [10–12], which can be easily detected using a spectrofluo-
rometer, has been widely used for biosensing [13–18] and chemosensing [19,20]. According
to the Rayleigh scattering principle [21,22], the LS intensity of a nanoparticle strongly
depends on its size [23,24]. The larger the particle size, the stronger the LS intensity. Thus,
the significant differences in LS between the larger and smaller nanoparticles could be
applied for analytical purposes. Furthermore, the colored molecules in samples does not
influence the LS intensity of nanoparticles with large sizes [25]. However, to the best of
our knowledge, there is no report on the coupling of the LS technique with ELISA for the
detection of biotoxins.

As a kind of special porous material, metal-organic frameworks (MOFs) have the char-
acteristics of high porosity, large specific surface area, clear pore structure, and adjustable
size [26,27]. Zeolite imidazolate skeleton-8 (ZIF-8) is one of the most representative MOFs,
which is constructed from Zn2+ and 2-methylimidazole (2-mIM) [28,29]. According to the
previous reports, the 2-mIM ligand of ZIF-8 exhibited antioxidant activity and can react
with H2O2 strongly, which will destroy the structure of ZIF-8 [30,31]. ZIF-8 itself has a high
LS intensity because of its large size [32,33]. After the reaction with H2O2, the LS signal of
ZIF-8 will decrease significantly. Thus, ZIF-8 is expected to be used as a novel LS reporter
for analysis and detection. Furthermore, ZIF-8 has several outstanding characteristics.
Firstly, the synthesis of ZIF-8 is simple and cost-effective. Secondly, the size of ZIF-8 is
tunable by adjusting its synthesis conditions. Thirdly, ZIF-8 has large surface area and
numerous reaction sites.

Inspired by above reports, we developed a new ELISA method for SEB detection using
ZIF-8 as a LS reporter in this work. Quantitative detection of SEB can be achieved by the
significantly changed LS intensity of ZIF-8. This method does not need a strong acid to stop
the reaction and is not influenced by a colored sample, and it has been successfully applied
for the SEB detection in complex sample, showing great potential in food safety testing.

2. Materials and Methods
2.1. Chemicals and Apparatus

The 2-methylimidazole (2-mIM) was obtained from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). The zinc nitrate hexahydrate (Zn(NO3)2·6H2O)
was purchased from Chengdu Chron Chemicals Co., Ltd. (Chengdu, China). Hydrogen
peroxide (H2O2) and ethanol were purchased from Chuandong Chemical Group Co. Ltd.
(Chongqing, China). The staphylococcal enterotoxin B (SEB) and staphylococcal enterotoxin
A (SEA) were obtained from Pumai Biotechnology Co., Ltd. (Shanghai, China). The SEB
test kits were obtained from Nanjing Herb Source Biotechnology Co., Ltd. (Nanjing, China).
Glycine, ochratoxin A (OTA), Aflatoxin B1 (AFB1), carcinoembryonic antigen (CEA), and
hemoglobin (HGB) were purchased from Subosen Biotechnology Co., Ltd. (Chengdu,
China), and the bovine serum albumin (BSA) was purchased from Sigma Aldrich Trading
Co., Ltd. (Shanghai, China). The orange juice (Nongfu spring), skim milk powder (anchor),
and fresh milk (Tianyou) were purchased from the YongHui supermarket (Chongqing,
China). The sample dilution buffer (0.1 mol/L PBS, pH 7.4, 0.1% Tx-100) was prepared
in the laboratory. Millipore Milli-Q water (18.2 MΩ) was used in all experiments. All the
other chemicals were of analytical grade and used without further purification.

The light scattering signals were measured with an F-2500 fluorescence spectropho-
tometer (Hitachi, Japan) by simultaneously scanning the excitation and emission monochro-
mator of the spectrofluorometer with same starting excitation and emission wavelength
(namely, λem = λex). Vacuum drying oven (DZF-6020, Keelrein, Shanghai, China) was
used to dry ZIF-8. The scanning electron microscope (S-4800, Hitachi, Tokyo, Japan) was
utilized to measure the morphology of ZIF-8. Dark field microscopy imaging was obtained
using a BX51 light microscope (Olympus, Tokyo, Japan) equipped with a dark field con-
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denser (U-DCW, Olympus, Japan). The Fourier transform infrared spectrometer Prestige-21
(FTIR, Shimadzu, Kyoto, Japan) was used to test the infrared spectra of materials. X-ray
diffractometer D8 ADVANCE (Brock, Germany) was used to test powder X-ray diffraction
patterns of samples in a scanning range of 5–50 θ at a scanning speed of 1.5 ◦/min.

2.2. Synthesis of ZIF-8

The synthesis method of ZIF-8 was according to the reported literature with little
modification [34]. First, 1.32 mol/L 2-mIM and 24 mmol/L Zn(NO3)2·6H2O were prepared
using water as solvent using ultrasonic dissolution for 10 min. Next, 500 µL of 1.32 mol/L
2-mIM was added to the glass sample bottle and pre-stirred for 30 s, and then, 500 µL of
24 mmol/L Zn(NO3)2·6H2O was added. After being stirred for 5 min, the mixture was
kept stagnant for 1 h. After washing twice with ethanol, the as-prepared ZIF-8 was stored
at 4 ◦C for further use.

2.3. Dark Field Light Scattering Imaging of the Reaction between ZIF-8 and H2O2

The reaction process of ZIF-8 and H2O2 was monitored using a dark field light scat-
tering microscope. The cationic slides were rinsed with ultrapure water and dried with
nitrogen. Then, 100 µL of 50 µg/mL ZIF-8 ethanol solution was added to the surface of the
cationic glass slide and was allowed to stand at room temperature for 15 min to facilitate
ZIF-8 deposition on the surface of the cationic glass slide. The excess solution on the surface
of the slides was then rinsed with ultrapure water and blow-dried with nitrogen. In order
to monitor the reaction between ZIF-8 and H2O2 in real-time, 200 µL ethanol solution
was added between the slides and cover slides to obtain the original dark field image of
ZIF-8. Next, ethanol solution was removed and 200 µL of 3% H2O2 solution was added.
Then, dark field microscopic images of the reaction process between ZIF-8 and H2O2
were collected.

2.4. Detection of SEB

The light scattering ELISA method was developed based on the ELISA tests kits. A
50 µL volume of different concentrations of SEB were added to the 96-well plate pre-
modified with Ab1 of SEB. Then, 100 µL of HPR-Ab2 was added and incubated at 37 ◦C
for 1 h. Each well of the 96-well plate was washed with 350 µL washing buffer five times
to remove the uncombined SEB and HRP-Ab. The above steps were consistent with the
operation of the ELISA test kits. Then, 100 µL of 6% H2O2 was added to each well and
incubated for 15 min in a 37 ◦C incubator. The residual 100 µL H2O2 of the reaction was
transferred to the pre-ultrasonicated, dispersed 100 µL of 100 µg/mL ZIF-8 solution and
reacted at room temperature. Finally, the LS spectrum was obtained using F-2500.

3. Results and Discussion
3.1. Principle of the SEB Detection

The SEB detection principle is shown in Figure 1. Firstly, ZIF-8 was synthesized using
2-mIM as the ligand and Zn2+ as the central ion. As the ligand 2-mIM could be oxidized by
H2O2, the structure of ZIF-8 could be destroyed by H2O2, and the LS intensity was reduced.
Subsequently, we combined this reaction with SEB antibody immune sandwich assay to
construct a new SEB detection method. When SEB was added, an Ab1/SEB/Ab2-HRP
sandwich immune structure formed in the 96-well plate. After the addition of H2O2 into
the 96-well plate, the H2O2 was consumed by the HRP on Ab2. Then, the residual H2O2
after the reaction was transferred to the ZIF-8 solution. Since H2O2 was consumed by
HRP, the oxidation ability of H2O2 toward 2-mIM was weak. And ZIF-8 maintained an
intact structure, showing high LS intensity. When there was no SEB in the system, the
sandwich immune structure cannot be formed, and the added H2O2 will not be consumed
by HRP. In this situation, the amount of H2O2 was large, and the oxidation capacity of H2O2
toward 2-mIM was strong, leading to the damage of the structure of ZIF-8 and resulting
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in the decreased LS intensity. Thus, quantitative detection of SEB can be achieved by the
obviously changed LS intensity of ZIF-8 before and after adding SEB.

Chemosensors 2023, 11, x FOR PEER REVIEW 4 of 12 
 

 

consumed by HRP, the oxidation ability of H2O2 toward 2−mIM was weak. And ZIF−8 
maintained an intact structure, showing high LS intensity. When there was no SEB in the 
system, the sandwich immune structure cannot be formed, and the added H2O2 will not 
be consumed by HRP. In this situation, the amount of H2O2 was large, and the oxidation 
capacity of H2O2 toward 2−mIM was strong, leading to the damage of the structure of 
ZIF−8 and resulting in the decreased LS intensity. Thus, quantitative detection of SEB can 
be achieved by the obviously changed LS intensity of ZIF-8 before and after adding SEB. 

 
Figure 1. (A) Schematic illustration of the synthesis of ZIF−8 and the reaction between H2O2 and 
ZIF−8. (B) Schematic illustration of SEB detection. 

3.2. Characterization of ZIF−8 and Its Reaction with H2O2 
The as−prepared ZIF−8 was characterized using Fourier transform infrared (FTIR) 

and X−ray diffraction (XRD) measurements. In the absorption FTIR spectra of ZIF−8, 
peaks at 3138 cm−1 and 2933 cm−1 belong to the stretching vibration of C−H in methyl and 
imidazole rings, respectively (Figure 2A). The XRD studies (Figure 2B) showed that ZIF−8 
had multiple diffraction peaks, mainly consisting of 2θ = 7.3°, 10.2°, 12.5°, 14.5°, 16.2°, 
17.8°, 21.8°, etc. The above angles corresponded to planes (011), (002), (112), (022), (013), 
(222), and (114), respectively, with the sharpest peak at 2θ = 7.3 °, indicating that the syn-
thesized ZIF-8 has a higher crystallinity. These results confirmed that the ZIF−8 with a 
higher crystallinity was synthesized successfully. 

 
Figure 2. Characterization of ZIF−8. (A) Fourier transform infrared (FTIR); (B) X−ray diffraction 
(XRD). 

Subsequently, we measured the LS spectra of ZIF−8 before and after the addition of 
H2O2 with different concentrations (Figure S1), and with the increase in the concentration 
of H2O2, the LS intensity of ZIF−8 showing an obvious downward trend was not observed. 
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3.2. Characterization of ZIF-8 and Its Reaction with H2O2

The as-prepared ZIF-8 was characterized using Fourier transform infrared (FTIR) and
X-ray diffraction (XRD) measurements. In the absorption FTIR spectra of ZIF-8, peaks
at 3138 cm−1 and 2933 cm−1 belong to the stretching vibration of C−H in methyl and
imidazole rings, respectively (Figure 2A). The XRD studies (Figure 2B) showed that ZIF-8
had multiple diffraction peaks, mainly consisting of 2θ = 7.3◦, 10.2◦, 12.5◦, 14.5◦, 16.2◦,
17.8◦, 21.8◦, etc. The above angles corresponded to planes (011), (002), (112), (022), (013),
(222), and (114), respectively, with the sharpest peak at 2θ = 7.3 ◦, indicating that the
synthesized ZIF-8 has a higher crystallinity. These results confirmed that the ZIF-8 with a
higher crystallinity was synthesized successfully.
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Subsequently, we measured the LS spectra of ZIF-8 before and after the addition of
H2O2 with different concentrations (Figure S1), and with the increase in the concentration
of H2O2, the LS intensity of ZIF-8 showing an obvious downward trend was observed. Be-
cause H2O2 could destroy the structure of ZIF-8, so the LS intensity decreased significantly.

The morphology of ZIF-8 before and after the reaction with different concentrations
of H2O2 was further characterized using scanning electron microscopy (SEM). As shown
in Figure 2, ZIF-8 presented a regular dodecahedron structure (Figure 3A). After the
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reaction with 0.1% H2O2, the regular morphology of ZIF-8 was destroyed (Figure 3B).
With the increase in H2O2 concentration, the degree of destruction of ZIF-8 also increased
(Figure 3C,D). These results directly confirmed that H2O2 can destroy the structure of ZIF-8.
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We also investigated the dark field microscopic (DFM) images of ZIF-8 before and
after the reaction with H2O2. As shown in Figure 4A, the DFM image of ZIF-8 showed an
obvious doughnut-shaped image, and the LS intensity at the edge of the DFM image of ZIF-
8 was very strong. However, after the reaction with 30% H2O2, the doughnut-shaped image
changed into the solid scattering light spot, and the LS intensity decreased significantly
(Figure 4B). Then, in situ DFM imaging was conducted for real-time monitoring of the
reaction between ZIF-8 and H2O2. As shown in Figure 4C, with the addition of H2O2,
the size and intensity of dark field scattering spots of ZIF-8 gradually decreased with the
extension of incubation time. These results further proved that H2O2 could destroy ZIF-8,
resulting in the reduction of the LS intensity of ZIF-8.
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3.3. LS Spectral Characteristics of ZIF-8 for SEB Detection

To investigate whether the proposed method could be applied for the detection of SEB,
the LS spectral characteristics of ZIF-8 before and after the addition of SEB was measured.
As shown in Figure 5A, in the presence of SEB, the LS intensity of ZIF-8 was significantly
higher than that of the control group before adding SEB. The Ab1/SEB/Ab2-HRP sandwich
immune complex structure was formed in the 96-well plate after the addition of SEB.
Although HRP can react with H2O2 to produce OH·, only the remaining H2O2 can react
with ZIF-8 because of the short life of OH· [35]. Compared with the system without SEB,
the H2O2 content decreased and the oxidation capacity of ZIF-8 ligand 2-mIM decreased
with the addition of SEB, so ZIF-8 maintained higher scattering intensity. Therefore, SEB
could be detected by the significantly enhanced LS intensity at 378 nm (Figure 5B).
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3.4. Optimization of the SEB Detection Conditions

In order to obtain excellent analytical performance, some important experimental
conditions were optimized. We first optimized the reaction time of ZIF-8 with H2O2.
As shown in Figure 6A, when the reaction time was 70 min, the light scattering signal
difference (∆I), which was calculated by subtracting the scattering intensity of ZIF-8 before
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adding SEB from that after the addition of SEB, reached the maximum. Thus, 70 min was
selected as the best reaction time. Subsequently, we optimized the concentration of H2O2.
As shown in Figure 6B, when H2O2 concentration was 3%, ∆I was the largest, and 3% H2O2
was selected as the best reaction condition. Finally, we optimized the concentration of ZIF-8.
The low concentration of ZIF-8 will result in low LS intensity and small signal changes.
However, high concentrations of ZIF-8 can also affect the detection sensitivity. As shown
in Figure 6C, when ZIF-8 concentration was 10–50 µg/mL, ∆I showed an upward trend.
When ZIF-8 concentration was 50–90 µg/mL, ∆I showed a downward trend. Therefore,
50 µg/mL was finally selected as the optimal concentration of ZIF-8.
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3.5. Analytical Performance of SEB Detection

Under optimal experimental conditions, the sensitivity of the method was investigated.
As shown in Figure 7, the LS intensity variation and SEB concentration showed a good
linear relationship within the range of 7–500 ng/mL. The linear regression equation was
∆I = 2.982 cSEB + 33.575 (R2 = 0.998), and the limit of detection (LOD, 3 σ/k) was
0.69 ng/mL. This method is more sensitive to the response of SEB, as shown in Table 1. The
detection limit of this method is still comparable to some reported methods.
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Figure 7. Linearity of SEB detection. The inset is the linear relationship between ∆I and SEB
concentration (7 ng/mL to 500 ng/mL). Experimental conditions: the concentration of SEB was from
7 ng/mL to 1000 ng/mL; reaction time, 70 min; ZIF-8, 50 µg/mL; H2O2, 3%. The error bars represent
the standard deviation of three replicates. The black line represents that ∆I increases with the increase
of SEB concentration until reaching the plateau period. The black line represents the linear range.

Table 1. Current advances in selective detection of SEB with different test methods.

Test Methods LOD Ref.

Spectral method 0.5 ng/mL [5]
SERS-lateral flow

immunoassay 0.05 ng/mL [36]

Enzyme-linked
immunosorbent assay 0.38 ng/mL [37]

Raman spectroscopy and
chemometric methods 0.2 ng/L [38]

Light scattering ELISA 0.69 ng/mL This work

Then, we examined the selectivity of this platform for the detection of SEB. Under
the same experimental conditions, we compared the response signals of this method to
aflatoxin B1 (AFB1), hemoglobin (HGB), ochratoxin A (OTA), staphylococcal enterotoxin A
(SEA), carcinoembryonic antigen (CEA), bovine serum albumin (BSA), and SEB. As shown
in Figure 8A, the LS intensity difference produced by SEA, AFB1, OTA, BSA, HGB, and
CEA was very low, and only the presence of SEB could lead to an obvious value of ∆I. These
experimental results illustrated that this method had a good selectivity for the detection
of SEB.

Since various potential substances in actual samples may affect the detection results,
we investigated the influence of HCO3

−, I−, K+, Na+, Zn2+, Ca2+, Ba2+, Fe2+, Fe3+, Al3+,
glucose, sucrose, Congo Red, and other substances on SEB detection. The concentrations of
interferences (2500 ng/mL) were 10 times than that of SEB (250 ng/mL). The experimental
results are shown in Figure 8B. The potential interfering substances had no significant
influence on the detection of SEB.
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In addition, we focus on exploring the influence of colored samples on colorimetric
materials. As shown in the Figure S1, we washed the 96-well plate for 0 to 5 times, and
then tested the SEB using both SEB ELISA test kits and light scattering ELISA. Under
the linear range, the concentration of SEB used by the SEB ELISA test kits is 5 pg/mL,
the concentration of Congo Red is 50 pg/mL, the concentration of SEB used by the light
scattering ELISA is 250 ng/mL, and the concentration of Congo Red is 2500 ng/mL. After
several plate washing operations, the detection results obtained using the SEB ELISA
detection kits were all higher than the actual concentration (Figure S2A); The detection
results obtained by the light scattering ELISA method after the fourth plate washing
operation were consistent with the actual concentration (Figure S2B). Therefore, light
scattering ELISA has greater advantages in the detection of colored samples.

3.6. SEB Detection in Complex Samples

We carried out the standard recovery experiment of SEB in orange juice, fresh milk,
and skim milk powder to test whether this method could be applied in the real sample
detection. Firstly, three different concentrations of SEB were added to the orange juice and
detected by our method. The accuracy of this method for SEB detection was evaluated
by Recovery. As shown in Table 2, the spiked recoveries of SEB in orange juice were
91.9–106.2%, and the relative standard deviations (RSD) were 2.10–8.21%, indicating that
this method could be used for the detection of SEB in orange juice. Furthermore, the
concentrations of SEB in fresh milk and skim milk powder were tested. Dissolve 200 mg
skim milk powder in 1 mL sample diluent as its initial concentration. The recovery of SEB
detection in fresh milk was 92.0–109.6% with RSD of 0.16–9.25%, and in skim milk powder,
it was 90.2–107.0% with RSD of 1.45–6.85%. These results indicated that this method has
good accuracy in the detection of SEB in different food substrates.

Table 2. Recovery tests of SEB detection in food matrices.

Sample Added
(ng/mL)

Found (ng/mL)
Mean a ± SD b

Recovery
(%, n = 3)

RSD
(%, n = 3)

400 403.5 ± 8.46 98.9–103.2 8.21
Orange juice 250 251.3 ± 12.3 96.9–106.2 4.91

60 60.9 ± 5.0 91.9–106.5 2.10
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Table 2. Cont.

Sample Added
(ng/mL)

Found (ng/mL)
Mean a ± SD b

Recovery
(%, n = 3)

RSD
(%, n = 3)

400 397.2 ± 36.73 92.0–109.6 9.25
Fresh milk 250 250.5 ± 16.61 93.4–106.7 6.63

60 60.3 ± 0.97 98.6–101.4 0.16

400 369.0 ± 12.24 90.2–95.8 3.32
Milk powder 250 257.0 ± 3.73 101.5–104.4 1.45

60 59.5 ± 4.08 94.7–107.0 6.85
a The mean of three determinations. b SD The standard deviation.

3.7. Staphylococcal Enterotoxin A (SEA) Detection

Finally, in order to investigate the universality of this method, we applied it for the
detection of staphylococcal enterotoxin A (SEA) by changing the corresponding recognition
units. Quantitative detection of SEA can be achieved by the obviously changed LS intensity
of ZIF-8 before and after adding SEA. As can be seen from Figure 9A, ∆I gradually increases
with the increase in concentration of SEA. The experimental results showed that there
was a linear relationship between the ∆I with the concentration of SEA at the range of
30 ng/mL–70 ng/mL. The linear equation was ∆I = 29.042 cSEA − 442.509 (R2 = 0.991), and
the limit of detection (LOD, 3 σ/k) was 1.58 ng/mL.
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Figure 9. Linearity of SEA detection (A). The inset is the linear relationship between ∆I and SEA
concentration (30 ng/mL to 70 ng/mL). Selectivity of the proposed strategy (B). Experimental
conditions: the concentration of SEB was from 30 ng/mL to 70 ng/mL; the concentration of SEB,
AFB1, BSA, and HGB were 50 ng/mL; reaction time, 70 min; ZIF-8, 50 µg/mL; H2O2, 3%. The error
bars represent the standard deviation of three replicates.

Then, the selectivity of the method was tested by comparing the signal generated
by SEA, staphylococcal enterotoxin B (SEB), aflatoxin B1 (AFB1), bovine serum albumin
(BSA), and hemoglobin (HGB) at the same concentration. It was found that only SEA
induced a high ∆I value (Figure 9B), indicating that the method could be used for the
specific detection of SEA. These results confirmed that this method is universal.

4. Conclusions

ZIF-8 MOF was synthesized and employed as a new LS reporter of the ELISA for the
detection of SEB based on the unique reaction of ZIF-8 MOF and H2O2. This developed
LS ELISA method has several advantages. Firstly, the synthesis of ZIF-8 is easy. Secondly,
the structure of the synthesized ZIF-8 was uniform, and its LS signal was strong and
stable. Thirdly, compared with commercial SEB ELISA test kits, light scattering ELISA
shows more reliable properties for the detection of colored samples, and the operation
steps can be further simplified. Furthermore, this method does not need strong acid to
stop the reaction, and the experimental operation is safer. Therefore, this method has
been successfully applied for the direct detection of SEB in complex food samples. We
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believe this method could be extended to the detection of other biotoxins by changing the
corresponding antibodies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11080453/s1, Figure S1: The reaction between
ZIF-8 and H2O2. (A) The LS spectrum of ZIF-8 before and after the reaction with H2O2. (B) The LS
intensity of ZIF-8 before and after the reaction with H2O2. Experimental conditions: the concentration
of H2O2 in A and B was 0.1%, 3%, 30%; reaction time, 70 min; ZIF-8, 50 µg/mL. The error bars
represent the standard deviation of three replicates. Figure S2: SEB ELISA test kits test results (A).
The concentration of SEB is 5 pg/mL, the concentration of Congo Red is 50 pg/mL. and the light
scattering ELISA test results (B). The concentration of SEB is 250 ng/mL, and the concentration of
Congo Red is 2500 ng/mL. Among them, 0 to 5 represent the number of times the board is washed;
The error bars represent the standard deviation of three replicates.
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