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Abstract: The development of organelle-specific fluorescent probes has been impeded by the absence
of a comprehensive understanding of the relationship between the physicochemical properties of
fluorescent probes and their selectivity towards specific organelles. Although a few machine learning
models have suggested several physicochemical parameters that control the target organelle of
the probes and have attempted to predict the target organelles, they have been challenged by low
accuracy and a limited range of applicable organelles. Herein, we report a multi-organelle prediction
QSAR model that is capable of predicting the destination of probes among nine categories, including
cytosol, endoplasmic reticulum, Golgi body, lipid droplet, lysosome, mitochondria, nucleus, plasma
membrane, and no entry. The model is trained using the Random Forest algorithm with a dataset
of 350 organelle-specific fluorescent probes and 786 descriptors, and it is able to predict the target
organelles of fluorescent probes with an accuracy of 75%. The MDI analysis of the model identifies
38 key parameters that have a significant impact on the organelle selectivity of the probes, including
LogD, pKa, hydrophilic-lipophilic balance (HLB), and topological polar surface area (TPSA). This
prediction model may be useful in developing new organelle-specific fluorescent probes by providing
crucial variables that determine the destination of the probes.

Keywords: machine learning; QSAR; fluorescent probes; organelle tracker

1. Introduction

Organelle-specific fluorescent probes that target lysosomes, endoplasmic reticulum
(ER), Golgi bodies, mitochondria, nucleus, and plasma membranes have been an area of
interest in chemical biology owing to their versatility in numerous applications, including
the visualization of specific organelles, estimation of organelle activities and identification of
intracellular dysfunctions [1–8]. However, the development of organelle-specific probes has
been challenged by the lack of a systematic understanding of the organelle-specific staining
mechanism. Despite the fact that some physicochemical properties that affect organelle-
specific staining have been revealed, the individual properties are not sufficient to explain
the organelle selectivity of the probes [9–13]. This is because numerous physicochemical
parameters have complex relations with the staining process. Therefore, a systematic
method that correlates a number of physicochemical parameters of probes to their target
organelles is required to provide a comprehensive understanding of the organelle-specific
staining mechanism and facilitate the development of novel organelle-specific probes.

Quantitative Structure-Activity Relationships (QSAR) have been employed in many
area to develop mathematical models that predict the behavior of chemicals in biological
systems based on their structure and properties [14–17]. In drug discovery, QSAR models
have been generated to predict the activity of new drugs, using only the structure and
biological effects of the drugs, even in the absence of information about their biological
targets [18–20]. Similarly, QSAR can be utilized to develop models that predict the target
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organelles of new fluorescent molecules. The pioneering works on the organelle selectivity
QSAR, reported by R. Horobin and colleagues, utilized the Simplest Chinese Box (SCB)
algorithm to make prediction models and found a number of physicochemical parameters
that control the entry and retention of probes into certain organelles [9–13,21–26]. However,
when these parameters were applied to construct a multi-organelle prediction model
using a decision tree algorithm, the model provided a low prediction accuracy for certain
organelles (41% for lysosome and 45% for cytosol) [27].

We conjectured that the accuracy of the multi-organelle prediction QSAR model could
be improved by using a larger dataset of probes and descriptors, coupled with advanced
machine learning algorithms. We, therefore, collected the largest dataset ever reported,
consisting of 350 organelle-specific fluorescent probes. Additionally, 786 descriptors were
generated to classify the probes into nine categories, including eight targeting organelles: cy-
tosol (Cyto), endoplasmic reticulum (ER), Golgi body (Golgi), lipid droplet (LD), lysosome
(Lyso), mitochondria (Mito), nucleus (Nuc), and plasma membrane (PM), as well as a cate-
gory for no entry. Furthermore, we opted to employ the Random Forest algorithm, as it has
the advantage of mitigating overfitting issues that frequently arise in multi-class problems.

Herein, we report a multi-organelle prediction QSAR model capable of predicting the
target organelles of fluorescent probes with an accuracy of 75%. Mean Decrease Impurity
(MDI) analysis of the model identifies 38 key parameters, including logD, pKa, number
of rotatable bonds, oxygen and fluorine atoms, hydrophilic-lipophilic balance (HLB), and
topological polar surface area (TPSA), that are responsible for the organelle selectivity of
the probes. The information obtained by the predictive model can help in understanding
the organelle-targeting mechanism of chemical probes and may be useful in developing
new organelle-specific fluorescent probes.

2. Materials and Methods
2.1. Dataset

The data set used for this study is based on a list of reported organelle-specific fluores-
cent probes for which experimental data were available and sufficiently documented; cy-
tosol [27], ER [23,28], Golgi complex [29], LD [27], lysosome [24,27], mitochondria [21,23,30],
nucleus [24,31], plasma membrane [32], and no entry [21,27,28]. A total of 350 organelle-
specific fluorescent probes were collected by the following criteria; probes for fixed cell
staining were excluded, but only probes for live cell staining were collected. Probes con-
taining metal atoms or probes that stain more than one organelle were excluded to simplify
the calculation. Similar number of probes for each organelle were collected to make a
balanced dataset. The complete list of 350 probes and the references is attached in the
supplementary information.

2.2. Descriptors

Descriptors are features derived from a chemical structure, e.g., hydrophobicity and
pKa. The (de)protonation form of 2D molecular structure for each probe was determined
at pH 7.4 by using the major microspecies calculator plugin of the Marvin program
(Chemaxon). It used JChem (Chemaxon) to calculate 26 descriptors, including LogD
at pH 7.4, Chemaxon HLB, and the Strongest basic pKa1. It also used topomol module from
PreADMET program (BMDRC) to calculate 760 descriptors, which included constitutional,
topological, geometrical, and CATS descriptors. Random Forest methods were generated
using the corresponding scikit-learn modules, a machine-learning library for Python. Mi-
crosoft Excel was used to handle and visualize data. A full list and short explanations are
provided in the supporting information.

2.3. Machine Learning Techniques

In 2001, Breimann introduced the principle of random forests (RFs), extending the
Decision Tree Induction (DTI) principle by using not only one but multiple unpruned
trees with randomly selected feature sets [33]. Our dataset, consisting of 350 compounds
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with 786 descriptors, is high-dimensional and thought to contain multiple mechanisms of
localizations. DTI is well suited to classifying such data, but can have a low accuracy [34].
Therefore, we opted to employ the Random Forest, an ensemble-based learning algorithm.
Random Forest method was generated using scikit-learn program [35].

3. Results and Discussion

Among 350 fluorescent probes, 280 probes were used to train the model (train set), and
the remaining 70 probes were used to validate the accuracy of the model (test set). A total
of 100 models were prepared by creating 10 Random Forest models from each of 10 random
groups consisting of arbitrarily selected 280 probes. The accuracy of models converged
to 100% when the value of maximum depth and the number of estimators reached 8 and
300, respectively. Under the conditions, the prediction accuracy of the test set reached 75%
(Figures 1 and S1a).
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Figure 1. An illustration of multi-organelle prediction QSAR model. Random Forest algorithm was
utilized for classifying the fluorescent probes into individual organelles. A dataset of 350 organelle-
specific fluorescent probes was used to train the machine learning model. Among 350 fluorescent
probes, 280 randomly selected probes were used to train the model (train set), and the remaining
70 probes were used to validate the accuracy of the model (test set).
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From the MDI analysis of the 10 random groups, the top 30 descriptors were identified
from each group. Among these, 38 descriptors were commonly identified in at least three of
the random groups (Table 1).

Table 1. The 38 key descriptors obtained by MDI analysis.

# 1 Descriptor Information

10 LogD at pH 7.4 Distribution coefficient at pH 7.4

10 Chemaxon HLB Hydrophilic-lipophilic balance of a molecule, consensus value from Griffin
and Davies methods calculated by the Chemaxon program

10 Topological PSA Topological polar surface area of a molecule

10 Strongest basic pKa1 The first dissociation constant of a molecule

9 2D VSA H-bond Distribution of hydrogen bonding sites within a molecule

9 Fraction of 2D VSA H-bond Fraction of the surface area covered by hydrogen bonds to the total surface
area of the molecule

9 SlogP 3 Octanol-water partition coefficient

9 SlogP Me1 3 Contribution of p-block elements to the partition coefficient, excluding
ones described by other SlogP atom types

9 Fraction of N atoms Fraction or proportion of nitrogen atoms within a molecule

8 2D VSA H-bond acceptor Distribution of hydrogen bond acceptor sites within a molecule

8 CATS Hyd Pos 02 4 Number of atom pairs within a molecule: hydrophobic-positive charge,
separated by distance of two bonds

8 CATS Don Acc 02 4 Number of atom pairs within a molecule: hydrogen bond donor-acceptor,
separated by distance of two bonds

8 CATS Don Pos 00 4 Number of atoms within a molecule that exhibit both a hydrogen donor and a
positive charge

7 2D VSA polar Contribution of polar surface area within a molecule

7 SC 04 path cluster 2 Kier and Hall’s topological descriptor: subgraph count of order 4, path cluster

7 Formal charge Formal charge of a molecule

7 CATS Aro Pos 02 4 Number of atom pairs within a molecule: aromatic-positive charge, separated
by distance of two bonds

7 CATS Pos Pos 00 4 Number of positively charged atoms within a molecule

7 CATS binary Don Pos 00 4 Presence of atoms within a molecule that exhibit both a hydrogen donor and a
positive charge

6 Number of positively chargeable groups Number of positively chargeable groups within a molecule

6 Number of positively charged groups Number of positive charged groups within a molecule

6 Fraction of 2D VSA H-bond acceptor The fraction of the 2D surface area that corresponds to hydrogen bond
acceptor sites within a molecule

6 SlogP H1 3 Number of hydrocarbon hydrogens

6 Fraction of H atoms Fraction of hydrogen atoms within a molecule

6 Fraction of rotatable bonds Fraction of rotatable bonds within a molecule

5 Fraction of 2D VSA polar Fraction of 2D Van der Waals polar surface area

5 Number of fluorine atoms The number of fluorine atoms within a molecule

5 Number of C2 The number of secondary carbon atoms within a molecule

4 2D VSA hydrophobic The contribution of hydrophobic surface area within a molecule

4 Fraction of double bonds Fraction of double bonds within a molecule
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Table 1. Cont.

# 1 Descriptor Information

4 Fraction of aromatic bonds Fraction of aromatic bonds within a molecule

4 CATS binary Don Acc 02 4 Presence of atom pairs within a molecule: hydrogen bond donor-acceptor,
separated by distance of two bonds

4 Number of CsH Number of single bonds between carbon and hydrogen atoms within
a molecule

3 Number of inorganic atoms Number of inorganic atoms within a molecule

3 SC 04 path 2 Kier and Hall’s topological descriptor: subgraph count of order 4, path

3 Number of boron atoms Number of boron atoms within a molecule

3 Fraction of oxygen atoms Fraction of oxygen atoms within a molecule

3 Fraction of rigid bonds Fraction of chemical bonds that exhibit limited or negligible flexibility or
rotational freedom

1 The number of appearances among the 10 random groups of the MDI analysis. 2 A parameter of Kier and
Hall molecular connectivity index represents atom connectivity within a molecule, the amount of branching ring
structures present, and flexibility [36] 3 [37] 4 [38].

These 38 descriptors were considered to be the most dominant parameters contributing
to the overall accuracy of the model since the accuracy of model reached 70% when only
these 38 descriptors were parameterized in the calculation. Each descriptor exhibited
distinctive patterns for the probes designed for different organelles, suggesting that there
are specific features that are closely involved in the staining of different organelles (Figure 2).
Interestingly, some of those 38 descriptors were found to represent the similar information.
For example, both (topological PSA) and (2D VSA polar) represent the polar surface
area within a molecule (Figures 3b and S2r). Additionally, (CATS Pos Pos 00), (number
of positive chargeable groups), and (number of positive charged groups) show similar
trends as they commonly indicate the positive charge within a molecule (Figures 4e and
S3a,b). Moreover, the patterns of (fraction of rotatable bonds) and (fraction of rigid bonds)
are opposite to each other as they describe the same information in a reverse manner
(Figures 3c and S2q). We have found that these overlapping descriptors are necessary to
ensure the accuracy of the model, despite offering almost identical information.
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Figure 3. The descriptors that were most commonly listed in the top 30 descriptors of the 10 random
groups. Out of the 6 descriptors: (a) Chemaxon HLB, (b) topological PSA, (c) fraction of rotatable
bonds, (d) LogD at pH 7.4, (e) strongest basic pKa1, and (f) fraction of oxygen atoms, a total of 38 key
descriptors were sorted out by selecting the descriptors that were listed at least three times in the top
30 descriptors of the 10 random groups.
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(a) SlogP Me1, (b) formal charge, (c) number of boron atoms, (d) number of fluorine atoms, (e) number
of positively chargable groups, and (f) CATS Don Pos 00.
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Now, let us discuss a few distinctive and explainable physicochemical properties that
apparently affect the organelle specificity of the dyes. Among the 38 descriptors, those
regarding the hydrophobicity of probes were found to be involved in the staining of LD
and PM. For example, the results of (Chemaxon HLB) and (SlogP Me1) demonstrated
that LD-specific probes are the most hydrophobic among all probes (Figures 3a and 4a).
The low values of (topological PSA) also indicate that the hydrophobic environment of
LD would be preferred by the LD-specific probes (Figure 3b). PM-specific probes also
exhibited high hydrophobicity, but the results of (fraction of rotatable bonds) suggest that
the flexibility of probes is also an important factor for PM-selective probes (Figure 3c). On
the other hand, probes that cannot pass through the PM (no entry) were commonly found
to have permanent charges, high hydrophilicity and large polar surfaces, as shown in the
results of (topological PSA), (LogD at pH 7.4), and (formal charge) (Figures 3b,d and 4b).
The comparative analysis of LD-, PM-, and no entry groups indicate that a variety of
hydrophobicity-related properties affect the internalization of the probes into the cells and
staining of LD, a typical hydrophobic organelle.

Upon internalization into cells, the probes possessing specific properties were prone
to be localized in certain organelles. For instance, probes with high values of (strongest
basic pKa1) tended to yield lyso-specific staining (Figure 3e). The result suggests that the
basicity of probes plays a crucial role in the lyso-specific staining process, as basic probes
can be easily accumulated in the acidic environment of lysosomes. Furthermore, these
probes exhibited a high value of (fraction of nitrogen atoms) and a positive value of (formal
charge) because the basicity of lyso-specific probes mostly originates from amine moieties
(Figures 4b and S2a). On the other hand, many cyto-specific probes tended to contain
two fluorine atoms and one boron atom in their structures, since a number of cyto-specific
probes consist of BODIPY moieties (Figure 4c,d). Considering the similar overall surface
polarity of the lyso- and cyto-specific probes shown in (topological PSA) (Figure 3b), the
permanent positive charges on the chemical structures might have an important role in
the discrimination of lyso- and cyto-specific probes. Additionally, the results indicate that
the contents of certain types of atoms, such as boron and fluorine, can help to predict the
probes’ destination as they share similar net charges or functional groups such as BODIPY.

ER- and Golgi-specific probes shared similar tendencies in many properties including
(Chemaxon HLB), (topological PSA), and (LogD at pH 7.4), except for a couple of distin-
guishing features (Figure 3a,b,d). ER-specific probes had the highest (number of fluorine
atoms) among all types of organelle-specific probes (Figure 4d). This can be attributed to
the pentafluorophenyl group which is commonly used as an ER-targeting moiety. Ow-
ing to the ER’s role in lipid metabolism and protein folding, ER has a higher lipophilic
compound than other organelles. Such a lipophilic environment of ER can facilitate the
accumulation of lipophilic molecules, such as the pentafluorophenyl and phenoxazine
groups [28,39]. Moreover, the ER membrane proteins that contain thiol moieties may react
with the pentafluorophenyl group through a halogen-substituted reaction [40,41]. On the
other hand, the (fraction of rotatable bonds) was notably higher in Golgi-specific probes
(Figure 3c). This result suggests that probes with longer and more flexible tails can be
readily embedded in the membrane structure of the Golgi complex, which has many bulky
phosphatidylinositol derivatives and condensed sphingomyelin components [23,42]. There-
fore, while ER- and Golgi-specific probes share several properties, a few distinct features
can lead to their selective localization within the ER and Golgi complex through physical
interactions and chemical reactions.

The positive charge of probes appears to be the most critical property in determining
the specificity of nuc-specific probes. Several positive charge-related descriptors commonly
exhibited high values for the nuc-specific probes, including (formal charge), (number of
positively chargeable groups), (CATS Don Pos 00), (number of positively charged groups),
(CATS Pos Pos 00), and (CATS binary Don Pos 00). (Figures 4b,e,f and S3a–c) In fact, the
QSAR study of R. Horobin and colleagues has also suggested that nucleus-specific probes
should have positive charges, as the positive charge of the probe may strongly interact with
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the negatively charged phosphate backbone of DNA [24]. Additionally, the relatively high
value of (fraction of aromatic bonds) of the nuc-specific probes indicates that the probes
having planar structures can be easily intercalated into the DNA structures (Figure S2l).

In the case of mito-specific probes, they share many characteristics with ER-, Golgi-,
and nucleus-specific probes. Regarding lipophilicity and surface polarity, mito-specific
probes were lipophilic, similar to ER- and Golgi-specific probes (Figure 3a,b). However,
mito-specific probes exhibited positive charges (Figure 4b). Since the inner mitochondrial
membrane has high negative charges due to many negatively charged lipids, including
phosphatidylserine, phosphatidylglycerol, and cardiolipin, the positive charge of mito-
specific probes can bind to the inner mitochondrial membrane via electrostatic interaction.
Cardiolipin, a lipid with two negative charges, is exclusively distributed in the inner
mitochondrial membrane and may contribute to the accumulation of positively charged
probes. Some of the mito-specific probes change their colors by stacking with each other,
sensing the mitochondrial membrane potential. Such membrane potential-dependent
probes commonly have hydrophobic planar structures, as shown in the (fraction of aromatic
bonds) (Figure S2l). Additionally, 15 out of 40 mitochondria-specific probes had values
of the (fraction of oxygen atoms) over 0.1, as typical mitochondrial membrane potential-
dependent fluorophores, such as alizarin, eosin Y, and gallein derivatives, contain oxygen
atoms (Figure 3f) [30,43,44]. Therefore, the fluorophores can be selectively accumulated
in mitochondria via either electrostatic interaction or in response to the mitochondrial
membrane potential.

4. Conclusions

Our multi-organelle prediction QSAR model, trained on the largest dataset ever
reported, consisting of 350 probes and 786 descriptors, has demonstrated the capability to
predict the target organelles of fluorescent probes with an accuracy of 75%. Furthermore,
the MDI analysis revealed 38 key parameters responsible for the organelle selectivity of
the probes, including pKa, logD, the number of rotatable bonds, oxygen and fluorine
atoms, hydrophilic-lipophilic balance, and topological polar surface area. Although there
is room for improvement, including the prediction accuracy and the excessive number of
descriptors that are not simply explainable, these challenges can be overcome by gathering
more information of probes and elaborating on the set of descriptors. Thus, this predictive
model provides key variables that determine the destination of the probes and can serve as
a valuable tool for developing new organelle-specific fluorescent probes.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/chemosensors11050310/s1. Figure S1: The increase in prediction
accuracy along with the increasing number of max depths and estimators; Figure S2: The key
descriptors which are not included in Figure 3; Figure S3: The key descriptors which are not included
in Figure 4.
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