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Abstract: The scarcity of clean water leads to the exploration of the possibility of using treated
wastewater. However, monitoring campaigns have proven the presence of emerging contaminants,
such as pharmaceuticals, pesticides and personal care products, not only in trace amounts. Various
analytical methodologies have been developed over the last years for the quantification of these
compounds in environmental waters. Facing the need to achieve a higher sensitivity, fast response
and practical use via miniaturization, the potential of plasmonic sensors has been explored. Through
the introduction of molecularly imprinted polymers (MIPs) as recognition elements, MIP-based
plasmonic sensors seem to be a good alternative for monitoring a wide range of analytes in water
samples. This work attempts to provide a general overview of this form of sensor, which has been
reported as being able to sense different contaminants in waters using surface plasmon resonance
(SPR) and surface-enhanced Raman-scattering (SERS) techniques. Particular emphasis is given to
the fabrication/recognition procedure, including the preparation of MIPs and the use of metals and
nanomaterials to increase the performance characteristics of the sensors.

Keywords: molecularly imprinted polymers; plasmonic sensors; surface plasmon resonance; surface-
enhanced Ramon scattering; environmental monitoring; water

1. Introduction

The world’s freshwater sources are currently facing a serious challenge. While pollu-
tion is reducing the water supply, climate change, population growth, urbanization and
industrialization are all driving up water demand [1,2]. As a result, alternative water
sources are being explored to ensure sustainable water management [3–5].

The reclaiming of treated wastewater has emerged as an additional and alternative
water supply source than is able to buffer the impacts of water scarcity [6–8]. However,
the successful implementation of wastewater reuse is strongly dependent on appropriate
treatments in accordance with the type of use and water quality requirements, where the
main concern is still the determination what compounds must be completely removed and
to what extent in order to safeguard public health and protect the environment [3,9,10].

Pharmaceuticals, personal care products, pesticides, insecticides, heavy metals and
other anthropogenic chemicals constitute a significant class of contaminants of emerging
concern (CECs) detected in wastewater effluents and influents, surface water, groundwater,
seawater and tap water around the world at concentrations higher than expected [11].
CECs can enter the environment through multiple sources, but currently, it has been
recognized that the presence of many CECs in water bodies is closely connected with
discharges from wastewater treatment plants (WWTPs), in which these compounds are
poorly eliminated [12–14]. To respond to this situation, advanced chemical, physical and
biological treatments have been explored to improve the efficiency of the treatments before
discharge of water [15,16]. At the same time, there is still a need to better investigate
individual CECs by developing rapid, accurate and cost-effective measurement techniques
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able to first characterize and quantify these compounds in different environments [17].
Although their potential ecotoxicity and adverse effects on human health have been widely
documented throughout the last decade, most remain unregulated [18–21].

Conventional analytical methods for the detection and quantification of the above
contaminants in water samples include chromatographic techniques, such as gas chro-
matography mass spectrometry (GC-MS) and high-performance liquid chromatography
mass spectrometry (HPLC–MS) [22–24]. These methods exhibit good detection sensitivity
and specificity but are limited by the costs and long analysis time associated with the
analytical procedure, which make them unsuitable for real-time monitoring [25]. As an
alternative, biological and chemical sensors have been widely considered for the devel-
opment of new detection strategies. In particular, intense research is being conducted on
bio-inspired molecularly imprinted polymers (MIPs) sensors. Based on a combination
with a variety of transducers, MIPs have found applications in various fields, including
biology, chemistry and the environment, due to their ease and cost-friendly preparation,
high stability and selectivity, as well as versatility in terms of working conditions [26,27].
Despite electrochemical transducers being the most commonly used for sensor develop-
ment, plasmonic platforms have witnessed special attention in the field of optical sensing.
Their ability to characterize molecular interactions with impressive sensitivity and provide
label-free detection has the potential to revolutionize disciplines such as environmental
monitoring [28].

Surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) are
two key-surface plasmon techniques that allow the identification of trace amounts of a
wide variety of different analytes [29]. SPR sensors, a metal film-based sensor, have been
the basis of current research on plasmonic sensors, and several recent publications have
shown that the design of SPR sensors combined with MIPs as recognition element is very
favorable for highly sensitive and selective analysis. The sensing mechanism relies on the
optical measurement of the plasmon shift caused by the binding of target analytes to MIPs
immobilized onto noble metal-coated substrates, namely gold (Au) or silver (Ag) [30–32].
SPR are highly responsive to deviations in the refractive index (RI) of the medium in direct
contact with the metal film, and their efficiency could be further enhanced using different
plasmonic nanostructures, whose behavior also provides the basis for SERS effects. SERS is
another phenomenon that arises due to the SPR mechanism, making use of the enhanced
electromagnetic fields near metallic nanostructures to study the molecular information of
adsorbed analytes [33]. Despite the engineering of ultra-high-quality substrates having
been focused on SERS sensor development, enhancing selective responses in the presence
of a complex matrix have emphasized a MIPs–SERS combination approach [34].

Theoretically, MIP-based SPR and SERS sensors can be prepared for any molecule of
interest. Their utility and versatility are widely recognized. Moreover, their ultrasensitive
chemical sensing has shown great potential in addressing challenges in water contaminants
monitoring. Piezoelectric sensors, such as quartz crystal microbalance (QCM) sensors,
which are one of the most used mass-sensitive sensors in the MIP community, also offer
high sensitivity to mass changes occurring on their surfaces and present versatile sample
compatibility [35]. Additionally, QCM sensor coatings are very versatile, and the technique
requires less complex instrumentation in comparison to optical sensing. However, QCM
sensors typically require a relatively higher sample volumes for effective measurements
than SPR and SERS sensors [36].

The scope of this review is to provide an overview of current approaches of MIP-
based SPR and SERS sensors reported for the analysis of a vast array of contaminants
in environmental water samples, including sensing principles and signal enhancement
mechanisms. Recent examples in this field are presented with a focus on the polymeriza-
tion technique, functional monomers and sensing platforms and the comparison of their
performances. Lastly, the challenges and perspectives regarding the use of this kind of
sensors for contaminant analysis are discussed.
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2. Molecular Imprinting Technology

MIPs are tailor-made synthetic materials that mimic natural receptors using imprinting
technology to provide selective binding sites to recognize a specific target molecule. MIPs
were reported for the first time 50 years ago by Wulff and Sarhan [37]. Initially, these
polymers were used for the resolution of racemates, focusing on separation and extraction
techniques, but, over the years, they found numerous applications based on the principles
of molecular recognition. Today, they are employed in various different research fields,
such as drug delivery systems, chromatographic separation, reagent purification, industrial
safety and chemical sensing [38–40].

The molecular imprinting technique involves the copolymerization of a target molecule,
acting as a template, with functional monomers in the presence of cross-linking agents
to form a three-dimensional polymer network (Figure 1). The polymerization reaction is
triggered by an initiator [41]. After this process, the removal of the imprinted molecules
reveals specific binding sites that are complementary in shape and size to the analyte, gen-
erating a highly specific molecular recognition element [42]. To determine the imprinting
efficiency of the prepared MIP, a non-imprinted polymer (NIP) is also prepared in the same
conditions but without the template molecule.
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There are two major molecular imprinting strategies that differ in the type of interac-
tions between the template and the functional monomer, namely, the covalent approach
reported by Wulff and co-workers in the early 1970s and the non-covalent approach pio-
neered by Mosbach et al. in the 1990s [43,44]. Covalent imprinting is suitable for reversible
condensation reactions, which are limited, so this approach is the less flexible [45]. Fur-
thermore, the strong interactions in this type of imprinting method drive the slow binding
and removal of templates. In the non-covalent imprinting approach, the interaction of
the template molecule with functional monomers is mainly based on ionic interactions,
van der Waals forces, π–π interactions and hydrogen bonding (the most popular). This
process is simpler and the removal and rebinding of the molecules in the polymeric matrix
is faster. Therefore, non-covalent imprinting has become the most widespread method for
preparing MIPs.

MIPs as Recognition Elements for Sensors

MIP-based recognition elements have been integrated into many sensing devices to
translate molecular binding into a measurable signal. This combination has allowed the
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detection of a wide range of analytes in various mediums using different procedures and
imprinting methods [27].

The most conventional synthesis approaches for generating MIPs range from bulk
polymerization to other new imprinting strategies, such as emulsion, suspension, seed
and precipitation polymerization, where the initiation process can be triggered by ther-
mal, photochemical or radiation energy. While bulk polymerization results in polymer
monoliths that require mechanical grinding, emulsion, suspension and seeds, precipitation
polymerization provides spherical MIPs, ranging from low-micron to sub-micron sizes
which are ready for different analytical applications [46,47]. More recently, the fabrication
of MIPs using sol-gel techniques was introduced. Molecular imprinted sol-gel systems
involve the use of silica-based materials to integrate the template into rigid inorganic or
inorganic–organic networks [48]. This approach has been reported as a good method for
improving MIP sensor performance due to its inherent porosity, optical transparency, large
surface area and high thermal stability with controllable pore size [49,50].

In fact, synthesizing surface-imprinted polymers directly on the surface or outer layer
of a specific carrier has demonstrated an improvement in the sensitivity and selectivity of
MIPs, as well as in the reproducible performance of the receptors. In surface imprinting,
binding sites are located at or close to the polymer surface and are readily exposed to targets,
facilitating the removal and subsequent rebinding of template molecules [51,52]. A surface-
grafted MIP film can be obtained by depositing the pre-polymer first and imprinting it
through soft lithography techniques, such as microcontact imprinting or growing polymer
thin films directly onto a conductive substrate [52,53]. Here, electrochemical deposition
has gained a special emphasis, stemming from its simple, fast and highly reproducible
procedure [54]. Using electroactive functional monomers, an adherent polymeric film is
formed in the presence of the desired template by applying a suitable potential or range of
potentials that causes its oxidation or reduction. Electropolymerization does not require
the use of a cross-linking agent or an initiator. Moreover, the polymer film thickness can be
controlled by varying the charge transferred during the synthesis (potential range, scan
rate and number of cycles) [55].

In the literature, we can find various reports describing the successful development of
integrating MIPs as a selective recognition layers with a wide variety of transducers [56].
Among electrochemical and mass-based sensors, optical MIPs sensors have received signif-
icant research interest mostly due to their simplicity in preparation and signal acquisition,
as well as low achievable detection limits [51,57]. Indeed, optical sensors have emerged as
a prospective strategy to satisfy the sensitivity requirements for monitoring environmental
pollution, where the analysis of samples can be performed by using the unique emission
and excitation wavelengths of a specific analyte of interest [57,58].

Optical changes resulting from the interaction between the analyte and the sensor
surface are transformed into electrical signals by employing different transduction tech-
niques [57]. Fluorescence, spectroscopy, SPR and SERS are the most commonly used optical
sensing systems. Nevertheless, with the rapid development of technology, optical sensors
based on SPR and SERS have been increasingly studied and applied in the field of envi-
ronmental monitoring [28]. The first approach analyzes plasmon resonance variations in
the presence of an analyte, while SERS aims to expand the intensity of the signals associ-
ated with the target analyte [59]. Both mechanisms are described below, as well as their
performances in the detection and quantification of contaminants in aqueous media.

3. SPR Sensors

SPR is an optical physical phenomenon arising from the interaction of a polarized
light with free electrons at the interface of a dielectric medium and a metal film. This
technique generates an electromagnetic field with an exponentially decaying intensity into
both the medium—a surface plasmon wave—and, under certain conditions, resonance
effects, thereby reducing the reflected light intensity [60,61].
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The first scientific record of surface plasmons dates back to 1902, when Wood observed
anomalies in the light diffracted on a metallic diffraction grating [62]. Later, Fano concluded
that these anomalies were associated with surface waves supported by the grating struc-
ture. In 1968, the optical excitation of surface waves was demonstrated by Otto [63] and
Kretschmann [64] using different configurations. On basis of the attenuated total reflection
(ATR), Otto suggested coupling the metal surface with a prism, allowing it to collect all
the light. In this configuration, there was a thin air gap between the prism base and the
metallic film, in which the surface plasmon waves were created [31]. On the other hand,
Kretschmann proposed another configuration of the ATR method, where the metal layer
was directly deposited on the prism instead of air, enabling a more efficient and simpler
plasmon generation. These pioneering works established a convenient method for the
excitation of surface plasmons and the potential of SPR for the study of metal interfaces,
gas detection and biosensing was recognized in the early 1980s. The first commercial
SPR biosensor was introduced to the market in 1990 by Biacore AB (originally Pharmacy
Biosensor AB) to recognize protein–protein interactions [65,66]. Since then, SPR-based
biosensors have shown significant advances, becoming powerful tools for characterizing
and quantifying molecular interactions with one of the most important features: label-free
detection ability [67].

The sensing principle of SPR sensors relies on the use of the evanescent field of surface
plasmon to measure changes in the refractive index (RI) of the dielectric environment
occurring in the vicinity of the sensor surface [68]. Consequently, any change that may
occur near the plasmonic surface, such as the adsorption of molecules, causes changes in
the local RI, which in turn causes changes in the characteristics of the surface plasmon
wave [69]. Thus, SPR sensors are able to provide a very sensitive and real-time response to
the binding or unbinding of target molecules on the sensor chip surface [70].

Generally, SPR sensor systems comprise three essential components: an optical unit, a
transducing medium which interrelates relevant optical and (bio)chemical domains, and a
detector [71]. The optical unit generates a light beam of a required wavelength to excite
and interrogate surface plasmon waves. Three different optical systems are used: systems
with prisms, gratings and wavelength guiders (for example, optical silica fiber). Prism
couplers, also called instruments in the Kretschmann configuration, represent the most
frequently used scheme for SPR sensing. The light wave passes through a glass prism with
a high refractive index, and it is entirely reflected at a certain angle at the base of the prism
coated with a thin metal layer. A surface plasmon excited propagates along the metal film,
and field probes are introduced into he medium in contact with the metal film. Detection
is accomplished by measuring the changes in the reflected light properties via a detector,
which is based on the modulation approach used and records the intensity, wavelength
or angular spectrum of the attenuated light [69]. A dark band can characterize the event
and the incident angle at the resonant condition is called SPR angle or resonant angle.
For real-time signal interpretation, this measurement is translated into a graphical depic-
tion, where a dip in the curve presents the occurrence of surface plasmon resonance [67].
A typical scheme is depicted in Figure 2.

Resonance or response units (RIU) are used to describe the signal change that can be
monitored to obtain a SPR sensorgram.

In surface plasmonic sensors, there are two distinct surface plasmon modes: the local-
ized surface plasmon resonance (LSPR) and the propagating surface plasmon polaritons.
The LSPR is characterized by the collective oscillations of electrons limited to metallic
nanostructures that are excited independently of the incident angle, inducing an ultra-high
localized electric field around the nanostructure. Unlike LSPR, the propagating surface
plasmon polaritons are typically characterized through the oscillations of surface electrons
on thin planar metal sheets [31,72]. Both modes have been described to have similar sensi-
tivity towards the binding molecular events. However, surface processing is very important
to improve the sensitivity, specificity and fixation rate of these sensors, and over the years,
studies have explored novel surface-modified materials [73].
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3.1. SPR Based (Bio)sensing-MIPS

In SPR (bio)sensing, (bio)recognition elements are immobilized on a SPR chip platform
(typically a glass prism with a thin Au layer) and used to recognize and interact with the
desired analyte in a liquid sample. Target molecules are generally transported through a
microfluidic system by a buffer fluid and, when the recognition binding event takes place,
an increase in the RI is detected and directly correlated with the amount of analyte/ligand
complex formed at the sensor surface (Figure 3) [69]. In this sense, an appropriate surface
functionalization plays a pivotal role in the sensor performance that can be specially affected
by non-specific binding interactions [59]. Anything with the potential to modify the RI at
the sensor surface will interfere with the detection procedure and generate a false positive
signal. Considering that, several strategies have been developed to improve the selectivity
of SPR sensing. An attractive and feasible strategy is molecular imprinting. The integration
of nanopolymers, such as synthetic affinity receptors, into sensors has made a significant
contribution to the recognition field.

One of the first applications of MIPs in SPR sensors was published by Lai et al. [74] for
the on-site detection of theophylline, caffeine and xanthine in aqueous media. Since then,
the possible fields of application of MIP-based bioreceptors in SPR sensors have expanded
to medical diagnosis, environmental monitoring and food safety thanks to their high
selectivity, simple construction, easy operation, rapid response, low reagent consumption,
label-free and in situ monitoring, as well as no purification of the sample being required
and their non-destructive analysis [75]. Such characteristics are especially attractive for
satisfying the growing demand for the detection and identification of environmental
contaminants, and consequently, MIPs have risen as a promising alternative to conventional
environmental analyzing techniques.

As recognition units of SPR sensors, MIPs can be used either in film or nanostructured
formats, in which it is very important to control the thickness of the polymer layer on
sensor surface to guarantee reproducibility. Moreover, it should be taken into account that
thinner films provide faster diffusion of the target molecules, contributing to an easier
and more effective extraction and rebinding process, while offering better stability during
longer SPR analysis [76].
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Application of MIP-SPR Sensors in Water Contaminant Detection

Pharmaceuticals, pesticides, insecticides, metals and other contaminants, such as
personal care products and industrial chemicals, are ubiquitous micropollutants in water
bodies. Some of these compounds are considered to be endocrine disruptors and others are
proven carcinogens and mutagens [77].

Since pharmaceuticals are continually emitted into the environment, they are one
of the most persistent groups of contaminants that can harm living organisms even at
minimal concentrations [1,78]. Over the last few years, a large number of publications have
discussed their fate, transport and exposure regarding the environment. Along the same
lines, several studies have presented different methods for pharmaceuticals detection and
remediation [20,79]. Although there are few papers on the development of MIP-based SPR
sensors applied to the detection of pharmaceuticals in water samples, the promise of low
limits of detection with high selectivity encouraged the development of novel affinity-based
detection systems for pharmaceutically active compounds. Table 1 summarizes the main
characteristics of different MIP-based SPR sensors for the detection of various contaminants
in water samples, and their characteristics are discussed below.
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Table 1. MIP-SPR sensors for the detection of contaminants in water samples.

Analyte Use Polymerization Method/
Transducer

Functional
Monomer Water Matrices Linearity Range (nM) LOD (nM) Reference

Amoxicillin Antibiotic Sol-gel, Au
SPR sensor Methacrylamide Tap water 0.1–2.6 7.3 × 10−2 [76]

Ciprofloxacin Antibiotic Miniemulsion, Au
SPR sensor MAA Synthetic wastewater 0.60–3.02 × 102 21.4 [80]

Theophilline Bronchodilator Visible light, Au
SPR sensor MAA Wastewater 0.10–1.0 × 103 0.10 [81]

17β-estradiol Estrogen steroid hormone

UV light, Au
SPR sensor MAA Seawater 2.50 × 10−4–2.50 2.50 × 10−4 [82]

UV light, Au SPR sensor MAA and HEMA Tap water 2.50 × 10−7–2.50 1.41 × 10−8 [83]

Profenofos Insecticide

Thermal polymerization,
Au SPR sensor MAA Tap water 2.7 × 10−1–2.68 9.64 × 10−1 [84]

Thermal polymerization,
optical fiber MAA Tap water and

drinking water 3.02 × 10−8–3.02 × 10−1 7.54 × 10−6 [85]

Cadmium Metal UV light and miniemulsion,
Au SPR sensor

N-methacryloyl-L-
cysteine Wastewater 8.9 × 10−1–4.45 × 102 8.9 × 10−2 [86]

Bisphenol A Manufacturing of plastics
and resins UV light, Au SPR sensor

N-Methacryloyl-L-
phenylalanine and
1-vinyl imidazole

Tap water and
synthetic wastewater 8.76 × 10−1–43.8 2.63 × 10−1 and

3.50 × 10−1 [87]

Triclosan Antibacterial and
antifungal agent

UV light, Au
SPR sensor

Methacryloylamido
glutamic acid Wastewater 1.73 × 10−1–3.45 5.9 × 10−2 [88]

3,3′-Dichlorobenzidine Manufacturing of dyes UV light, Au
SPR sensor MAA Tap water 9.0 × 10−3–0.5 1.86 × 10−3 [89]

1,3,5-trinitroperhydro-
1,3,5-triazine Energetic material Electropolymerization, Au

SPR sensor p-Aminothiophenol Groundwater 1.0 × 10−3–50 7.20 [90]
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In 2018, Ayankojo et al. [76] synthesized a hybrid organic–inorganic MIP film com-
bined with a SPR sensor for the determination of amoxicillin, one of the most frequently
consumed antibiotics in European countries. In this work, the MIP film on SPR Au sensor
surface was prepared via the sol-gel polymerization technique using methacrylamide as
a functional monomer and vinyltrimethoxysilane to form a stable and rigid polymeric
film. The spin-coating technique was used to control the thickness of sol-gel MIP lay-
ers. Rebinding experiments were performed after the injection of amoxicillin samples
and analyzed following the Langmuir–Freundlich model, which revealed an imprinting
factor of 16 compared with NIP. The sensor detected the amoxicillin with a LOD value
of 7.3 × 10−2 nM, and no cross-reactivity against other similar antibacterial compounds
was observed. Additionally, it was successfully applied in tap water fortified with three
different concentrations with recovery values of 93–96%. With the growing awareness of
antimicrobial resistance, a great deal of attention was focused on detecting antibiotics in
environmental water bodies, indicating the need for facile and selective analytical tools to
detect these substances at trace levels [91]. In the same year, Sari et al. [80] reported the
detection of ciprofloxacin via molecularly imprinted nanoparticles synthesized through
two-phase miniemulsion polymerization. Methacrylic acid (MAA) was chosen as a func-
tional monomer and mixed with the antibiotic in the oil-phase. For the fabrication of the
SPR sensor, a dispersion of MIP nanoparticles was spread on the gold SPR chip under
UV light for 30 min. After immobilization and characterization steps, the correlation be-
tween the shifts on the refractive index of SPR sensor and ciprofloxacin concentration were
recorded, showing a good linearity (0.60–3.02 × 102 nM) and sensitivity. With this system,
the LOD was found to be 21.4 nM in synthetic wastewater. No apparent response was
observed when the real-time response of the SPR sensor was also investigated for both
tetracycline and enrofloxacin.

On the basis of light-controlled radical polymerization, MAA was also chosen as a func-
tional monomer for the sensitive detection of theophylline [81] and 17-β-estradiol [82,83].
Theophylline is used to prevent and treat respiratory-related diseases, such as asthma. In
addition, it can be found in green tea, chocolate and cocoa and coffee beans and is frequently
detected in river waters with concentrations at the ng L−1 level [92]. Jing et al. [81] proposed
a simple and rapid methodology for the preparation of a water-compatible theophylline
MIP using an optical SPR sensing system. To achieve this, an aliquot of the aqueous poly-
merization mixture composed of the theophylline, MAA, N,N’-methylenebisacrylamide
and the photoredox initiator system (methylene blue and sodium p-toluenesulfinate) was
sandwiched between a gold SPR chip and a cover glass to be irradiated using a laser
diode of 365 nm wavelength. Under the irradiation of visible light, the polymerization
reaction was performed for 2 h at room temperature and the cover glass plate was ulti-
mately peeled off. Subsequently, the binding of the theophylline molecules to the imprinted
film was determined from the measured changes in the SPR reflectivity during the spike
of phosphate-buffered solution with theophylline at concentrations ranging from 0.10 to
1.0×103 nM. The SPR MIP sensor exhibited a very good linearity, an LOD of 0.10 nM and
minimal interferences of structurally similar compounds (caffeine and theobromine). The
LOD obtained was more than one order of magnitude lower when compared with UV–Vis
spectral analysis, a surface-enhanced Raman scattering and an electrochemical biosensor.
Its applicability was tested in wastewater, which weakened the affinity binding between
the template and the recognition sites, an effect attributed to higher ionic strength and the
influence of matrix effect.

The synthesis of MIPs by photopolymerization is continuously growing. The use
of visible light has attracted significant attention. The lower energy and heat of visible
light sources are less likely to produced unwanted effects on the ingredients of polymer-
ization mixture, while allowing more specific light-induced processes [93]. Despite these
advantages over conventional UV polymerization, the last technique is still widely used
with good imprinting efficiency, as observed in the work produced by Tan and Wei [82].
The authors produced a novel double-layer MIP film on Au surface of an SPR chip for
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the determination of the small molecule 17-β-estradiol in spiked seawater samples. This
endocrine disruptor compound has been extensively monitored in environmental compart-
ments because of its ability to interfere with the hormonal systems of many species in the
ecosystem. In this study, the Au surface was previously modified with 1-dodecanethiol
to form a self-assembled monolayer and the double-layer of the MIP film was prepared
using MAA as functional monomer. Although the results showed an excellent sensitivity
(LOD = 2.50 × 10−4 nM) and selectivity, it was highlighted that the double-layer had a
much higher adsorption capacity in comparison with a single layer, and a better sensi-
tivity (LOD = 1.41 × 10−8 nM) for the detection of 17-β-estradiol in aqueous media was
reported by Jiao et al. [83]. Following similar procedures, the authors chose two functional
monomers, MAA and hydroxyethyl methacrylate (HEMA), to construct the MIP film via
UV polymerization. This combination improved the hydrophilicity and the survival of
the MIP films in aqueous media and, consequently, the performance of the sensor. The
detection process revealed a good linearity between the reflectivity changes and 17-β-
estradiol concentrations in a wide range of 2.5 × 10−7–2.50 nM. The performance of the
MIP film-based SPR sensor was successfully tested using tap water samples.

Another important endocrine disruptor is the plastic monomer and plasticizer bisphe-
nol A. Shaikh et al. [87] designed a water-compatible MIP membrane to identify bisphenol
A in tap and synthetic wastewater. To prepare the polymer on the SPR chip surface via
UV light, two functional monomers, N-Methacryloyl-L-phenylalanine and 1-vinyl imida-
zole were used. The linearity of the sensor response was confirmed in spiked tap water
and synthetic wastewater. Detection limits for these samples were 0.263 and 0.350 nM
with the recovery values of 100.6 and 102.7%, respectively. Similarly, an imprinted poly(2-
hydroxyethylmethacrylate–methacryloylamidoglutamic acid) [p(HEMAGA)] nanofilm was
developed to trace triclosan in wastewater. An Au–MIP-modified SPR sensor chip exhibited
a linearity range between 1.73 × 10−1 and 3.45 nM, and an LOD of 5.9 × 10−2 nM, com-
pared with other complicated triclosan analytical techniques, such as GS-MS, demonstrated
a comparable or better performance. In wastewater samples, the recovery rates were found
to be 98–102%. Moreover, the triclosan-imprinted SPR chip was around 15 times more
selective for triclosan than methyltriclosan and triclocarban.

MIP sensors can also play an important role in screening pesticide residues to ensure
food safety, safeguard the ecosystem and prevent diseases [94]. Despite their significant
role in modern agriculture, organophosphorus pesticides are among the most harmful
toxins added to the environment [95]. Profenofos, an insecticide with low toxicity and
environmental persistence, has caused much discussion, mainly due to its overuse and
abuse. For the detection of profenofos in water samples based on SPR and molecular
imprinting techniques, we identified two sensors designed through thermal polymerization,
in which MAA was the functional monomer used [84,85]. When compared with UV
polymerization, thermal polymerization exhibits some advantages, since it does not require
special equipment to inhibit oxygen and control temperature. So, through surface-initiated
thermal polymerization, where the initiator was immobilized on the surface prior to the
polymerization, an ultra-thin MIP film was prepared on Au chips functionalized with 11-
mercaptoundecanoic acid [84]. The response of the sensing system was traduced into SPR
angle shift versus the logarithm of profenofos concentration within 2.7 × 10−1–2.68 nM.
The MIP film showed high sensitivity (LOD = 9.64 × 10−1 nM) and the responses of the
analogs were significantly lower than those of the profenofos. Its application in tap water
exhibited satisfactory recoveries (89.81–100.99%). In order to enhance the feasibility for on-
site analysis, Shrivastav et al. [85] developed an optical fiber MIP-SPR sensor for profenofos
detection. The sensing probe was fabricated through the coating of the unclad portion
of the fiber with a thin film of Ag followed by the dip-coating of the target-specific MIP
(Figure 4). To polymerize, the fiber was dipped into the polymerization solution for 16 h
in the oven. After all procedures resulted in the generation of binding sites, a red shift
in resonance wavelength was observed as a result of target recognition, and an excellent
detection limit of 7.54 × 10−6 nM was reported. To confirm its relevance in aqueous



Chemosensors 2023, 11, 318 11 of 24

applications, the MIP-modified SPR sensor was used to measure profenofos in drinking
and tap water samples.
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The intermediates used to manufacture some of the pesticides’ ingredients have, unsur-
prisingly, been detected in water resources. 3,3′-dichlorobenzidine, also an important inter-
mediate in the production of dyes, is on the list of priority substances of most countries [96].
In 2014, Zhou et al. [89] presented a novel strategy based on the conjugated responsive im-
printed gels for the fabrication of a MIP–SPR sensor for 3,3′-dichlorobenzidine. SPR-sensing
gel film was prepared via surface initiated radical polymerization using acrylamide and a
small amount of N,N’-methylenebisacrylamide (crosslinker), which was described as a key
point to enable the reversible changes of the resultant networks on the Au surface. Thus,
the sensing of 3,3′-dichlorobenzidine was established through the responsive shrinkage of
the MIP triggered by the target binding. Its response was quantified through the variations
of the SPR-reflectivity minimum wavenumber shift, achieving a linearity in the range of
9.0 × 10−3 to 0.5 nM and high affinity to the template molecules. The authors reported an
LOD of 1.86 × 10−3 nM for tap water.

To meet and highlight the need of portable SPR instruments for the one-site sensing of
hazardous chemicals, Brulé et al. [90] reported a fast and portable SPR sensor modified with
a selective MIP for 1,3,5-trinitroperhydro-1,3,5-triazine contamination in the groundwater
near to a military site. The manipulation of this energetic material (also known as an
explosive) has resulted in significant levels of groundwater and soil contamination. The
imprinting process was conducted through the electropolymerization of p-aminothiophenol
solution prepared with functionalized Au nanoparticles. Results obtained in the SPR shift
were cross-validated using the standard HPLC method (EPA method 8330b), demonstrating
that accurate environmental sensing with SPR systems and MIP combinations is achievable
in the field.

Environmental pollution arising from heavy metals is a well-known issue. Cadmium,
a non-essential metal, is widely distributed in the environment, showing higher toxicity
and mobility than other metals [97]. The guidelines of the World Health Organization
(WHO) for drinking-water quality established a health limit of 3 µg L−1, but its continuous
monitoring is essential to minimize exposure and harm to humans. The SPR sensing
of cadmium ions experimentally using an ion-imprinted technology was carried out by
Bakhshpour and Denizli [86]. They demonstrated the benefits of three different approaches
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for the real-time sensing of cadmium, namely, poly(hydroxyethylmethacrylate) (pHEMA)
thin film, pHEMA-based nanoparticles (poly-NPs) and gold nanoparticles (AuNPs). The
polymerization was initiated through UV light with N-methacryloyl-L-cysteine as func-
tional monomer, and the results revealed that all techniques use a selective detection
ability. However, the attachment of poly-NPs and AuNPs on the sensor surface signifi-
cantly improved the sensitivity of the sensor (LOD = 8.9 × 10−2 nM). Wastewater samples
were used to display the practical applicability of the sensor with recoveries of between
78.7 and 88.7%.

4. SERS Sensors

SERS, derived from the inelastic light scattering (Raman effect), can be seen as a sur-
face mechanism amplified through plasmonic nanostructures (mainly of Ag and Au) that
modifies the wavelength of the incident light [98]. A SERS spectrum can provide detailed
information about vibrational frequency and the intensity of the molecules adsorbed on a
SERS-active substrate as a result of the synergistic cooperation of two mechanisms: electro-
magnetic field enhancement and chemical enhancement. Electromagnetic enhancement
is generally considered to be the main contribution to the SERS signal, which originates
from the formation of LSPR or “hot spots” on the nanostructures of metals upon the inter-
action of light, while the chemical mechanism is due to the charge transfer between the
metal and chemisorbed molecules [98,99]. In order to improve the Raman signal, both
mechanisms require the target molecule to be close to the surface of the SERS substrates,
whose intensity can reach up to 14 orders of magnitude in some nanomaterial systems,
enabling the ultra-trace detection of a wide variety of different analytes, even down to the
single-molecule level [100]. In addition to its tremendous sensitivity, this spectroscopic
technique also has noteworthy properties, including (i) the unique spectral signature of an-
alytes, (ii) multiplexing and high-throughput detection, (iii) resistance to photodegradation
and photobleaching and (iv) no interference from water [72]. With these intrinsic features,
along with the continuous advances in nanofabrication techniques, SERS is progressively
expanding into the viable detection of environmental contaminants, as well as gaining
popularity among the sensor community [101–103].

Since SERS is a surface enhancement technology, it is has been widely established
that the engineering of high-quality substrates is a prerequisite for SERS analysis [104].
Taking this into account, SERS investigations have been mostly focused on the modification
of SERS substrates materials [105,106]. However, the key to constructing efficient SERS
sensors is the development of a substrate that must have not only high SERS activity but
also the specific recognition property. Substrates with a strong affinity to their targets are of
extreme importance for addressing the critical change of sample matrix interference, where
the most promising method is a combination of MIPs [34,107,108].

4.1. MIP-Based SERS

By introducing recognition ability and insulating the substrate surface, MIPs have
been applied to improve the features and properties of SERS-active surfaces [109]. Similarly
to other MIP-based sensors, MIP-SERS sensors are mainly composed of SERS substrates
and MIP layers decorated on the substrates [110,111]. When the target molecules bind
selectively to the imprinted cavities, SERS signals are generated under the activation
of the incident light (Figure 5). The vibrational signature of the adsorbed molecules
allows the identification of the binding and the release of target molecules to and from
MIPs, respectively. In this process, nanomaterials that support the plasmon resonance are
responsible for the enhancement factor, and their shape, size and aggregation state should
be carefully controlled in order to achieve a strong electromagnetic field [112]. Moreover, it
has been reported that hot spots produced at the tips of the nanostructures can induce the
significant enhancement of SERS signals.
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There are two conceptualized detection modes for MIP-SERS sensors: direct or label-
free detection and indirect detection [110]. Label-free detection is used for analytes with
inherent Raman signals, where the SERS detection requires only the adsorption of the
molecules on the nanostructured plasmonic material [113]. In contrast, the label method is
for substances with a weak Raman signal, relying on the use of SERS probes with strong
and well-characterized spectral properties to transduce the sensing mechanism.

Application of MIP-SERS Sensors in Water Contaminant Detection

As can be seen in Table 2, various strategies have been adopted to develop MIP–
SERS sensors with applications in water samples. As mentioned previously, MIPs ensure
selectivity, while SERS provide sensitivity and identification. Owing to the surface plasmon
resonance characteristics, Au and Ag NPs were the first choice as substrates and building
blocks for the further preparation of assembled SERS. Special focus was given to Ag NPs
as a direct consequence of their controllable morphology, high Raman signal enhancement
and easy preparation [114]. Nevertheless, the use of single noble metal particles has some
weaknesses, such as poor stability over time, easy aggregation and difficulties with in terms
of recycling, that can hinder their practical application [115]. To overcome these limitations
and improve electron transfer, NPs have been conjugated with other functional materials
known to form effective hot spots, including magnetic particles, carbon- and silica-based
materials, as well as semi-conductors and non-metal materials.
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Table 2. MIP–SERS sensors for the detection of contaminants in water samples.

Analyte Use Polymerization Method/SERS
Substrate Functional Monomer Water Matrices Linearity Range (nM) LOD (nM) Reference

Enrofloxacin
hydrochloride Antibiotic Self-polymerization/Fe3O4@Ag NPs Dopamine Dam water 1.0–200 1.2 × 10−2 [114]

Spiramycin Antibiotic Sol-gel/MWCNTs@Ag NPs APTES River water 1.0 × 10−2–1.0 × 103 1.0 × 10−2 [116]

Bisphenol A Manufacturing of
plastics and resins

Sol-gel/Au NPs 3-(triethoxysilyl)propyl
isocyanate River water 2.19 × 103–9.99 × 104 5.26 × 102 [117]

Sol-gel/SiO2@Ag NPs TEOS Tap water and
lake water 1.7 × 10−2–1.75 × 102 1.5 × 10−2 [118]

Precipitation polymerization/Ag NPs 4-vinylpyridine Tap water 1.0–1.0 × 106 1.0 [119]

2.6-Dichlorophenol

Precipitation
polymerization/SiO2-Au NPs Acrylamide Lake water 1.0–1.0 × 104 1.0 [120]

Precipitation
polymerization/Ag-CdTe quantum

dots
MAA Lake water 1.0–1.0 × 104 1.0 [121]

Precipitation
polymerization/SiO2-rGO-Au NPs MAA and acrylamide Dam water 1.0–100 2.0 × 10−2 [122]

Precipitation
polymerization/Cu2O@Ag NPs MAA Lake water and

wastewater 10.0–1.0 × 106 5.8 [123]

Precipitation
polymerization/Ag/IP6@MIL-

101(Fe)
Acrylamide Lake water 1.0–1.0 × 107 1.0 [124]

Pyrene Polycyclic aromatic
hydrocarbon Precipitation polymerization/Au NPS MAA and

divinylbenzene
Creek water and

seawater 0.10–1.0 × 104 1.0 [125]

p-Nitroaniline Manufacturing
of dyes

Precipitation polymerization/defect
GO-Ag Methacrylamide River water 1.0 × 10−5–1.0 × 105 2.5 × 10−6 [126]

Caffeine Stimulant Precipitation polymerization/Ag NPs MAA River water 0–5.6 × 102 5.6 × 10−1 [127]

Malachite green Synthetic organic
dye

Precipitation
polymerization/Fe3O4@Ag NPs MAA Tap water 5.0 × 10−3–100.0 1.5 × 10−3 [128]
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Table 2. Cont.

Analyte Use Polymerization Method/SERS Substrate Functional Monomer Water Matrices Linearity Range (nM) LOD (nM) Reference

Carbendazim Insecticide Precipitation polymerization/Ag@SiO2 Methyl acrylamide Tap water 1.0–1.0 × 106 1.0 [129]

Paclobutrazol Insecticide Precipitation
polymerization/Fe3O4@SiO2–Au@Ag Acrylamide River water 2.55 × 102–3.49 × 104 2.55 × 102 [130]

Fenvalerate Insecticide Precipitation
polymerization/SiO2@TiO2@Ag Acrylamide River water 1.0–100 0.2 [131]

Cyfluthrin Insecticide

Precipitation
polymerization/Fe3O4@GO@Ag Acrylamide River water 10.0–1.0 × 106 10.0 [132]

Precipitation
polymerization/ZnO@GO@Ag Acrylamide River water 20–500 4.0 × 10−2 [133]

Cyhalothrin Insecticide Precipitation polymerization/Ag NPs Acrylamide River water 100.0–1.0 × 104 13 [134]

λ-cyhalothrin Insecticide Precipitation
polymerization/SiO2@rGO@Ag MAA and acrylamide Dam water 1.0–1.0 × 104 3.8 × 10−1 [135]
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Fe3O4@Ag and CNTs@Ag nanocomposites were used as active SERS substrates in
combination with MIPs to detect and quantify antibiotics residues in water samples, reach-
ing excellent and similar LODs [114,116]. Using enrofloxacin hydrochloride and dopamine
acting as both a functional monomer and a crosslinker in the self-polymerization procedure,
Li et al. [114] reported a magnetic core–shell SERS-imprinted sensor. Firstly, Fe3O4 NPS
were synthesized by the hydrothermal method and modified with polydopamine. Then, Ag
NPs were dispersed on the surface of the prepared Fe3O4 NPs, forming a nanocomposite
substrate that increased the hot spot area during SERS analysis. Fe3O4@Ag surface was,
subsequently, wrapped with layers of imprinted polymers to synthesize the imprinted struc-
ture for the selective detection of enrofloxacin. Before Raman detection, Fe3O4@Ag@MIP
substrates were separated via the external magnetic field and dropped on the glass slide.
Raman intensity and the concentration of enrofloxacin hydrochloride exhibited a good
linear relationship (1–200 nM) and the LOD was calculated as 1.2 × 10−2 nM. This system
presented not only sensitivity but also selective capacity, which was reflected through the
adsorption investigation of Fe3O4@Ag@MIP on other interferential antibiotics. Recovery
values ranging from 94 to 111% in dam water confirmed the potential of this SERS sensor
to explore emerging properties in environmental water systems monitoring. More recently,
Li et al. [116] presented a novel SERS-imprinted membrane to detect spiramycin in river
water. The authors selected eggshell membrane, which contains a large number of amino
and carboxyl groups, as a support to anchor the multi-walled carbon nanotubes (MWC-
NTs), which are able to promote the surface plasma effect of Ag NPs and, consequently, the
Raman intensity. The imprinting process on CNTs@Ag NPs were created using the sol-gel
method with traditional 3-aminopropyl triethoxysilane (APTES) as functional monomer.
In this work, it was proven that polymerization can protect Ag NPs from being oxidized
when the SERS intensity of the prepared sensor did not show significantly changes after
90 days. The results revealed a linear correlation between the SERS intensity and the
spiramycin concentration across a wide linear range (1.0 × 10−2–1.0 × 103 nM) with an
LOD of 1.0 × 10−2 nM.

Despite the strong Raman active scattering activity of active pharmaceutical ingredi-
ents due to their aromatic or conjugated domains [136], we verify that MIP–SERS sensors
are not yet the first choice for the analysis of pharmaceuticals in water samples. In contrast,
there are several recent works covering their application for monitoring other contaminants
in water, demonstrating the upsurge of the interest in this field. Additionally, using sol-gel
polymerization, two different researchers prepared the bisphenol A-imprinted sensors
based on SERS. In 2013, Xue et al. [117] introduced a Au core coated with a thin MIP layer
using 3-(triethoxysilyl)propyl isocyanate monomer and TEOS as crosslinker. In conjugation
with a small portable Raman spectrometer, the sensor was capable of detecting bisphenol
A in spiked river water, achieving an LOD of 5.26 × 102 nM. Later, Yin et al. [118] adopted
a different strategy by adding silica (SiO2) nanospheres as the core and Ag NPs as the shell
(Figure 6). Furthermore, MIP was synthesized on the surface of the modified Ag NPs using
TEOS and APTES as a functional monomer and crosslinker, respectively. This approach
exhibited a more pronounced Raman intensity and imprinting efficiency and, consequently,
a better sensitivity (LOD = 1.5 × 10−2 nM) was achieved. To verify the potential utility
of the proposed method, lake water and tap water were spiked with 1.79 × 10−3 nM
of bisphenol A, resulting in quantitative recoveries of 89.98% and 101.31%. In another
study, a simple procedure of integrating MIP into Ag NPs via precipitation polymerization
enabled the detection of bisphenol A up to 1.0 nM [119]. Spiked tap water was chosen to
evaluate the applicability of the developed sensor. The results again showed that Ag@MIP
provided more Raman hot spots than bare Ag microspheres, highlighting the potential of
the Ag@MIP hybrids to detect bisphenol A in complicated matrices.
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Among heterogenous polymerization systems, precipitation polymerization has been
the most widely used approach for the fabrication of MIP layers adsorbed on SERS sub-
strates, as noted by Table 2. Although large quantities of polymerization solvent are
required, its easy operation, no need for any surfactant or stabilizer and the direct access
to homogeneous polymeric nanoparticles make the method very attractive [137]. Acry-
lamide and/or MAA have been the top choice between the different classes of functional
monomers suitable for radical polymerization. Along these lines, MIPs were constructed
on the surface of different SERS composite materials to detect 2,6-dichlorophenol [120–124],
pyrene [125], p-nitroaniline [126], caffeine [127], malachite green [128] and several other
pesticides [129–135] in water bodies. Aiming to increase the sensitivity of SERS through
participation in the charge transfer mechanisms, the determination of 2,6-dichlorophenol
was carried out using Au NPs anchored onto SiO2 nanospheres [120], Ag NPs modified
with the cadmium telluride (CdTe) quantum dots [121], cuprous oxide (Cu2O) semicon-
ductors [123] and, more recently, Ag NPs embedded in an MIL-101 (Fe) metal–organic
framework (MOF) [124] as the SERS substrates. All of these works reported good and
selective detection properties after molecular imprinting and an LOD of around 1.0 nM.
However, their sensitivity was significantly improved by linking reduced graphene oxide
(rGO) with traditional Au NPs, using SiO2 to reduce agglomeration [122]. Moreover, a
combination of two functional monomers (MAA and acrylamide) was used during the
precipitation polymerization procedure to increase the potential for the template recog-
nition of the formed cavities. Thus, the best LOD found for 2,6-dichlorophenol was
2.0 × 10−2 nM. The prepared SiO2@rGO@AuNPs@MIP sensor displayed an excellent ana-
lytical performance, which was tested in dam water. The efficiency of same procedure for
the selective detection of the organic pesticide λ-cyhalothrin in water samples had already
been revealed [135], emphasizing that this approach could be extended to the detection of
other contaminants.

In fact, GO as a layer coating on metal nanostructures have attracted much attention in
the SERS field, since it has the ability to control the metal NPs size while providing hydroxyl,
epoxy and carboxyl groups for the next reaction. Compared to other SERS materials, GO
has excellent molecular adsorption capacity, which, in combination with MIPs, has emerged
as a promising platform for detection analysis. Based on GO, Wang et al. [132] and Li
et al. [133] also developed SERS-imprinted sensors that prepared Fe3O4@GO@Ag and
zinc oxide (ZnO)@GO@Ag nanocomposites for the sensing of cyfluthrin. Employing
precipitation polymerization and acrylamide as functional polymers in both works, the
ZnO@GO@Ag@MIP sensor displayed a better sensitivity (LOD = 4.0× 10−2 nM), which can
be attributed to the high refractive index of ZnO nanorods. The sensors were successfully
applied in river waters. By introducing structural defects in GO and increasing the surface
area and porosity, Chen et al. [126] focused on the detection of p-nitroaniline. The defects
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were created via the acid etching of the GO surface to support and fix Ag NPs. This
substrate provided excellent interclass selectivity and was able to detect analytes in river
water as low as an LOD of 2.5 × 10−6 nM.

5. Conclusions and Perspectives

The global demand for water has triggered a change in how water is utilized, managed
and shared. Both water pollution control and water reuse are important strategies for
managing water resources in a sustainable way, and it is well-known that the large number
of contaminants in environmental waters and wastewaters is one of the main barriers in
practice. In particular, their occurrence at trace levels has challenged existing analytical
tools and water treatment technologies.

In this review, we highlighted the potential of MIPs in the integration into plasmonic
sensors to detect contaminants in water samples. Due to their simple, rapid and ultrahigh
sensitive detection, SPR and SERS sensors are regarded as promising plasmonic detection
candidates, in which the employment of MIPs endows SPR and SERS with excellent capture
selectivity and stability improvement. Au and Ag are typically the metallic materials
preferred for MIP–SPR and –SERS analysis. Additionally, the researchers have explored
the application of other plasmonic nanostructures, such as magnetic nanoparticles for
amplifying the signals.

Regarding the imprinting techniques, UV and precipitation polymerization are widely
used to build MIP-based SPR and SERS sensors, respectively. Although the consid-
ered studies demonstrated their capabilities of recognizing a broad range of contami-
nants in water samples, the detection of active pharmaceutical compounds still remains
poorly explored.

Undoubtedly, plasmonic MIP-sensing platforms have great potential for the genera-
tion of high selective, sensitive, fast and real-time responses through the easier preparation
and lower costs in comparison with traditional instrument techniques. As a result, the
number of publications on MIP-based SPR and SERS sensors has increased in the last
few years. Nevertheless, the need for extremely low LODs in measuring and controlling
contaminants in the water remains an unsolved challenge, increasing the distance between
laboratory research and real environmental applications. Further improvements regarding
miniaturization/portability and the development of more compact and more stable sen-
sors and the exploration of novel imprinting technologies are expected to be presented in
upcoming research in this field. Future works should also include more efforts to design
sensors using the principles of green chemistry. Accordingly, the development of molec-
ular modelling and computational studies to clearly understand the interaction between
MIPs and target contaminants, as well as to pre-screen the preparation conditions, should
be undertaken.
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