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Abstract: In this work, MXene/NiO-composite-based formaldehyde (HCHO) sensing materials
were successfully synthesized by an in situ precipitation method. The heterostructures between
the MXene and NiO nanoparticles were verified by transmission electron microscopy (TEM), X-ray
diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The HCHO sensing performance
of the MXene/NiO-based chemiresistive-type sensors was investigated. Compared to pure MXene
and NiO materials, the sensing performance of the MXene/NiO-P2-based sensor to HCHO gas at
room temperature was significantly enhanced by the formation of MXene/NiO heterojunctions. The
response of the MXene/NiO-P2 sensor to 50 ppm HCHO gas was 8.8, which was much higher than
that of the pure MXene and NiO. At room temperature, the detectable HCHO concentration of the
MXene/NiO-P2-based sensor was 1 ppm, and the response and recovery time to 2 ppm HCHO was
279 s and 346 s, respectively. The MXene/NiO-P2 sensor also exhibited a good selectivity and a
long-term stability to HCHO gas for 56 days. The in situ Fourier transform infrared (FTIR) spectra
of the MXene/NiO-P2 sensor, when exposed to HCHO gas at different times, were investigated to
verify the adsorption reaction products of HCHO molecules.

Keywords: chemiresistive-type formaldehyde sensor; MXene/NiO; heterojunctions; room temperature

1. Introduction

Formaldehyde (HCHO) is a highly toxic volatile organic compound (VOC) gas. It is
mainly obtained from manufacturing and building decoration materials. Formaldehyde
is also recognized as one of the most serious pollutants and carcinogenic VOC gases in
indoor and urban environments [1,2]. Formaldehyde can react in the upper respiratory
tract of people’s eyes, noses, and can cause throat irritation resulting in throat discomfort,
headache, nausea, etc. Direct exposure to excessive formaldehyde gas may also damage
the human central nervous system, causing immune system disorder, and can seriously
threaten human health [3,4]. Therefore, it is necessary to develop a portable sensor that can
quickly and accurately identify formaldehyde gas in the environment.

Chemiresistive-type gas sensors based on metal oxide semiconductors have been
widely studied during the last few decades, due to their high response, long-term stability,
and low cost. However, the traditional metal oxide gas sensors usually work at a high
temperature (150–400 ◦C), which introduces a problem of high energy consumption, greatly
limiting the intelligent and integrated process of the gas sensors. To meet the low power
consumption requirements of portable formaldehyde sensors, there is an urgent need to
develop new sensing materials that can work at room temperatures. Two-dimensional (2D)
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nanomaterials such as graphene [5], reduced graphene oxide (rGO) [6], black phosphorus
(BP) [7], transition metal disulfides (TMDs) [8], and MXene [9] have attracted great interest
in the field of room temperature gas sensing materials, due to their excellent gas adsorption
capacity, which is due to their unique microstructures. Among them, MXene not only has
the characteristics of a high specific surface area and high conductivity similar to graphene,
black phosphorus, and other two-dimensional materials, but it also has the advantages of
adjustable chemical composition, controllable nanolayer structure, and abundant functional
groups on the surface, which allows it further to exhibit excellent chemical reactivity and
hydrophilicity [10–14]. MXene refers to a large family of two-dimensional (2D) transition
metal carbides, nitrides, and carbonitrides [10,15]. Ti3C2Tx is one of the most widely used
and well-studied examples of MXene. Ti3C2Tx MXene is obtained by selectively etching
Al from its MAX phase with HF, where Tx represents various surface functional groups
such as -OH, -O, -F, etc. These functional groups can provide abundant active sites for
gas adsorption on the surface of MXene. Previous studies have showed that MXene has
obvious responses to several VOC gases (including acetone, ethanol, and ammonia) at room
temperatures, further confirming its application prospects in the field of room temperature
gas sensors [16]. However, the pure MXene-based sensors still suffer from low response
and poor selectivity. To improve the sensing performance, the modification of MXene
with metal oxide nanocrystals has been investigated [14,17–19]. Zhang et al. reported
the utilization of a room temperature formaldehyde sensor that used a MXene/Co3O4
composite [14]. He et al. reported that an MXene/SnO2 heterojunction-based sensor had
excellent sensitivity and selectivity to NH3 at room temperatures [17]; the improved sensing
properties were proposed to be attributed to the formation of the heterojunctions between
MXene and the metal oxide [14,17].

NiO is a typical p-type semiconductor with a band gap of 3.6–4.0 eV. In the past few
years, NiO with different morphologies and nanostructures have been widely used in gas
sensing [20–23]. A gas sensor based on the flower-like NiO prepared by San et al. showed
a high response and good selectivity to formaldehyde gas at 200 ◦C [20]. Hu et al. reported
the use of a hollow NiO sphere-polyaniline-composite-based gas sensor. Due to the hollow
structure and the formation of p-p heterojunctions, the sensor displayed a good sensing
performance to NH3 gas at room temperature [23]. Therefore, constructing MXene/NiO
heterojunction materials is considered to be a feasible design scheme to realize the detection
of formaldehyde gas at room temperatures.

In this paper, MXene/NiO composites were synthesized by an in situ precipitation
method. The prepared MXene/NiO-based chemiresistive-type sensor showed an excellent
sensing performance at detecting formaldehyde gas at room temperature. In particular, the
sensor based on MXene/NiO-P2 composite materials exhibited much higher sensitivity,
selectivity, and long-term stability to formaldehyde gas at room temperatures than those
of pure MXene materials, showing a promising prospect for formaldehyde detection at
low temperatures.

2. Experimental Section
2.1. Synthesis of MXene/NiO Composites

All chemical reagents used in this work were analysis grade without further purifica-
tion. The Ti3C2Tx MXene was purchased from Laizhou Kai Xi Ceramic Materials Co., Ltd.
(Yantai, China). The NiSO4·6H2O and NaOH were of analysis grade and were purchased
from Aladdin Chemical Reagents. The chemical preparation process of MXene/NiO is
shown in Scheme 1. Firstly, 384 mg, 512 mg, and 768 mg NiSO4·6H2O were, respectively,
added into 30 mL deionized water to prepare three different concentrations of NiSO4 solu-
tions. Secondly, 200 mg MXene was then added to the above prepared NiSO4 solutions to
obtain uniform suspension by stirring for 0.5 h at room temperature (RT), and then a 30 mL
1 mol/L NaOH aqueous solution was dropped into the solution. After being stirred for
2 h, the precipitates were collected and washed three times with deionized water and three
times with ethanol. Then, the samples were dried at 60 ◦C for 24 h. Finally, the MXene/NiO
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composite materials were obtained after being calcined at 350 ◦C for 2 h under N2, which
were denoted as MXene/NiO-P1, MXene/NiO-P2, and MXene/NiO-P3. Furthermore, the
pure NiO was also prepared for comparison purposes. Firstly, Ni(NO3)2·6H2O was added
into the deionized water to prepare Ni(NO3)2 solutions. Then, the solution was transferred
into a Teflon-lined autoclave and maintained at 180 ◦C for 12 h. Finally, the precipitate,
after washing by deionized water and ethanol, was annealed at 400 ◦C for 4 h to obtain
NiO material.
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Scheme 1. Chemical preparation process of the MXene/NiO materials.

2.2. Characterization

The crystalline structures of the materials were measured by X-ray diffraction (XRD:
Bruker D8 Advance, Mannheim, Germany) using Cu Kα1 radiation (λ = 0.15406 nm)
in the range of 5◦ to 90◦. The surface morphologies and microstructure of the samples
were characterized by using scanning electron microscopy (SEM: Regulus8100, Hitachi,
Tokyo, Japan) and transmission electron microscopy (TEM: Tecnai G2 F30, FEI, Hillsboro,
OR, USA). X-ray photoelectron spectroscopy (XPS: ESCALAB 250Xi, The Semel fisher
technologies, Boca Raton, FL, USA) with an Al Kα radiation source (hv = 1486.6 eV) were
used to analyze the surface elemental composition of the materials. The Fourier transform
infrared (FTIR) spectra were characterized by an FTIR spectrometer (The Semel fisher
Nicolet iS5, Boca Raton, FL, USA), which was used to verify the adsorbed species on the
surface of the sensing materials.

2.3. Sensor Fabrication and Electrical Measures

As shown in Figure S1a, the prepared MXene/NiO composite powders were added to
an agate mortar, and then 4–5 drops of deionized water was added to it. After grinding for
10 min, a uniform paste was obtained, which was evenly dropped onto the interdigitated
electrodes. Finally, the interdigitated electrodes coated with the sensing materials were
dried in an oven at 60 ◦C for 12 h to obtain the sensor based on MXene/NiO composites
(Figure S1b). As shown in Figure S1c, the sensing measurements were performed in a static
gas sensing test system with a total capacity of 50 L, which was equipped with a digital
multimeter (Keysight 34465A), DC power supply (KEYSIGHT E36311A), as well as an
evaporation platform and computer. After the resistance of the sensor was stabilized in
air, different volumes of the calculated target liquid were injected into the closed chamber
with micro syringes. A specific concentration of the VOC gas testing environment was
created by vaporizing the corresponding liquid. The resistances of the sensors were directly
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measured by a digital multimeter. The response of the sensor was defined as the resistance
of the sensor in the target gas divided by that in air, as shown in reaction (1).

S =
Rg

Ra
(1)

Here, Ra is the resistance in air and Rg is the resistance in the target gas. Response
time (Tres) is defined as the time that it takes for the sensor to reach 90% of the change in
its stable resistance after being exposed to the measured gas. The recovery time (Trec) is
defined as the time taken by the sensors to achieve 90% of the total resistance change in the
case of desorption of the tested gas.

3. Results and Discussion
3.1. Characterization of Sensing Materials

Figure 1a,b show the SEM images of the MXene and MXene/NiO-P2 materials, re-
spectively. It can be seen that MXene presents an obvious lamellar structure with a flat
and smooth surface. As shown in Figure 1b, after becoming a composite with NiO, the
surface of the MXene/NiO-P2 material becomes obviously rough. Some NiO nanoparticles
are covered on the surface of MXene, and some are randomly embedded in MXene layers.
The SEM images of MXene/NiO-P1 and MXene/NiO-P3 are shown in Figure S2. It can be
noticed that the NiO nanoparticles are also randomly distributed on the surface and the
interlayer of the MXene material. The TEM images (Figure 1c,d) of MXene/NiO-P2 further
clearly display that there are some nanoparticles attached to the thin and transparent MX-
ene sheets, which should be NiO nanoparticles. A high-resolution TEM (HRTEM) image of
the MXene/NiO-P2 composite is shown in Figure 1e, where clear lattice fringes and grain
boundaries between the NiO nanoparticle and MXene can be seen. The 0.20 nm lattice
spacing measured from the image is consistent with the (200) crystal plane spacing of cubic
NiO. In addition, the lattice spacing of 0.25 nm corresponds to the (006) crystal plane of
Mxene [24]. Figure 1f shows the corresponding selected area electron diffraction (SAED)
pattern of Mxene/NiO-P2, in which the three diffraction lines in the innermost circle corre-
spond to the crystal planes ((111), (200), and (220) of NiO, respectively). Figure 1g–j further
exhibit the element mapping images of the MXene/NiO-P2 sample. The C, Ti, O, and Ni
elements are evenly distributed in the sample, indicating that the NiO nanoparticles were
uniformly modified on the surface of the MXene.

To investigate the crystallographic information and phase composition of the materials,
the XRD patterns of MXene, NiO, and MXene/NiO-P2 samples were obtained, and are
displayed in Figure 2. All of the diffraction peaks of NiO matched well with the NiO
bunsenite phase (JCPDS card NO.47-1049), and the characteristic peaks located at 37.2◦,
43.3◦, 62.9◦, 75.4◦, and 79.4◦ corresponded to the (111), (200), (220), (311), and (222) lattice
planes of NiO, respectively. The characteristic peaks of pristine MXene were located at the
2θ of 9.1◦, 18.3◦, 27.5◦, 34.5◦, 36.8◦,40.9◦, and 60.7◦, which are related to the (002), (004),
(006), (0010), (103), (0012), and (110) lattice planes of MXene, respectively [25,26]. The (0010),
(103), (0012), and (110) peaks contributed to the −OH-terminated surface group, which is
consistent with previous literature reports [27]. For the MXene/NiO-P2 composites, the
characteristic peaks all corresponded to MXene and NiO, indicating the successful synthesis
of the MXene/NiO-P2 nanocomposites. In addition, compared with the pristine MXene,
the (002) peak of MXene/NiO-P2 shifted to the lower angle, which can be attributed to the
intercalating of NiO among the interlayers of MXene [28].
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To further explore the chemical composition and bonding state of the materials, the
XPS spectra of pristine MXene and MXene/NiO-P2 composites were obtained, and are
exhibited in Figure 3a–f. Figure 3a shows the survey spectra of MXene and MXene/NiO-P2.
The peaks of C, Ti, O, and F elements could be observed in MXene. For the MXene/NiO-P2
composites, the peaks corresponding to the C, Ti, O, F, and Ni elements could be found,
indicating the existence of NiO in the composites [20,29]. The existence of the F element
in MXene may be caused by the introduction of LiF in the etching process. Compared
with MXene, the signal intensity of F in the MXene/NiO-P2 material was greatly reduced,
indicating that a large amount of F− can be removed from the surface of MXene during
the preparation process. In Figure 3b, the two peaks of Ni 2p3/2 and Ni 2p1/2 located
at 855.5 eV and 873.4 eV corresponded to the typical Ni-O bonds of NiO, confirming the
existence of NiO in the MXene/NiO-P2 composites. The peaks with the binding energies
of 861.6 eV and 880.1 eV belonged to the shake-up satellite peaks ascribed to the Ni 2p3/2
and Ni 2p1/2, respectively [30]. The Ti 2p spectra of the MXene and MXene/NiO-P2 are
shown in Figure 3c,d. The two peaks positioned at 455.3 eV and 459.7 eV were assigned to
Ti 2p3/2 and Ti 2p1/2 of the Ti-C bond [12]. The peaks located at 457.2 eV and 462.9 eV were
assigned to the 2p3/2 and 2p1/2 orbits of Ti3+ in Ti3C2Tx MXene, and the peaks at 455.8 eV
and 461.5 eV were attributed to the 2p3/2 and 2p1/2 orbits of Ti2+ [31]. Compared with
pure MXene, the peak of Ti3+ in the MXene/NiO-P2 composites moved toward a higher
binding energy; this was due to the loss of electrons, which indicates the formation of the
MXene/NiO heterojunction [32,33]. Figure 3e shows the C1s’ characteristic spectrum of
MXene/NiO-P2, which is equipped with four peaks at 282.0 eV, 284.8 eV, 286.3 eV, and
288.6 eV, which correspond to C-Ti, C-C, C-O, and C=O, respectively [34]. Additionally,
the O1s spectra of MXene/NiO-P2 is seen in Figure 3f. The peaks located at 529.8 eV and
531.3 eV were attributed to the lattice oxygen (Olat) of NiO and the adsorbed oxygen (Oads),
respectively. In fact, surface-adsorbed oxygen was critical for the sensing materials since
the target gas interacted with them, giving sensitivity.

FTIR characterization is an effective means by which to understand the types of
chemical bonds in materials. As shown in Figure 4, the dips at 3458 cm−1 and 2924 cm−1

correspond to hydroxyl groups. The dip at 1635 cm−1 directly demonstrates the presence
of the C=O functional groups. For the NiO sample, the C=O bond may be assigned to the
adsorption of atmospheric CO2. The dips positioned at 1381 cm−1 and 1148 cm−1 belong
to the O-H and C-O functional groups, which are consistent with the result of XPS [35]. The
dips at 820 cm−1 and 545 cm−1 were attributed to C-H deformation vibrations and Ti-OH,
respectively [36,37]. The dip at 445 cm−1 was associated to the Ni-O bonds [38]. According
to the FTIR data, it can be concluded that the surface of MXene/NiO-P2 is rich in hydroxyl
and other oxygen-containing functional groups, which is conducive to the improvement of
gas sensing properties.

3.2. Electrical and Sensing Properties of Gas Sensors

Figure 5 shows the I-V curves of sensors based on MXene/NiO-P2, pure NiO, and
pure MXene in the voltage ranging from−5 V to +5 V. For the MXene/NiO-P2- and MXene-
based sensors, the voltage and current showed a linear relationship, which confirmed
the ohmic contact between the sensing material and the electrode. The larger slope of
the I-V curve indicates thar MXene has a very low resistance due to its excellent metallic
properties. Moreover, as is shown in Figure 5, a NiO sensor exhibits a high resistance at
room temperature, with the slope of its I-V curve being almost zero.
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The real-time resistance changes in the MXene/NiO-P2-based chemiresistive-type
sensor to 10–100 ppm HCHO at 25 ◦C and RH = 40% is shown in Figure 6a. When the
sensor was exposed to reductive HCHO gas, the resistance of the sensor rose sharply. When
the sensor was re-exposed to air, the resistance of the sensor immediately dropped back to
the previous resistance value. The MXene/NiO-P2 sensor exhibited a typical p-type sensing
behavior. The real-time resistance change curves of MXene/NiO-P1- and MXene/NiO-P3-
based chemiresistive-type sensors are also shown in Figure S3. It can be seen that with
the increase in NiO incorporation, the baseline resistance of the MXene/NiO composites
presented a gradually increasing trend; this was due to the high resistance of NiO, which
was consistent with the results of the I-V curves. Figure 6b shows the response curves
of the three MXene/NiO chemiresistive-type sensors. The response amplitude gradually
increased as the concentration of HCHO increased from 10 ppm to 100 ppm. Moreover, it
can be noticed that the MXene/NiO-P2 sensor displayed the highest response to HCHO,
and its response value to 100 ppm HCHO gas was 13.61 (Rg/Ra). Furthermore, it should
be mentioned that to exclude the effect of heat treatment during the preparation process
on the sensing properties of MXene, the sample of MXene-350C was obtained by calcining
the pristine MXene at 350 ◦C for 2 h under N2. As shown in Figure S4, the response
of the sensor based on MXene-350C to a concentration of 10–100 ppm HCHO at 25 ◦C
was extremely weak and almost negligible compared to MXene/NiO-P2. Therefore, the
improved response performance of MXene/NiO-P2 should be attributed to the formation
the of heterojunction. It is necessary to further explore the sensing performance of an
MXene/NiO-P2-based sensor to low concentrations of HCHO. As shown in Figure 6c,
the MXene/NiO-P2 sensor exhibits obvious response and excellent response/recovery
properties to 1–8 ppm HCHO at room temperature. The response and recovery times
of the MXene/NiO-P2 sensor to 2 ppm HCHO were 279 s and 346 s, respectively, as is
shown in the inset in Figure 6c. Furthermore, according to the standard given by the
National Institute of Occupational Safety and Health (NIOSH) and the World Health
Organization (WHO), the allowable limits of formaldehyde in the environment are 1 ppm
and 0.08 ppm, respectively [39]. Therefore, the limit of detection (1 ppm) of the prepared
formaldehyde sensor needs to be further enhanced. In the future work, noble metals (Au,
Pt, Pd, etc.) and TiO2, which has excellent sensing performance to formaldehyde gas, will
be considered to modify the prepared sensing material in order to further improve the limit
of detection (LOD) of the formaldehyde sensor [40,41]. Moreover, using UV irradiation
technology to optimize the LOD of the sensor is also worth studying in future work [42].
The fitting curve of the sensor response to 1–100 ppm HCHO is shown in Figure 6d. The
response of the MXene/NiO-P2 sensor displayed an approximately linear relationship with
HCHO concentration.



Chemosensors 2023, 11, 258 9 of 17

Chemosensors 2023, 11, x FOR PEER REVIEW 10 of 20 
 

 

response of the MXene/NiO-P2 sensor displayed an approximately linear relationship 
with HCHO concentration. 

 
Figure 6. (a) Real-time resistance changes in the sensors based on MXene/NiO-P2 to 10–100 ppm 
HCHO at 25 °C. (b) Response changes in the sensors based on MXene/NiO-P1, MXene/NiO-P2, and 
MXene/NiO-P3 to 10–100 ppm HCHO at 25 °C. (c) Real-time resistance changes in the MXene/NiO-
P2 sensor to the low concentrations (1–8 ppm) of HCHO at 25 °C. (d)The response fitting curves of 
the MXene/NiO-P2 sensor to 1–100 ppm HCHO at 25 °C. 

Figure 7 shows the response curves of NiO, MXene, and MXene/NiO-P2 sensors to 
10–100 ppm HCHO at room temperature. It can be seen that there is no obvious response 
from the pure NiO and pure MXene sensors to HCHO gas. However, the MXene/NiO-P2 
sensor displayed a high response to HCHO at room temperature, indicating that the con-
struction of MXene/NiO heterojunctions is the main factor by which to enhance the sens-
ing performance to HCHO at room temperatures. 

  

Figure 6. (a) Real-time resistance changes in the sensors based on MXene/NiO-P2 to 10–100 ppm
HCHO at 25 ◦C. (b) Response changes in the sensors based on MXene/NiO-P1, MXene/NiO-P2, and
MXene/NiO-P3 to 10–100 ppm HCHO at 25 ◦C. (c) Real-time resistance changes in the MXene/NiO-
P2 sensor to the low concentrations (1–8 ppm) of HCHO at 25 ◦C. (d)The response fitting curves of
the MXene/NiO-P2 sensor to 1–100 ppm HCHO at 25 ◦C.

Figure 7 shows the response curves of NiO, MXene, and MXene/NiO-P2 sensors to
10–100 ppm HCHO at room temperature. It can be seen that there is no obvious response
from the pure NiO and pure MXene sensors to HCHO gas. However, the MXene/NiO-
P2 sensor displayed a high response to HCHO at room temperature, indicating that the
construction of MXene/NiO heterojunctions is the main factor by which to enhance the
sensing performance to HCHO at room temperatures.
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To further investigate its sensing performance, the response curves of the MXene/NiO-
P2 sensor to 10 ppm HCHO were measured at different operating temperatures (25–80 ◦C),
and are shown in Figure 8a. As the temperature increased from 25 ◦C to 80 ◦C, the response
of the MXene/NiO-P2 sensor to 10 ppm HCHO gradually decreased, indicating that room
temperature (25 ◦C) is the optimum working temperature for the sensor. This may be
related to the fact that a higher working temperature can accelerate the desorption of
the gas molecules from the surface of the sensing material, thus leading to a decreased
response [43].
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Figure 8. (a) The response of the MXene/NiO-P2 sensor to 10 ppm HCHO at different operating
temperatures. (b)The response values and baseline resistances of the MXene/NiO-P2 sensor at
different humidities. (c) Selectivity of the MXene/NiO-P2 sensor to HCHO and other VOCs gases,
such as ammonia, ethanol, acetone, and methanol, with a concentration of 50 ppm at 25 ◦C. (d) The
repeatability of the MXene/NiO-P2 sensor to 10 ppm HCHO during the five testing cycles at 25 ◦C.

The influence of relative humidity on the sensing properties of the HCHO sensor
based on MXene/NiO-P2 was also studied, and is shown in Figure 8b. It can be seen
that the baseline resistance of the sensor decreases with the increase in humidity from
20% to 70%. This may be due to the fact that the adsorption of water molecules on the
sensing materials can improve the hole concentration of the p-type material by annihilating
electrons from the material, resulting in a decrease in material resistance [44]. However,
the response value of the sensor can remain relatively stable when the relative humidity
is below 50%. As the relative humidity was over 50%, the response showed an obvious
downward trend with the increase in the humidity. The phenomenon that higher humidity
inhibits sensing performance can be explained by the following two reasons: First of all,
when the humidity exceeds a certain level, the adsorption of water molecules will compete
for the active sites on the sensor surface with HCHO molecules—the higher the humidity,
the more active sites are occupied by water molecules. Secondly, HCHO is more easily
soluble in water, and high humidity will lead to a decrease in the effective concentration of
HCHO [45].
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The selectivity and repeatability properties of the MXene/NiO-P2-based sensor are
shown in Figure 8c,d, respectively. Figure 8c shows the response of the MXene/NiO-P2
sensor to 50 ppm formaldehyde, ammonia, ethanol, acetone, and methanol gas, indicating a
good selectivity to formaldehyde gas. In a real environment with multiple gas components,
it is very important to realize the interference-free detection of formaldehyde gas. As
reported in the literature, a sensing array is an efficient means by which to realize detection
in a mixed gas environment. Therefore, to construct the sensor array whilst including the
prepared formaldehyde sensor and the gas sensors with a high response to other gases
such as ammonia, ethanol, acetone, and methanol is worth studying [46–51]. The response
curve of the MXene/NiO-P2 sensor to 10 ppm HCHO at room temperature were tested
for five cycles, and the result is shown in Figure 8d. It can be noticed that the sensor based
on MXene/NiO-P2 showed good repeatability. Furthermore, it should be mentioned that
the change in the response base line in Figure 8a,d should be related to the long recovery
time of the sensor. In the test cycle that was conducted in a short time, the resistance of the
sensor could not recover to the initial state—such a result can also be found in a previous
report [52].

The sensing response to 10 ppm HCHO was measured every 7 days for 9 consecutive
measurements for a total of 56 days, as is shown in Figure 9. The response value can
always be maintained around 2.29, with a fluctuation of no more than 10%, indicating
that the sensor based on MXene/NiO-P2 had a good long-term stability. Furthermore,
the response baseline not being able recover to the initial state is also related to the long
recovery time of the sensor. Table 1 presents a comparison of the sensing performance
of the MXene/NiO-P2-based chemiresistive-type sensor in this work with the previously
reported HCHO sensor [53–57]. It can be seen that the MXene/NiO-P2-based sensor not
only can work at room temperature, but can also display a higher response value and lower
detection limit to HCHO gas.
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Table 1. Comparison of the performance of the sensors proposed in this work with previously
reported sensors for HCHO detection.

Sensing Material Temperature (◦C) Response LOD (ppm) Ref.

NiO/NiFe2O4 composite 240 17.5 (50 ppm) 0.1 [22]
NiO 3D flower 200 3.5 (100 ppm) 10 [23]

Pt/NiO 200 5.6 (300 ppm) 50 [53]
NiO Nanosheets 240 2.1 (50 ppm) 0.1 [54]

SnO2/Ti3C2Tx MXene 160 38.6 (20 ppm) 0.05 [55]
ZnSnO3/MXene RT 62.4% (5 ppm) 5 [56]

In2O3/Ti3C2Tx MXene/Au RT 31% (5 ppm) 5 [57]
Ti3C2Tx MXene/rGO/SnO2 RT 54.97% (10 ppm) 10 [19]

MXene/NiO RT 8.8 (50 ppm) 1 This Work

3.3. Gas-Sensing Mechanism

As discussed above, the MXene/NiO material, in this work, displayed a typical p-
type semiconductor characteristic. The sensing mechanism mainly corresponded with the
adsorption and desorption reactions of the gas molecules on the surface of the sensor. Once
the sensor was exposed to air, the oxygen molecules in the air were adsorbed on the surface
via a capturing of the electrons from the conduction band of the sensing materials, resulting
in chemisorbed oxygen. Since the MXene/NiO-based chemiresistive-type sensor was
operated at a room temperature, O2

− was the predominant adsorbed oxygen species [58,59].
The adsorption process is shown in Equation (2) and the left part of Figure 10a. Due to the
decrease in the electron concentration, the MXene/NiO sensor displayed a lower resistance
in air. When the sensor was exposed to HCHO gas, the HCHO molecules reacted with the
adsorbed oxygen, as is shown in Equations (3) and (4), and which were verified later by
the in situ FTIR spectra. As shown in the right part of Figure 10a, the captured electrons
were re-injected into the conduction band of the sensing material, thus reducing the hole
concentration and increasing the resistance of the sensor [60]. With the gradual progress of
the reaction, the surface-active site of the composite was almost completely occupied by
HCHO, and the sensor resistance tended to a stable maximum, so as to produce an obvious
sensing signal for HCHO.

O2(ads) + e− → O−2 (ads) (2)

2HCHO + O−2 (ads)→ 2HCOOH + e− (3)

2HCOOH + O−2 (ads)→ 2CO2 + 2H2O + e− (4)

Therefore, according to the above sensing processes, for the MXene/NiO-based sensor,
the excellent sensing performance was understood to be mainly due to the formation of
heterojunctions between MXene and NiO [61]. As shown in Figure 10b, the band gap of
MXene and NiO were about 1.14 eV and 3.6 eV, respectively, and the work functions were
4.79 eV and 5.5 eV, respectively [62,63]. Since the work function of MXene was lower than
that of the NiO nanoparticles, the electrons in the conduction band of MXene moved to the
NiO, and the holes in the valence band of NiO transferred to MXene, thus forming a hole
accumulation layer on the side of the MXene and a hole depletion layer on the side of the
NiO (Figure 10c). The charge transfer between MXene and NiO leads to an increase in free
electron concentration in the NiO material, which can enhance the adsorption of oxygen
molecules (Equation (2)), thus further promoting the occurrence of Equations (3) and (4).
More oxygen molecules and HCHO molecules taking part in the sensing reaction will
cause the MXene/NiO sensor to produce a larger resistance change in air and in HCHO
atmospheres, such that the MXene/NiO sensor can display a higher response signal to
HCHO gas.
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Furthermore, the high sensing performance of the MXene/NiO sensor was also re-
lated to the special structural characteristics of the MXene materials. Firstly, the MX-
ene material contains abundant surface functional groups, such as OH−, F−, and some
oxygen-containing functional groups, which can provide some growth locations for NiO
nanoparticles [13,64]. As shown in Figure 3a, the signal intensity of F− was reduced in the
MXene/NiO-P2 material. Secondly, the MXene has a layered structure with a high specific
surface area. The NiO nanoparticles were dispersed on the surface and the interlayer of the
MXene materials, as is shown in Figure 1b, thereby providing more surface-active sites for
HCHO adsorption. Therefore, more HCHO can be attracted to the interface region of the
MXene/NiO heterojunction, which releases electrons, thus making the change in sensor
resistance high enough to significantly improve the response at room temperature.

To further verify the transient intermediates and final products generated on the
surface of the MXene/NiO-P2 composites during the HCHO adsorption process, the
in situ FTIR of the sensor was measured, which is of great significance for exploring
the sensing mechanism. Figure 11 shows the in situ FTIR of the MXene/NiO-P2 sensor
in HCHO for 0 min, 1 min, 2 min, 5 min, and 10 min. The peaks at 1050 cm−1 and
1150 cm−1 corresponded to the C-O functional groups of the MXene material [65]. As the
increase in exposure time occurred in the MXene/NiO-P2 in HCHO gas, the formation
of some new substances can also be observed in Figure 11. The new peaks at 1352 cm−1

and 1413 cm−1 belong to molecularly adsorbed HCHO on the sensing material [66,67].
The peaks positioned at 1340 cm−1 and 1557 cm−1 correspond to the COO− symmetric
stretching and asymmetric stretching vibrations of formate species, respectively [68,69].
The peak centered around 1510 cm−1 belongs to the vibrations of formate species. The
above results indicate that the formate species is an intermediate product during the
HCHO adsorption process. The peaks at 1620 cm−1 and 1641 cm−1 were attributed to
the water molecules produced in reactions (3) and (4), while the peaks at 2343 cm−1 and
2360 cm−1 were associated with the CO2 species, confirming the production of CO2 in
Equation (4) [70].
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4. Conclusions
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