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Abstract: Peroxynitrite (ONOO−) is a highly reactive nitrogen species (RNS) that is closely associated
with many physiological and pathological processes. In this study, we construct a near-infrared (NIR)
fluorescent probe, NAF-BN, that utilizes benzyl boronic acid ester for fluorescence quenching of
naphthofluorescein cores. NAF-BN has been thoroughly evaluated for reliable imaging of exogenous
ONOO− in living cells. Further, NAF-BN can be applied effectively to visualize ONOO− in Drosophila
brains, confirming the hypothesis that neonicotinoid pesticides increase neurological damage and
oxidative stress. The probe NAF-BN offers exciting potential to reveal the role of ONOO− in various
biological and medical fields.
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1. Introduction

Peroxynitrite (ONOO−) represents a prominent reactive nitrogen species (RNS) in
biological settings, engendered through the reaction of nitric oxide (NO) and superoxide
radical anion (O2

−) in mitochondria and phagosomes [1–4]. Although this highly reactive
specie is typically maintained at a relatively low steady-state concentration (nanomolar
level) in vivo [5,6], ONOO− is a potent endogenous oxidant and nitrating/nitrosating agent
that is involved in signaling and redox regulation [7]. Its reactivity and ability to induce
oxidative stress make it an important mediator of cellular damage and a contributing
factor in various disease states. Furthermore, ONOO− has been verified to have non-
negligible implications for protein nitration/nitrosation, signaling pathway impairment,
and immune cell dysfunction [8–12]. The distinctive characteristics of the modifications
associated with the abnormal expression of ONOO− have been identified as hallmarks
of various diseases, such as inflammation [13–15], neurodegenerative diseases [16–18],
cardiovascular diseases [19,20], liver injury [21,22], and even cancer [23]. The elucidation of
the physiological mechanisms underlying the involvement of ONOO− in various disease
states is not yet fully determined due to the high reactivity, low concentration, and elusive
in vivo reaction process of ONOO−. Hence, it is essential to develop simple, efficient, and
reliable methods to detect ONOO− in various biological systems.

To date, several techniques have been developed for the detection of ONOO− in
biological systems, including electrochemical analysis [24,25], immunohistochemical anal-
ysis [26], and electron spin resonance spectroscopy [27]. However, some limitations of
these techniques, such as complicated operation, time taken to complete, high instrument
cost, and low spatial resolution, have promoted the exploration of alternative techniques.
Fluorescence probe imaging has emerged as a promising alternative for the detection
and visualization of trace targets. This technique offers superior spatial and temporal
resolution, which makes it ideal for detecting trace amounts of ONOO− in biological
systems [28,29]. The design of a fluorescent probe for the detection of ONOO− requires

Chemosensors 2023, 11, 286. https://doi.org/10.3390/chemosensors11050286 https://www.mdpi.com/journal/chemosensors

https://doi.org/10.3390/chemosensors11050286
https://doi.org/10.3390/chemosensors11050286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://doi.org/10.3390/chemosensors11050286
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com/article/10.3390/chemosensors11050286?type=check_update&version=1


Chemosensors 2023, 11, 286 2 of 14

a thorough understanding of the reactivity of ONOO− and the specificity of the recognition
group towards ONOO−. Considering the strong oxidative and nucleophilic nature of
ONOO−, various fluorescent probes have been developed for the detection of ONOO−

based on different recognition groups, such as benzyl boronic acid groups [30–34], α
and β-unsaturated ketones [35–37], electron-rich phenolic groups [38–40], amides [41,42],
olefins [43,44], diphenyl phosphoryl groups [45,46], etc. Moreover, the well-known high
background autofluorescence of endogenous biomolecules can interfere with the detection
and imaging of the fluorescent probe. In consequence, near-infrared (NIR) fluorescent
probes with improved imaging capabilities that can penetrate deeper into tissues and re-
duce background autofluorescence have gained widespread attention. Among the various
probes, cyanine (Cy) derivatives have been frequently utilized due to their superior optical
properties, such as high quantum yields, excellent photostability, and good solubility in
aqueous environments [47–54]. To optimize the NIR fluorescent performance of Cy-based
probes, a commonly employed strategy is to incorporate critical structural components
such as recognized electron-donating groups, cationic receptors, and carbon–carbon double
bond linkers into the probe molecule. However, the strong electro-pulling ability of the
cationic receptor (such as indole group) in a Cy-based probe can lead to the formation
of highly reactive methylene and double bond sites. Double bonds are susceptible to
nucleophilic addition by reactive sulfur species (HS, SO3

2−) [55], and methylene sites are
prone to oxidative decomposition by ROS/RNS (ONOO−, H2O2) [56]. Alterations in the
molecular structure of probes can seriously affect fluorescence detection and may also
produce undesirable drug efficacy and other side effects. Hence, the design of fluorescent
probe molecules that possess a rational structure is of utmost importance. In summary,
the high reactivity and complexity of the in vivo detection environment, as well as the low
ONOO− expression, require ONOO− fluorescent probes with excellent NIR fluorescence
sensitivity, selectivity, and chemical stability.

Boronates are emerging as one of the most effective identification groups for detecting
and quantifying hydrogen peroxide and peroxynitrite and were often used to develop
hydrogen peroxide and peroxynitrite fluorescent probes previously [30–34,57–62]. Herein,
we present a NIR fluorescent probe for ONOO− detection, namely NAF-BN, that is based
on a naphthalene fluorescein scaffold and contains a benzyl boronic acid ester recognition
group. The naphthalene fluorophores of the probe have a polycyclic conjugated structure,
which provides excellent NIR fluorescence quantum yields and chemical stability. The
boronic ester moiety was chosen over the boronic acid in an attempt to increase lipophilic-
ity and therefore cell permeability [63]. In addition, boronic ester–benzyl ether linkage
indicated superior aqueous stability [62] and substituted phenylboronates have a greater
reaction rate constant for peroxynitrite than aliphatic boronates at pH 7.4 [64]. The sensing
mechanism of the probe involves ONOO−-induced oxidation and hydrolysis of the boronic
acid ester (Scheme 1), which triggers the isomerization of the lactone spiro ring of the probe
and results in a fluorescence “off-on” effect with short response times. NAF-BN has been
successfully used to visualize ONOO− levels in living cells. Additionally, NAF-BN has
exhibited potential in verifying the hypothesis that the neonicotinoid pesticide imidacloprid
induces brain neural damage and increases oxidative stress in a Drosophila model.
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Scheme 1. The sensing mechanism of NAF-BN.

2. Materials and Methods
2.1. Spectral Characterization of the Probe

Stock solutions (2 mM) of NAF-BN and NAF-OH were prepared by dissolving them
in DMSO. Test samples were prepared by mixing 10 µL of the NAF-BN stock solution
with the desired volume of the analyte in a 5 mL centrifuge tube. The volume of the test
sample solution was then adjusted to 4 mL with phosphate buffer (100 mM PB, pH 7.4,
containing 50% DMSO) and the mixture was incubated at room temperature for
a specified time period. Subsequently, the solution was transferred to a quartz cuvette
and the absorption and fluorescence spectra were recorded separately. The fluorescence
excitation wavelength was set at 600 nm with an emission wavelength range of 620 to
900 nm. The limit of detection was calculated based on LOD = 3σ/k, where σ is the stan-
dard deviation of the blank measurement and k is the slope of the fluorescence intensity
versus the ONOO− concentration.

The fluorescence quantum yield is calculated according to the equation:

Q = QR
I

IR

AR
A

n2

n2
R

Q is the quantum yield, I is the integrated intensity, n is the refractive index, and A is the
optical density. The subscript R is the reference fluorophore with a known quantum yield.

2.2. Cytotoxicity Assay

For cytotoxicity assay, the viabilities of mouse breast cancer cells (4T1 cells) and human
normal liver cells (HL-7702 cells) were assessed using the CCK-8 assay. 4T1 cells and HL-
7702 cells were purchased from iCell Bioscience Inc. (Shanghai, China) and maintained in
a 37 ◦C, 5% CO2 environment. NAF-BN was dissolved in DMSO with a final DMSO content
of less than 1%. The cells were divided into three replicate groups and treated with 0.001,
0.01, 0.1, 1, 10, 30, and 50 µM NAF-BN or NAF-OH. A control group of untreated cells was
maintained in an equal volume of medium. In addition, the cell viabilities of HL-7702 and
4T1 cells incubated with NAF-BN and 3-morpholinosydnonimine hydrochloride (SIN-1)
or NAF-BN and phorbol-12-myristate 13-acetate (PMA)/lipopolysaccharide (LPS) were
also determined. After 24 h of incubation, the cells were washed three times with PBS, 10%
CCK-8 was added, and the mixture was incubated in a 37 ◦C, 5% CO2 environment for 2 h.
The absorbance was measured at 450 nm using an enzyme marker.
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2.3. Fluorescence Imaging of HeLa Cells

HeLa cells were purchased from iCell Bioscience Inc. and incubated in DMEM supple-
mented with 10% FBS at 37 ◦C with 7.5% CO2. Before the experiment, 1 × 105 HeLa cells
were inoculated into confocal culture dishes and incubated in a 37 ◦C incubator for 24 h.

SIN-1, a well-known generator for ONOO−, was used to provide exogenous ONOO−,
and the ONOO− was removed by minocycline [65,66]. Phorbol-12-myristate 13-acetate
(PMA) and lipopolysaccharide (LPS) was used to stimulate endogenous ONOO− produc-
tion in cells. It has been demonstrated that PMA can activate potential NADPH oxidase
(NOX) to produce O2

− and LPS can stimulate NO synthase (iNOS) to produce NO, which
together induce the overexpression of ONOO− [67,68]. The experimental methods and
procedures refer to the studies [33,47,48,56,69–74]. The probes are prepared with DMSO as
a 5 mM stock solution and then diluted to 10 µM using cell culture medium (DMSO = 0.2%).
Each time the medium is changed, the medium from the previous step is cleaned up. Four
groups of cells were prepared for imaging using NAF-BN (10 µM). The first group was
incubated with NAF-BN (10 µM) for 30 min, rinsed with PBS three times, and imaged. The
second group was pretreated with NAF-BN (10 µM) for 30 min, then incubated with SIN-1
(100 µM, peroxynitrite donor) for 1 h, rinsed three times with PBS, and imaged. The third
group was pretreated with NAF-BN (10 µM) and minocycline (100 µM; ROS scavenger)
for 30 min, then incubated with SIN-1 (100 µM) for 1 h, washed three times with PBS, and
imaged. The fourth group was incubated with NAF-BN (10 µM) for 30 min, then incubated
with PMA (50 µM) and LPS (50 µM) for 4 h, washed three times with PBS, and imaged. In
addition, cell nuclei were stained with DAPI for 30 min, washed with PBS, and imaged.
Confocal shooting: DAPI was acquired using an excitation wavelength of 405 nm and an
emission wavelength range of 410–450 nm (blue channel). Probe fluorescence imaging was
acquired using an excitation wavelength of 600 nm and an emission wavelength of 690 nm
(red channel).

2.4. Fluorescence Imaging of Drosophila Brains

Wild-type Drosophila (w1118) was purchased from TsingHua Fly Center. Drosophila
were fed with corn flour syrup medium and bred at room temperature. The experimental
procedure from [75] was adopted. The experiments were divided into three groups, each
containing three brains. In the first group, Drosophila brains were treated with NAF-BN
(50 µM) for 30 min, then washed with PBS and imaged. In the second group, Drosophila
brains were first treated with SIN-1 (3 mM) for 4 h, then exposed to NAF-BN (50 µM)
for 30 min and finally cleaned with PBS for imaging. In the third group, Drosophila was
treated with imidacloprid (10 ppm), and the isolated Drosophila brains were incubated with
NAF-BN (50 µM) for 30 min, then washed with PBS and imaged.

Imidacloprid was prepared as a 1000 ppm solution in DMSO and was further diluted
to 10 ppm with 5% sucrose solution for exposure experiments. DMSO was substituted
for imidacloprid and added to 5% sucrose solution as a control. Fluorescence imaging
was performed using a fluorescent stereomicroscope (Mshot, MZX81, Guangzhou, China)
equipped with an Olympus 1× flat-field compound achromatic objective. The excitation
wavelength range used was 590–650 nm, with a 660 nm filter, and the collection wavelength
range was 663–737 nm.

3. Results and Discussion
3.1. Design and Synthesis

Naphthofluorescein is a highly efficient NIR fluorescent backbone that has been used
in the design of various fluorescent probes due to its chemical stability, facile modification,
NIR emission, and superior biocompatibility [76]. Among several naphthalene fluorescein
skeletons (Figure S1), NAF-OH, with the advantages of NIR emission and chemical stability,
was chosen as the fundamental backbone, whereas structures 1, 2, and 3 produce shorter
emission wavelengths [77,78]. In addition, another notable factor is that NAF-OH com-
prises a phenolic hydroxyl structure with a pKa of 7.99 ± 0.02 in the physiological pH range,
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which facilitates the opening of the lactone spiro ring to emit fluorescence. In contrast,
structures 4 and 5 have higher pKa values [76], are ketones in the physiological pH range,
and cannot provide electrons to generate a fluorescence effect. The benzyl boronic acid ester
was built as the recognition group to shield the NAF-OH naphthol, providing a lactone
spirocyclic closed structure to quench the fluorescence. The presence of a carboxyl group
with a spironolactone structure (closed-loop state) could result in the whole molecular
backbone structure of the probe adopting a non-conjugated structure, with no absorption
or fluorescence. Once interacted with ONOO−, the boronic ester, as recognition module
of NAF-BN, would be oxidized. A subsequent secondary hydrolysis reaction leads to the
production of tertiary alcohols, which facilitate the departure of protecting groups and
the formation of naphthol structure NAF-OH. Such a structural transformation triggers
the opening of the lactone spiro ring to form carboxylates by electron redistribution and
fluorescence release. The sensing mechanism of NAF-BN has been demonstrated by MS in
Figure S2, a peak for NAF-OH was found in the mass spectrum of NAF-BN after reaction
with ONOO−. The specific synthetic route of NAF-BN and the details of the materials and
instruments used in this study are provided in the supplementary materials.

3.2. Sensing Abilities of NAF-BN

The optical response of the probe NAF-BN to ONOO− in phosphate buffer was
confirmed by UV–vis and fluorescence spectroscopies. Prior to treatment with ONOO−,
no absorption could be observed with only NAF-BN. However, upon in the presence of
100 µM ONOO−, a distinct absorption band emerged, with an absorption peak at 620 nm
(Figure 1a). Whereas NAF-BN demonstrated negligible fluorescence emission initially, the
addition of 100 µM ONOO− resulted in a remarkable 50-fold fluorescence enhancement
at 695 nm (Figure 1b). The absorption and emission spectra of NAF-OH overlap with
the absorption and emission spectra of NAF-BN + ONOO−, this could prove that the
fluorescence produced after the reaction is attributed to the release of NAF-OH (Figure S3).
The quantum yield in the fluorescence-on state is 0.125, whereas in the fluorescence-off
state it is 0.0026. The observed increase in fluorescence intensity is believed to be a conse-
quence of the ONOO−-mediated opening of the naphthofluorescein ring structure. The
naphthol group present in NAF-OH is highly susceptible to protonation and deprotonation
at different pH levels, which may alter fluorescence behavior of the probe. Therefore, we
verified the response of NAF-BN to ONOO− at different pH levels (Figure S4). The results
showed that ONOO−-induced fluorescence turn-on behavior was minimally affected in
neutral and weakly alkaline environments, whereas low pH values resulted in fluorescence
quenching. The fluorescence intensity is highly sensitive to even small changes in pH;
this will be a potential limitation of the probe. As presented in Figure S5, the fluorescence
response of NAF-BN at different pH values is mainly attributed to the protonation state of
NAF-OH. In alkaline environments, NAF-OH is a ketone and the lactone opens the ring,
releasing fluorescence. To replicate the in vivo detection environment, the physiological
pH (pH = 7.4) was chosen as the working pH for subsequent experiments.
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Figure 1. Absorption (a) and fluorescence spectra (b) of NAF-BN (5 µM) before (black line) or after
(red line) reaction with ONOO− (100 µM) for 15 min in phosphate buffer (100 mM PB, pH 7.4, with
50% of DMSO). λex = 600 nm; slits = 5 nm/5 nm. Inset: change in solution before and after the
reaction of the NAF-BN with ONOO− under daylight or UV lamp (365 nm).

In biological systems, ONOO− reacts rapidly with bio-reductive substances such as
thiol-containing molecules or proteins. Thus, it is essential that the probe used to detect
ONOO− presents a fast response time to track such dynamic changes. To evaluate the
response time of NAF-BN, the probe was reacted with varying concentrations of ONOO−.
As illustrated in Figure 2a, NAF-BN exhibited an obvious fluorescence response to all
three different concentrations of ONOO−. The fluorescence signal reached a maximum
and stabilized within 100 s after the addition of 100 µM ONOO−. Notably, even at lower
concentrations (20 µM) of ONOO− the reaction equilibration could be reached in a relatively
fast time (5 min). As the lifetime of ONOO− under the conditions used is <1 s, the delayed
formation of the fluorescence intensity must be due to the dynamics of the release of the
quinone product from the primary phenolic product of NAF-OH. These results indicate
that NAF-BN exhibits a short response time (within 100 s) to ONOO− and can potentially
be used to detect ONOO− in biological systems.

The sensitivity and quantitative detection ability of a probe are crucial factors for its
utility in biological systems. Therefore, in this study we investigated the sensitivity of
NAF-BN to ONOO− through titration experiments. As shown in the figure (Figure 2b), the
fluorescence emission gradually increased with the increasing concentrations of ONOO−.
A linear relationship was observed between the concentrations of ONOO− and the flu-
orescence emission intensity at 695 nm in the range of 0–5 µM, indicating that NAF-BN
can achieve effective detection of ONOO− in this concentration range (Figure 2c). The
calculated limit of detection (LOD) of the probe NAF-BN was found to be 436 nM, which
is in the physiological concentration range of ONOO− [6]. This implies that the probe can
potentially be used to monitor endogenous ONOO− levels in biological systems.

In order to eliminate the interference of common ROS/RNS and thiols in detection
for ONOO−, the selectivity of NAF-BN towards ONOO− is particularly important. As
depicted in Figure 2d, the fluorescence signal of the probe remains negligible and does
not interfere with ONOO− detection even if the interferer concentration is 10 times higher
than that for ONOO−, except for H2O2. We also re-tested the selectivity of NAF-BN in
acetonitrile and 1,4 dioxane with generally similar results (Figure S9). It is noteworthy that
the reaction of H2O2 and boronates has been reported; however, the reaction rate of H2O2
to boronates is much slower than that of ONOO−, with a difference of several orders of
magnitude between their reaction rates [64], which is consistent with our experimental
results (Figure S7). This finding suggests that NAF-BN is selective towards ONOO− and
exhibits no significant interference from H2O2 during short incubation times (15 min) at
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pH 7.4. We further investigated the effect of pH on the selectivity of NAF-BN towards the
detection of ONOO−. At pH = 9, H2O2 interfered with the detection of ONOO− due to
accelerated reaction kinetics (Figure S8). Overall, NAF-BN has excellent chemical stability,
near-zero fluorescence background, a 200 s response time, and good selectivity at pH 7.4,
meaning it has the potential for ONOO− fluorescence imaging of live cells and organisms.
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concentrations of ONOO−. (b) The changes in the fluorescence spectra of NAF-BN upon the addition
of different concentrations of ONOO− for 15 min. (c) Fluorescence intensity changes of NAF-BN
(5 µM) at 695 nm as a function of the concentrations of ONOO− (0–100 µM). The fluorescence intensity
changes as a function of the low concentration of ONOO− from 0 to 5 µM and was linearly fitted
(inset). (d) Fluorescence response to NAF-BN and different analytes for 15 min: ClO−, 1O2, NO2

−,
NO, O2

−, OH, Cys, Hcy, GSH, glucose, H2O2 (1 mM); ONOO− (100 µM); and SOD (50 U/mL).
All experiments were performed in phosphate buffer (100 mM PB, pH 7.4, with 50% DMSO), the
concentration of NAF-BN was 5 µM; λex = 600 nm; slits = 5 nm/5 nm.

3.3. Bioimaging of ONOO− in HeLa Cells

Prior to imaging live cells, it is crucial to verify the toxicity of the probe to ensure
its biocompatibility. Here, we performed a CCK-8 assay to evaluate the cytotoxicity of
NAF-BN towards mouse breast cancer cells (4T1 cells) and human normal liver cells (HL-
7702 cells). The cells were treated with various concentrations of NAF-BN and NAF-OH
for 24 h and then cell viability was assessed. As illustrated in Figure 3a and Figure S10,
even at 50 µM NAF-BN showed low cytotoxicity towards the cells. Incubation with
NAF-BN + SIN-1 had little effect on cell viability (Figure S12), whereas cells incubated
with NAF-BN + PMA/LPS retained over 60% cell viability after 24 h, demonstrating
that this sensing reaction may have some cytotoxicity potential. However, as shown in
Figure S11, a significant decrease in cell viability occurred at NAF-OH concentrations above
10 µM, whereas concentrations below 0.01 µM are safe for cells.

Here, we performed a fluorescence imaging experiment in HeLa cells to investigate
the imaging ability of NAF-BN for both exogenous and endogenous ONOO− (Figure 3b).
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Almost no fluorescence was observed in cells incubated with only 10 µM NAF-BN, sug-
gesting low levels of ONOO− in HeLa cells. We then stimulated the production of ONOO−

by treating the cells with 100 µM SIN-1, a generator of ONOO−. The fluorescence signal
was significantly enhanced, suggesting that NAF-BN is capable of detecting exogenous
ONOO−. To verify the specificity of NAF-BN for ONOO−, we treated the cells with
SIN-1 followed by 100 µM minocycline (ONOO− cleavage agent). As expected, the re-
sults showed that the fluorescence signal was weakened, indicating that ONOO− was
cleared successfully and that the fluorescence signal indeed originated from ONOO−.
In the following, we aimed to stimulate endogenous ONOO− production in HeLa cells
and observed it with NAF-BN. We used PMA and LPS to co-treat the cells and observed
a significant fluorescence signal, supporting the ability of NAF-BN to detect oxidative stress
in cells. In vitro experiments have demonstrated that NAF-BN also responds to hydrogen
peroxide. Therefore the fluorescence emission may also originate from hydrogen peroxide
produced by the cells. However, the probe reacts faster with peroxynitrite than hydrogen
peroxide under the same conditions, so the fluorescence emission is mainly attributable to
the oxidation of the probe by peroxynitrite. Quantitative statistics showed that the aver-
age fluorescence of cells treated with SIN-1 or PMA/LPS was enhanced by 10.3-fold and
10.9-fold, respectively, compared with untreated cells (Figure 3c). In summary, NAF-BN has
good biocompatibility as well as excellent imaging ability for exogenous and endogenous
cellular ONOO−.
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Figure 3. (a) Cell viability of HL-7702 cells incubated with different concentrations of NAF-BN, as
assessed by CCK-8 assays (incubation time 24 h). (b) Fluorescence imaging of HeLa cells: (A1–A4)
the cells incubated with NAF-BN for 30 min; (B1–B4) the cells incubated with NAF-BN for 30 min
followed by the addition of SIN-1 (100 µM) for another 1 h; (C1–C4) the cells incubated with NAF-BN
and minocycline (100 µM; ROS scavenger) for 30 min, followed by incubation with SIN-1 (100 µM)
for 1 h; (D1–D4) the cells incubated with NAF-BN for 30 min, then treated with PMA (50 µM) and
LPS (50 µM) for 4 h; blue channel: DAPI staining. All experiments were performed with 10 µM
NAF-BN. The scale bar is 40 µm. (c) The histogram represents the mean fluorescence intensities of
the corresponding cells. **** Indicates a significant difference (p < 0.0001), n = 4.
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3.4. Bioimaging of ONOO− in Drosophila Brains

The imaging ability of NAF-BN for detection of ONOO− in an actual animal model
was further evaluated. The small size, ease of handling, and quick reproductive rate of
Drosophila make it a highly suitable model organism for the study of human diseases [79].
Imidacloprid is a neonicotinoid insecticide that acts as an agonist of insect nicotinic acetyl-
choline receptors (nAChRs) and negatively affects neurotransmission. Imidacloprid has
been confirmed to induce increased neurological damage and oxidative stress in the in-
sect brain [80,81]. Thus, NAF-BN was used to verify the possibility of pesticide-induced
oxidative stress in Drosophila brains. The fluorescence imaging results are presented in
Figure 4a. The brains of Drosophila treated with only NAF-BN showed no fluorescence
signal. Conversely, the brains treated with 3 mM SIN-1 and NAF-BN exhibited red fluores-
cence, demonstrating that the normal Drosophila brain has low expression of endogenous
ONOO−. Next, we treated Drosophila with 10 ppm imidacloprid; a clear red fluorescence
could be observed, confirming the production of endogenous ONOO− or H2O2. Since
NAF-BN reacts much more slowly with hydrogen peroxide than peroxynitrite at pH 7.4
under the same conditions, we consider that the fluorescence emission is mainly attributed
to peroxynitrite. These findings suggest that ONOO− may originate from imidacloprid-
induced oxidative stress. The binding sites of Drosophila nicotinic acetylcholine receptors
(nAChRs) exposed to low doses of imidacloprid are occupied by imidacloprid, resulting in
a continuous opening of Ca2+, K+, and Na+ cation channels, a continuous influx of cations
into neurons, and increased oxidative stress [82]. Our statistical quantification of the above
images yielded that the average fluorescence of brains treated with SIN-1 or imidacloprid
was signally enhanced (Figure 4b). The fluorescence imaging experiments with HeLa cells
and Drosophila brains highlight the potential of NAF-BN as a powerful tool for the detection
of ONOO− levels in organisms.
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Figure 4. (a) Fluorescence imaging of ONOO− in Drosophila brains: (A1–A3) the brains incubated
with NAF-BN for 30 min; (B1–B3) the brains incubated with SIN-1 (3 mM) for 4 h followed by the
addition of NAF-BN for another 30 min; (C1–C3) the Drosophila were treated with imidacloprid
(10 ppm), then the separated brains were incubated with NAF-BN for 30 min. All experiments
were performed with 50 µM NAF-BN. The scale bar is 100 µm. (b) The histogram represents the
mean fluorescent intensities from the corresponding images. **** Indicates a significant difference
(p < 0.0001) compared with the control group, n = 3.
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4. Conclusions

In conclusion, we have introduced NAF-BN, a NIR fluorescent probe capable of
detecting ONOO− levels in cells and living organisms. The probe is based on a naphthalene-
based fluorescein scaffold, which exhibits near-infrared fluorescence emission at 695 nm.
The polycyclic-conjugated structure provides stability to the probe and the benzyl boronic
acid ester moiety allows for fluorescence activation to achieve a fluorescence “off-on”
response. NAF-BN possesses exceptional fluorescence sensitivity and good selectivity and
stability for the accurate detection of ONOO− in complex physiological environments.
Furthermore, our results show that NAF-BN is capable of detecting and imaging exogenous
ONOO− from living cells, as well as in Drosophila brains. NAF-BN represents an important
tool for the study and analysis of the pathophysiological functions of ONOO− in biological
systems. Its excellent imaging ability make it a promising probe for future applications in
the detection of ONOO− in various biological and medical research fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors11050286/s1, Scheme S1: Synthetic route of NAF-OH
and NAF-BN; Figure S1: Structures and properties of naphthofluoresceins; Figure S2: HRMS spec-
trum of NAF-BN (5 µM) after 15 min of reaction with ONOO− (100 µM), (a) full spectrum, (b) the
spectrum of m/z = 400–460, (c) the spectrum of m/z = 810–900; Figure S3: Absorption (a) and fluo-
rescence spectra (b) of NAF-OH (blue line; 5 µM) and NAF-BN (5 µM) after reaction with ONOO−

(100 µM) for 15 min (red line) in phosphate buffer (100 mM PB, pH 7.4, with 50% DMSO).
λex = 600 nm; slits = 5 nm/5 nm; Figure S4: Effect of different pH values on the fluorescence of
NAF-BN (5 µM) or NAF-BN (5 µM) with ONOO− (100 µM) after 1 h in phosphate buffer (100 mM PB,
pH 7.4, with 50% DMSO). λex = 600 nm, λem = 695 nm; Figure S5: Fluorescence spectra of NAF-OH
(5 µM) at different pH values, λex = 600 nm, λem = 695 nm; Figure S6: Fluorescence response to
NAF-BN (5 µM) with different concentrations of ONOO− for 15 min, λex = 600 nm, λem = 695 nm;
Figure S7: (a) Reaction of NAF-BN (5 µM) with ONOO− (100 µM) or H2O2 (100 µM); fluorescence
intensity at 695 nm versus time (0–300 s). (b) Reaction of NAF-BN (5 µM) with H2O2 (100 µM);
fluorescence intensity at 695 nm versus time (0–300 min). λex = 600 nm, λem = 695 nm; Figure S8:
Effect of different pH values on the fluorescence of NAF-BN (5 µM) after reaction with ONOO−

(100 µM) or H2O2 (100 µM) after 1 h in phosphate buffer (100 mM PB, pH 7.4, with 50% DMSO).
λex = 600 nm, λem = 695 nm; Figure S9: Fluorescence response to NAF-BN and different analytes
for 15 min: ClO−, 1O2, NO2

−, NO, O2
•−, •OH, Cys, Hcy, GSH, glucose, H2O2 (1 mM); ONOO−

(100 µM); and SOD (50 U/mL). All experiments were performed in phosphate buffer (100 mM PB,
pH 7.4, with 50% DMSO); the concentration of NAF-BN was 5 µM; λex = 600 nm; slits = 5 nm/5 nm.
(a) Acetonitrile/PB, 1/1, (b) 1,4-dioxane/PB, 1/1; Figure S10: Cell viability of 4T1 cells incubated
with different concentrations of NAF-BN, as assessed by CCK-8 assays (incubation time 24 h);
Figure S11: Cell viability of HL-7702 and 4T1 cells incubated with different concentrations of
NAF-OH, as assessed by CCK-8 assays (incubation time 24 h); Figure S12: Cell viability of HL-
7702 and 4T1 cells incubated with NAF-BN and SIN-1 or NAF-BN and PMA/LPS, as assessed by
CCK-8 assays (incubation time 24 h); Figure S13: 1H NMR spectrum of NAF-OH; Figure S14: 13C
NMR spectrum of NAF-OH; Figure S15: 1H NMR spectrum of NAF-BN; Figure S16: 13C NMR
spectrum of NAF-BN; Figure S17: HRMS spectrum of NAF-OH; Figure S18: HRMS spectrum of
NAF-BN. References [75,83–85] are cited in the supplementary materials.
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