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Abstract: Metal ions play a crucial role in many biochemical processes, and when in a state of scarcity
or surplus, they can lead to various diseases. Therefore, the development of a selective, sensitive, cost-
effective, and fast-responding sensor to detect metal ions is critical for in vitro medical diagnostics.
In recent years, fluorescent sensors have been extensively investigated as potent kits for the effective
assessment of metal ions in living systems due to their high sensitivity, selectivity, ability to perform
real-time, non-invasive monitoring, and versatility. This review is an overview of recent advances
in fluorescent sensors for the detection and imaging of metal ions in biosystems from 2018 to date.
Specifically, we discuss their application in detecting essential metal ions and non-essential metal ions
for in vitro diagnostics, living cell imaging, and in vivo imaging. Finally, we summarize remaining
challenges and offer a future outlook on the above topics.
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1. Introduction

Metal ions are known to play indispensable roles in many critical biochemical pro-
cesses. The amount and dispersion of metal ions in body fluids have a significant impact on
the normal physiological function of the human body. In terms of their effects in biosystems,
the general public generally classifies metals into two categories: essential and non-essential.
Currently, it is widely recognized that there are ten essential metal ions for life, and our
body must have appropriate amounts of them [1–4], including potassium (K), sodium (Na),
calcium (Ca), magnesium (Mg), cobalt (Co), molybdenum (Mo), iron (Fe), copper (Cu),
zinc (Zn), and manganese (Mn). Among them, K, Na, Ca, and Mg make up over 99% of
the total metal elements in the human body, while the remaining six elements are present
in small amounts. When essential metal ions are maintained at normal levels (Table 1),
they play a crucial role in various physiological functions, including catalyzing enzymes,
participating in oxidative metabolism, and contributing to DNA synthesis [5–7]. Their
absence or disruption of homeostasis can lead to various diseases and health disorders.
On a different note, non-essential metal ions, such as mercury (Hg), silver (Ag), gold (Au),
and lead (Pb), are often harmful to human health. They are not easily biodegraded and
can accumulate in the human body through the biological amplification of the food chain.
These non-essential metal ions can react with and deactivate proteins and enzymes in the
human body, leading to chronic poisoning. It is important to note that the distinction
between essential and non-essential metal ions is somewhat relative, as even essential metal
ions can become toxic if their concentrations become too high [8]. Therefore, a selective,
facile, sensitive, cost-effective, and fast-responding sensor to detect metal ions is of great
significance for in vitro healthcare diagnostics and biological system imaging.
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Table 1. Normal level range of essential metal ions commonly found in biological systems.

Analytes Normal Level Range in Biological System Reference

Na+ 135–145 mM (serum) [9–11]
K+ 3.5–5.4 mM (serum), 19–66 mM (urea) [12,13]

Ca2+ 10−6 M (intracellular), 10−3 M (extracellular fluid) [14]
Mg2+ 0.65–1.05 mM (serum) [15]
Cu2+ 1.4–2.1 mg/kg (adult human body) [16]
Zn2+ 12–16 µM (serum) [17]
Fe3+ 14–32 µM (serum) [18]

Over the last few decades, various traditional analytical methods have been developed
to measure metal ions, including inductively coupled plasma mass spectrometry (ICP-
MS) [19], inductively coupled plasma–atomic/optical emission spectrometry [20], atomic
absorption spectrophotometry (AAS) [21], and flame atomic absorption spectrometry
(FAAS) [22]. However, these methods often require costly equipment, trained operators,
and complex sample preparation, rendering detection in the field and in real time difficult
to achieve. To address these limitations, fluorescent sensors for metal ion detection have
gained significant interest due to their high selectivity and sensitivity, ease of use, low
cost, and relatively short response time [6,23–25]. In addition, as a versatile enabling
tool with excellent biocompatibility, the fluorescent sensor enables simultaneous and non-
invasive imaging of metal ion distribution in biological systems in real time [6]. As a
result, fluorescent sensors have greatly contributed to our understanding of the generation,
positioning, transport, and bio-role of metal ions in complex living systems.

The last decade has seen unprecedented advances in the techniques of fluorescent sen-
sors. In addition, considerable progress has been achieved in the exploitation of fluorescent
probes with organic fluorescent dyes, benefiting from new fluorescent imaging techniques
because of their good biocompatibility, high spatiotemporal resolution, and accessibility to
chemical modifications. These features allow for the monitoring of the cellular localization
and dynamics of many of the biotargets. Although many reviews have been published
regarding fluorescent sensors that detect small molecules, including carbonyl species [26],
sulfite derivatives [27], glutathione [28,29], hydrogen peroxide [30], peroxynitrite [31], and
metal ions [32,33], only a few reviews have covered the advancement of metal ion sensors
in biological systems in detail. To fill this gap, we here provide a comprehensive review that
covers recent progress in metal ion sensors in the past five years, including reaction-based,
nucleic acid-based, and material-based sensors. We discuss their application in detecting
metal ions, including monovalent, divalent, and other metal ions, for in vitro diagnostics,
living cell imaging, and in vivo imaging. Finally, we outline the current limitations and
future directions in these areas.

2. Categorization of Fluorescent Sensors for Metal Ions

Numerous metal-ion sensors have been explored in the past five years. Despite
some ambiguity in the literature regarding these terms, we are guided by the widely
accepted consensus to divide new metal ion sensing systems into four categories, which
are genetically encoded biosensors, molecular probes, chemosensors, and nanosensors.

Genetically encoded biosensors consist of sensing elements and transduction elements.
The sensing element is used to receive input messages, which may come from metabolites,
chemistry, or the environment, and the transduction element converts the inputs to an
output signal, usually fluorescent [34]. There are different kinds of genetically encoded
biosensors, among which the most widely used in metal ion detection are fluorescent
protein-based biosensors [35] and nucleic acid-based biosensors [36]. Fluorescent protein-
based biosensors utilize a peptide or protein domain that functions as a metal binding site
(Figure 1A(a)). For single fluorescent protein-based sensors, upon metal ion binding, a
change occurs in the chemical or electronic environment surrounding the chromophore, re-
sulting in either a shift in the excitation or emission spectrum or a change in intensity [37,38].
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In biosensors with two fluorescent proteins, fluorescent resonance energy transfer (FRET)
is utilized to detect metal binding-induced conformational changes or protein-protein
interactions. To detect metal ions in living systems, fluorescent protein-based biosensors
are commonly used. However, this biosensor is not ideal for in vitro detection due to its
reliance on a highly stable intracellular environment.
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Figure 1. Schematic representation of genetically encoded biosensors, molecular probes, chemosen-
sors, and nanosensors. An emission turn-on response is shown as an exemplary signal response to the
presence of an analyte. (A) Genetically encoded biosensors: (a) fluorescent protein-based biosensors;
(b) nucleic acid-based biosensors; (B) molecular probes; (C) chemosensors; (D) nanosensors.

In contrast, the sensing element of nuclear acid-based sensors is usually designed
based on functional nucleic acids (FNA) [36,39] and DNA mismatch [40] (Figure 1A(b)).
Two primary types of functional DNA have been developed for metal sensing: G-quadruplex
(GQ) [41] and DNAzymes [42], which has a number of desirable properties to detect
metal ions [43]. First, FNAs are critically separated from a large DNA library containing
1014–1015 DNA molecules, which means that they are extremely selective. Second, DNA
can be produced from any designed nucleotide sequence and is easily functionalized
with the required chemical tags. Third, DNA is highly stable and can be denatured



Chemosensors 2023, 11, 226 4 of 33

multiple times before apparently losing its binding activity to metal ions. Finally, FNAs
do not require the deliberate design of metal binding sites, which are indispensable for
fluorescent protein-based biosensors. Moreover, genetically encoded DNA-based optical
sensors can be assembled continuously and efficiently through carefully designed DNA
sequences to generate signal amplification strategies such as hybrid chain reactions (HCR),
thus improving sensitivity and reducing detection limits. Therefore, genetically encoded
biosensors are widely used in metal ion biosensors and biological imaging in vitro and
in vivo.

Molecular probes are systems that form strong, largely irreversible bonds with their tar-
get analytes (Figure 1B). These specific interactions often result in a distinct optical response,
such as fluorescence emission or changes in absorbance bands [44]. Typically, molecular
probes are covalently bonded to their targets through organic reaction mechanisms, allow-
ing them to exhibit optical signals for in vivo imaging. In recent years, molecular probes
have been extensively developed because of their higher sensitivity, improved detection
accuracy, and relative simplicity of operation [45]. Particularly, they have attracted great
interest in the field of ion detection and have become promising tools for visualizing ion
migration, distribution, and concentration changes in biological systems [46–49].

Chemosensors reversibly bind metal ions in a reactive manner via a combination of
non-covalent binding interactions with the analyte in a selective and reversible manner,
and then alter one or more characteristics of the system in the form of color, fluorescence,
or redox potential (Figure 1C). The kinetics of binding and unbinding are frequently rapid
on the experimental/assay time scale, and the selection of the chromophore has a dramatic
effect with respect to these features. In recent years, two major classes of organic dyes
have been incorporated into organic molecule-based chemosensors as signal-reporting
units, including classic organic dyes and new organic dyes with aggregation-induced
emission (AIE). The former become quenched at higher concentrations or in the aggregated
state, such as BODIPY [50], porphyrins [51], coumarins [52], naphthalimides [53], and
rhodamines [54]. In contrast, the AIE dyes are strongly emitted in the aggregate or solid-
state [55]. These unique fluorescent properties give fluorescent chemosensors remarkable
capabilities in monitoring biologically relevant species in vitro and/or in vivo. Therefore,
the exploitation of fluorescent chemosensors for the sensing of metal ions has become a
highly active area of research.

Nanosensors are small-scale sensing devices with dimensions in the nanometer range,
which are small yet powerful tools (Figure 1D). These sensors boast high sensitivity, making
them ideal for the detection of low concentrations of target analytes in various fields [56–58],
including environmental monitoring, medical diagnosis, food and beverage analysis, and
industrial process control. In the design of nanosensors, the selection of the recognition
element is crucial, as it determines the specificity and sensitivity of nanosensors. This ele-
ment may take the form of a specific antibody, aptamer, or small molecule that is selectively
bound to the metal ion of interest [59]. Moreover, nanosensors can be fabricated from a
range of materials, including organic molecules, inorganic materials, and biomolecules. At
the same time, the choice of material depends on the desired properties of the sensor, such
as biocompatibility, stability, and sensitivity. One of the greatest advantages of nanosensors
is their ability to simultaneously detect multiple metal ions in a single assay. This feature
provides researchers with a complete picture of the status of metal ions in biological systems
and allows them to make informed decisions based on the data. Furthermore, the recent
advances in nanotechnology have enhanced the versatility and power of nanosensors,
making them vital for the measurement of metal ions in complex environments.

3. In Vitro Detection of Metal Ions

The presence and distribution of various metal ions in human body fluids, such as
blood, sweat, and urine, have a critical impact on human health [60–62]. Hence, in vitro
detection of these metal ions through analysis of human body fluid samples plays a crucial
role in disease prevention and early detection. Blood was previously the most common
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type of sample taken as part of a routine physical examination. Recently, saliva, urine,
and sweat have gained attention due to their abundant presence, diagnostic ability, and
non-invasive sample extraction.

3.1. Fluorescent Sensors for Essential Metal Ions
3.1.1. Na+

Sodium is considered to be the most common and critical metal ion in the environment
and in biology [63]. High sodium levels are reflections of physiological disorders, such
as hypertension and edema. In order to detect sodium ions, Liu and his co-workers
obtained a mutant of the NaA43 DNAzyme through in vitro selection with a slightly acidic
pH optimum and the same excellent specificity for Na+ [64]. This makes it particularly
useful for sodium sensing in environments such as the endosome and within cancer cells.
Additionally, preliminary work has shown that this DNAzyme can detect sodium in serum,
with a minimum detection threshold of 676 µM and a linear response at concentrations
below 20 mM.

The Lu group developed a novel CRISPR-Cas12a-based sensor, employing a Na+-
specific DNAzyme [65], as shown in Figure 2A. To link the DNAzyme recognition to Cas12a
activation, the DNA activator was embedded in the DNAzyme sequences and labeled
with biotin at the tail end. After Na+-catalyzed DNAzyme cleavage, the activation strand
dissociates from the binding arm. Recognition of the activation strand by the Cas12a-
crRNA complex triggers its trans-cleavage activity, which results in a turn-on fluorescence
signal. The sensor has a detection limit of 0.10 mM, which is well below the sodium level
normally found in human serum. Moreover, the sensor has been compared to a commercial
sodium meter and found to be highly accurate (Figure 2B). Additionally, the Kaur group
developed a highly selective fluorescent organic nanoparticle sensor based on Biginelli [66],
which can measure Na+ even in the presence of interfering K+. The sensor displayed a
linear detection range of 0–25 µM and a minimum detection concentration of 22 nM. The
practical applicability of this sensor has been demonstrated by successfully monitoring Na+

concentrations in sweat samples from the lower back and urine samples.

3.1.2. K+

Potassium is a vital cation for metabolic activity in living cells and is intimately
mediated through a variety of cellular mechanisms. Li’s team developed a transparent and
stable G-2FPB-K+ hydrogel for detecting K+ [67]. The hydrogel is highly selective for K+

and utilizes berberine to detect its formation during self-assembly. GQ is a unique nucleic
acid structure consisting of a guanine-rich sequence with four helices formed by several
stacked GQs [41]. Moreover, GQ manifests unique catalytic features upon interacting
with hemin, a cofactor typically present in hemoproteins [68]. Given that the assembly of
GQ requires cations, it could serve as a natural biosensor for specific cations. In another
work, Cheng and co-workers created a K+-specific biosensor based on a dimerized GQ,
whose enzymatic activity depends on the K+ concentration [69]. When K+ is available, the
monomer, acted on by three G-quartets, will assemble into a dimer of six G-quartets. The
sensor can detect K+ selectively in the range of 1–200 mM, even in the presence of up to
140 mM Na+ at ambient temperatures up to 45 ◦C.

Thioflavin T, or 4-(3,6-dimethyl-1,3-benzothiazol-3-ium-2-yl)-N,N-dimethylaniline
chloride, first used to detect misfolded proteins, was later found to emit intense fluores-
cence emission when combined with GQ. Subsequently, Buranachai discovered that low
concentrations of K+ (25.0–500 nM) can reduce Thioflavin T fluorescence by replacing the
dye in Thioflavin T-bimolecular GQ or Thioflavin T-tetramolecular GQ, as illustrated in
Figure 2C [70]. Therefore, they developed a label-free turn-off fluorescent sensor for the
detection of low K+ concentrations. This simple and low-cost sensor only requires sample
dilution and can be used with high accuracy for the direct detection of K+ in normal urine
samples, as shown in Figure 2D.
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3.1.3. Zn2+

Zinc is a vital micronutrient essential for numerous biological processes. Globally,
approximately 20% of the human race is considered to be at risk for zinc scarcity, which
can have a range of negative effects on growth, neurological function, reproduction, and
the immune response. The high selectivity of DNAzyme for metal ions makes it a classical
metal ion sensor. Despite the Zn2+-specific DNAzyme being first screened in 2009 [71],
achieving in vitro detection of metal ions bound to biological macromolecules remains
a major challenge. To address this limitation, Xing et al. developed a photocaged chela-
tor, XDPAdeCage, which can extract the Zn2+ from the blood serum [72]. Upon 365 nm
light irradiation, the chelated Zn2+ was released into the buffer and finally quantified by
8–17 DNAzymes. The sensor showed high selectivity, accuracy, and reusability, demon-
strating its potential for biological applications. On the other hand, the bioluminescent
protein-based sensor is another attractive tool for Zn2+ in complex media, such as blood
serum. Merkx and colleagues developed two new bioluminescent sensor platforms that
enable fast and accurate quantification of free Zn2+ in serum [17]. In the first platform, the
LuZi sensors use a modular design based on split NLuc complementation and BRET to a
red fluorescent Cy3 dye, producing a strong shift from red to blue upon binding to Zn2+.
The second platform, BLZinCh-Pro, replaces the long GGS linker with rigid polyproline
linkers, resulting in four different sensor proteins with 3–4 times better emission ratios and
Zn2+ affinities. These sensors were applied for measuring cytosolic free Zn2+ concentrations
between 543 and 992 pM. Both sensors yielded similar results for free Zn2+ concentration
in (diluted) serum of 1–3 nM.
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3.1.4. Cu2+

Copper (Cu) is an indispensable component of human life and is involved in various
biological processes, including metalloprotein composition and gene expression. Wu’s
team synthesized a series of near-infrared (NIR) luminescent ruthenium complexes, which
can be rapidly quenched by Cu2+, with remarkable selectivity for Cu2+ detection in human
serum [73]. In the same way, a new NIR BODIPY compound was reported by He et al. [74],
which can be induced to undergo fluorescence bursts by Cu2+, while Mn2+ can specifically
cause fluorescence enhancement.

CuI-catalyzed azide/alkyne cycloaddition (CuAAC) is commonly used for the detec-
tion of copper ions. The reaction of azide and alkyne is extremely slow, but the reaction rate
can be greatly improved with the catalysis of Cu+. Moreover, the reaction takes place at
room temperature, does not require an inert atmosphere, and the products are stable. These
features make the CuAAC reaction a mild sensing strategy, and its main advantage is its
dependence on the catalytic activity of copper. Jiang et al. introduced a quick and simple
fluorescent assay based on CuAAC for detecting free Cu ions in patient urine samples with-
out complex pretreatment [75], as shown in Figure 3A. The assay utilizes a click reaction
between graphene oxide and a fluorescent dye. This reaction can be triggered promptly by
Cu2+, thus allowing the detection of Cu ions with outstanding sensitivity and selectivity
in under a minute. Additionally, the system can be read values with a smartphone using
color scan software (Figure 3B). Similarly, Chen et al. developed a cascade signal amplifi-
cation strategy to detect Cu2+ [76], which is combined with a substrate consisting of gold
nanorods coupled with silver nanoislands to enhance fluorescence. In addition, the Raibaut
group proposed a turn-off luminescent peptide for Cu2+ [77], which proved suitable for the
detection of copper ions by time-resolved luminescence detection.
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Figure 3. Two representative examples of essential metal ion detection in vitro: (A) Schematic
illustration of the Cu2+ detection system based on click chemistry and FRET between GO-C2 and
Rho-N3. (B) Detection Cu in patient urine by reading the green value of the photo of the samples
using the smartphone. Reproduced from [75] with permission from John Wiley and Sons, copyright
2018. (C) Schematic illustration of the Fe3+ detection system based on nano-structured Mg-Al layered
double hydroxide intercalated with salicylic acid (Mg-Al LDH–SA). (D) The fluorescence emission
spectra of the deproteinized human serum sample before (a) and after adding a standard solution of
Fe3+ (b–d). Reproduced from [18] with permission from Elsevier, copyright 2019.
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3.1.5. Ca2+

Calcium (Ca2+) is the most abundant signal transduction messenger in cells, and
calmodulin (CaM) is a widespread Ca2+ sensor in eukaryotic cells [78]. Carbon dots
(CDs) are a class of zero-dimensional fluorescent carbon nanomaterials. Motivated by the
Ca2+ sensing process of CaM, Lin et al. explored a new CD-based Ca2+ sensor by using
a CaM mimetic peptide as a functional group [79]. CDs functionalized with synthetic
peptides can target Ca2+ specifically in biologically relevant media, leading to an effective
fluorescence burst. In addition, the f-CD sensor is highly biocompatible and can be used
for the quantitative detection of free Ca2+ in serum.

Metal-organic frameworks (MOFs) are a relatively new type of chemical sensor with
internal pores that can be used to interact with different analytes [80,81]. Masoomi’s team
first reported MOFs-based calcium-sensitive probes (TMU-5S) by introducing rhodamine B
into the framework of TMU-5 [82]. As a ratiometric fluorescent sensor, this dye-sensitized
MOF allows Ca2+ signaling in the presence of interfering cations similar to plasma ion
concentrations and exhibits exceptional sensitivity and selectivity for Ca2+ in the blood.

3.1.6. Fe3+

The iron content of human serum ranges from 14–32 µM. Since iron is critical for
hemoglobin synthesis and oxidation reactions in the body, iron deficiency and excess can
lead to various diseases. Monireh’s team developed Mg-Al LDH-SA nanomaterials, which
are composed of Mg-Al layered double hydroxides sandwiched by salicylic acid [18], as
shown in Figure 3C. The nanosensor emits at 404 nm under excitation at an excitation
wavelength of 287 nm. When Mg-Al LDH-SA encounters iron ions, the iron ions and sali-
cylic acid will form a stable complex, which leads to the decrease of its fluorescence signal.
In addition, this method was successfully used to measure ferric ions in human serum
samples (Figure 3D). Another promising Fe3+ sensor based on 2,5-dihydroxyterephthalic
acid (DOBDC)-Zn2+ MOFs (ZnMOF-74) was developed by Li et al. [83]. The DOBDC
phenolic hydroxyl groups are reactive to Fe3+, leading to cation conversion between Fe3+

and Zn2+. This results in skeleton collapse, causing quenching of the active fluorescence of
ZnMOF-74. This fluorescence probe successfully detected Fe3+ in human serum with high
accuracy and recovery. Later, the Zhang group synthesized fluorescent CDs from brewer’s
spent grain and used them as label-free probes for Fe3+ detection [84]. The sensor exhibited
a linear detection range of 0.3–7 µM with an LOD of 95 nM and was successfully applied
for practical Fe3+ determination in FBS.

3.2. Fluorescent Sensors for Non-Essential Metal Ions
3.2.1. Ag+

Ag is a typical heavy metal ion, and its toxic effects on DNA replication and protein
function make the detection of Ag of great interest. Particularly, the accurate detection of
Ag in biospecimens is crucial through fluorescence analysis. Feng et al. proposed a facile
method to synthesize hyperfluorescent N-dots, employing 2-azidazole and hydroxyl com-
pounds as cross-linking additives (Figure 4A) [85]. The nanomaterials exhibited excellent
stability against various factors and can be used as sensors for Ag+ sensing. The sensing
mechanism is based on the static quenching effect between N-dots and silver ions. The
resulting sensor showed good linearity in the range of concentrations from 20 nM to 6 µM
and a detection limit of 6.3 nM, and more importantly, it displayed high specificity for
silver ions in human urine.

3.2.2. Pb2+

Lead ions are a highly toxic type of pollutant that can contaminate soil and water,
posing a threat to food safety. Their accumulation in the body is difficult to eliminate
and can lead to severe nerve, hematopoietic, and renal damage, ultimately resulting in
death. Nucleic acid-based sensors are frequently used for lead ion detection. Xu et al.
designed a highly sensitive cascade signal amplification sensor that combines DNAzyme-
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based strand displacement amplification with HCR to sense Pb2+ [86], while Jia’s group
developed a novel strategy for Pb2+ detection based on a fluorophore-tagged Pb2+-binding
aptamer [87], as shown in Figure 4B. Since the binding of the aptamer to Pb2+ leads
to a conformational change, the original low-fluorescence “off” state becomes a high-
fluorescence “on” state. The method enables quantitative detection of lead ions with a
minimum detection concentration of 468 nM, maintaining high specificity for Pb2+ during
the detection process. Furthermore, it has been successfully tested in complex biofluids
(Figure 4C), making it a promising tool for Pb2+ detection in practical applications. Tang
and colleagues designed an innovative method for the direct detection of K+ and Pb2+

with high selectivity and sensitivity [88], which relies on the assembly and disassembly
of a chiral cyanine dye/TBA complex. Lee et al. [89] synthesized fluorescent probes
by incorporating a peptide receptor with hard and soft ligands and a benzothiazolyl-
cyanovinylene fluorophore, which were successfully utilized for Pb2+ quantification in
human serum.
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3.2.3. Hg2+

Mercury contamination is a global concern due to its toxic and mutagenic effects. A
highly sensitive and specific label-free fluorescent sensor for mercury ions was developed
by the Wang group [90]. This sensor utilized the split GQ/dsDNA assembly and Thioflavin
T as a reporter and has been successfully applied to detect Hg2+ levels in fetal calf serum.
Subsequently, they obtained dual fluorescent signals by using two fluorescent dyes and
T-rich/G-rich terminal DNA sequences on proportional mercury induction [91].

Nilanjan synthesized a highly sensitive and selective probe for detecting Hg2+ at ppb
levels in aqueous medium [92], as illustrated in Figure 5A. The probe is based on pyridine-
coupled dibenzimidazole, which displayed the charge-transfer interactions and coordinated
driving of the planarization of the biphenyl backbone. As a result, it exhibited a red-shifted
absorbance and fluorescence peak in the presence of mercury ions. The dual mode sensing
approach enables accurate and reliable detection of Hg2+ in the presence of albumin
protein (Figure 5B). Moreover, the probe-coated paper strip could remain colorless under
normal daylight but exhibit blue fluorescence under UV flashlight irradiation (Figure 5C).
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This feature can be used for rapid, on-site detection of Hg2+, highlighting its potential in
environmental monitoring and biomedical research.
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3.2.4. Al3+

Aluminum, the most abundant metallic element in the Earth’s crust, has extensive
applications in our daily lives. However, excessive intake of aluminum can lead to serious
health problems and central nervous system dysfunction. To address this issue, Huang’s
team developed a highly efficient and versatile bifunctional fluorescence sensor based
on benzoindole [93], which can rapidly and accurately detect changes in pH and Al3+ in
aqueous solutions. With a simple and effective detection mode, the sensor can detect Al3+

in a variety of real samples, including water, food, beverages, drugs, serum, and urine.
These promising results demonstrate the sensor’s potential for broad applications in the
field of metal ion sensing.

3.2.5. Pt4+

Platinum ion accumulation in the body can lead to toxicity, renal failure, cognitive and
motor impairment, and severe neurological disorders. Considering the significant rise in
Pt ion chemicals and the associated toxicity, it is crucial for the development of facile and
rapid methods to monitor the presence of Pt species in physical and environmental settings.
Liang and colleagues designed a highly sensitive and selective nanosensor (PEIMP) for
the specific determination of Pt4+ in aqueous media [94]. The nanosensor is based on
a novel hydrophilic polymer and shows a linear range of 0.1–10 µM and an ultra-low
detection limit of 80 nM. The sensing mechanism is based on an “on/off” switching process
of photoinduced electron transfer (PET), which allows enhanced fluorescence detection of
Pt4+. This method has been successfully applied for the quantification of Pt4+ in wastewater
and urine samples and shows great potential for monitoring Pt4+ in biological systems.

4. Intracellular Imaging of Metal Ions

Our understanding of the effects of metal ions on physiological processes can be
deepened by detecting them in living cells. Since the 1960s, the use of fluorescent sensors
for cellular and molecular imaging has proliferated due to advances in image processing
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technology. This imaging technique can be used for disease identification, tracking, and
treatment, as well as for the detection of several biomarkers. Fluorescence imaging can
expose the structural and physiological characteristics of cells and tissues, and also measure
intracellular molecules and molecular structures [39]. Recently, there have been signifi-
cant improvements in the sensitivity and selectivity of metal ion detection by advances
in bioimaging.

4.1. Fluorescent Sensors for Essential Metal Ions
4.1.1. Na+

Schiff base ligands possess excellent photochemical properties and can be used to
create fluorescent probes, but the use of sodium (I) complexes based on Schiff base ligands
is rare [95]. Tamilselvi et al. recently designed a sodium ion sensor based on a pyridoxal-
bearing triazole ring Schiff base [96], which exhibits strong blue-green emission in the solid
state and emits a yellow light when Na+ is present. They further studied the proportional
fluorescence response of this probe with sodium ions in the U87 cell line, indicating its
potential application in cell biology protocols.

Potassium and sodium play crucial roles in various biological processes, but their
synergies also have important implications for various biological processes. Yang et al.
designed the first cell-surface fluorescent probe that can simultaneously detect Na+ and
K+ in the microenvironment of cells [97]. The probe utilizes a Y-shaped DNA sensor com-
posed of three distinct DNA sequences: a Na+-specific enzyme strand hybridized with the
substrate strand and a GQ strand that binds to K+. The use of this probe to detect Na+/K+

concurrently provides a more comprehensive understanding of the dynamic changes of the
targets than single-ion assays. The design and use of this probe have great significance in
further understanding Na+ and K+-related cellular events and biological processes.

4.1.2. K+

For imaging intracellular K+, it is vital to develop a molecular recognition element that
can achieve high affinity and selectivity to K+. Tian et al. presented the first polymer-based
ratiometric fluorescent K+ indicator (PK1), which was modified with a water-soluble poly-
mer skeleton to enable high-throughput monitoring of K+ fluctuations in living cells [98].
Subsequently, they further enhanced the detection of potassium ions in cells by incorporat-
ing a small-molecule K+ fluorescent probe into a hydrophilic F127 block and then binding
it to cationic liposomes to create modified nanoparticles with enhanced cellular affinity [99].
A pioneering chemosensor for the accurate intracellular ratiometric imaging of potassium
using a dual fluorophore strategy was introduced by Chang et al. [100]. Furthermore, Chen
et al. innovated a remotely operated “lock-unlock” nanosystem [101]. This nanosystem
utilizes a dual-stranded aptamer precursor (DSAP) as the recognition molecule and a SiO2-
based gold nanoshell (AuNS) as the nanocarrier, with NIR light as the stimulus for remote
application, as shown in Figure 6A. AuNS generates an increased local temperature upon
receiving NIR light, which induces the dehybridization of DSAP, activates the binding
capability of the aptamer, and enables the monitoring of intracellular K+ via changes in the
fluorescence signal (Figure 6B). This DSAP-AuNS nanosystem provides a new means to
visualize endogenous K+ in living cells.

4.1.3. Ca2+

Fluorescent sensing and imaging have become useful tools to investigate the signaling
pathways of calcium ions, which act as a widespread secondary messenger and play an
essential role in neurodegenerative diseases. Modified with a specific Ca2+ chelator ligand
with two formaldehyde groups, a copper nanocluster ratiometric fluorescent probe was
developed for real-time sensing and imaging of Ca2+ in neurons [102]. In another example,
an inner-filter-mediated luminescence probe was developed by using biomass quantum
dots as a fluorescent reporter. This probe was initially quenched by a Ca2+ chelator alizarin
red S yet turned on after binding to intracellular Ca2+. Despite fluorescent nanoclusters



Chemosensors 2023, 11, 226 12 of 33

and quantum dots, green fluorescent protein could also be combined with the specific
chelator for Ca2+ imaging [103]. Mitochondrial Ca2+ concentration in living cells is also of
great importance. Mt-fura-2, the first ratiometric chemical Ca2+ probe for mitochondria,
was developed by coupling two triphenylphosphonium cations to the molecular backbone
of the ratiometric Ca2+ indicator fura-2 [104]. Mt-fura-2 binds calcium ions in vitro with
a dissociation constant of ≈1.5 µM and exhibits correct mitochondrial localization and
precise measurement of matrix [Ca2+] changes in cells.

Ca2+-specific DNAzyme, which was first reported in 2017 [105], was used to construct
a SERS-fluorescence dual-mode probe for Ca2+ imaging in living cells in 2021 by Li and co-
workers [106]. The Ca2+-responsive nanoprobe was constructed by modifying DNAzyme
and a Cy5-labelled substrate strand on gold nanostars. When the two chains hybridize,
the fluorescence of Cy5 is quenched, which enhances the SERS signal concurrently. The
substrate chains could be cleaved and freed from the surface of the gold nanopillar by the
catalytic induction of Ca2+, which leads to the weakening of the SERS signal, as well as
the fluorescence signal recovery. The nanosensor has been successfully used in HeLa cells
under the treatment of T-2 toxin, which increased the intracellular free Ca2+ concentration
and caused cell apoptosis. Moreover, the calmodulin domain and its cognate M13 peptide
have also been widely used in biological research. Rhodamines are highly bright and pho-
tostable fluorophores, and one of their key properties is that they exist in a balance between
the non-fluorescent, spirocyclic form and the fluorescent, amphoteric form. The remarkable
ability of HaloTag7 to affect rhodamine spirocyclization was used to develop biosensors in
which the analyte affects the conformation of HaloTag7 and thus the balance of spirocy-
clization. The Johnsson group developed a ratiometric biosensor based on spirocyclization
in an environmentally sensitive discolored fluorophore that reversibly switches between
the green and red fluorescent forms, successfully imaging calcium ions in living cells [107],
as shown in Figure 6C. This biosensor combines a HaloTag7 and a Ca2+-sensing structural
domain (rHCaMP) to enable reversible switching between green and red fluorescent forms
through intramolecular spirocyclization by using a color-shifted fluorophore. The biosen-
sor provides precise ratiometric measurements of Ca2+ both in vitro and intracellularly
(Figure 6D). Furthermore, by coupling the CSFs to various protein ligands, the biosensor
achieves exceptional sensitivity, with some probes demonstrating up to 2400-fold changes
in fluorescence ratios upon binding to the target. The Campbell group developed a NIR
genetically encoded indicator using a biliverdin-binding fluorescent protein for multi-color
imaging [108]. BAPTA could form a chemigenetic indicator due to the interaction between
the BAPTA moiety and the GFP chromophore, which provided creative guidance in the
design of chemigenetic indicators. In addition to fluorescent intensity-based readout, the
Goedhart group also proposed a turquoise fluorescence lifetime-based biosensor for quan-
titative imaging of intracellular Ca2+ with a low sensitivity for pH, which was a teaser for
traditional intensity-based indicators [109].

4.1.4. Zn2+

Accurately monitoring the zinc profile and levels in living cells is crucial for various
biological studies. Among various developed methods, DNAzyme-based sensors are at
the forefront of zinc ion imaging studies. However, their application in cells is limited due
to the difficulty in maintaining the activity of RNA-cleaving DNAzymes during delivery
and poor biological imaging performance [110,111]. To address this issue, Zhang et al.
constructed a TP imaging probe based on an RNA-cleaving DNAzyme by modifying the
Zn2+-specific DNAzyme with TP fluorophores and utilized gold nanoparticles (AuNPs) for
efficient intracellular delivery [112]. This NIR light-excited probe exhibits exceptional imag-
ing capabilities for Zn2+ in viable cells and tissues, with remarkable in-depth penetration
of tissues reaching depths of 160 µm. The Lu group developed a new fluorescent imaging
technique that allows for ratiometric imaging of Mg2+ and Zn2+ in living cells [113], using
DNAzyme-mediated, genetically encoded fluorescent proteins. The merit of this approach
is that Mg2+-dependent multi-round cleavage of the target mRNA by DNAzyme activity
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allows for a correlation between the expression level of fluorescent proteins and the concen-
tration of the target metal ion. This sensor can utilize a variety of metal-specific DNAzyme,
greatly expanding the range of metal ions that can be imaged with genetically encoded pro-
teins. Additionally, Luo et al. developed a DNAzyme-based normalized strategy for direct
quantification of endogenous zinc in living cells [114]. Recently, Li’s team described the
first example of DNAzyme-based sensors for subcellular metal-ion imaging [115], which
combines a photoactivatable DNAzyme sensor probe with upconversion nanotechnol-
ogy and organelle-localized strategies. Except for DNAzyme-based sensors [116], Schiff
base based chemosensors [117,118], peptide-based sensors [119] and single red fluorescent
protein-based sensors [120] also offer a variety of options for researchers when studying
the distribution and concentration of zinc ions in living cells.
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4.1.5. Mg2+

As the second largest intracellular cation after potassium, the magnesium ion is es-
sential for various biological processes and physiological functions. However, traditional
fluorescent chemosensors for the detection of magnesium ions currently face the limita-
tions of low selectivity and poor fluorescence signal enhancement. Yuki et al. overcame
this limitation by synthesizing the first highly selective and NIR fluorescent probes for
the detection of Mg2+ [121], as shown in Figure 7A. These probes consisted of charged
β-diketones as specific bound spots for Mg2+ and Si-rhodamine remnants as NIR fluo-
rophores. They are primarily located in the cytoplasm and are localized partially in the
lysosomes and mitochondria of cultured rat hippocampal neurons (Figure 7B). Moreover,
the Aharon group reported the first example of aqueous CDs with high selectivity for
intracellular Mg2+ detection [122]. Furthermore, Ashok’s team successfully synthesized
novel chromone-based chemosensors (La and Lb) that are highly sensitive to Mg2+ [123],
with La also showing potential for Mn2+ detection through absorption studies. On the other
hand, Lb was found to sense Cu2+ through absorption studies and also showed sensitivity
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to Mg2+ via emission studies. These ligands were successfully used for Mg2+ imaging in
HeLa cancer cells.

4.1.6. Cu2+

The development of copper ion sensors in recent years has still primarily relied on
the design of organic fluorescent probes [124,125] and nanomaterials [126]. In the previous
section, it was mentioned that the Cu(I)-catalyzed click reaction has a high selectivity for
Cu2+, making it ideal for complex intracellular environments. Bu et al. developed an inno-
vative “OFF–ON” fluorescent biosensor by combining the Cu(I)-catalyzed click reaction
with a 3D DNA walker based on spherical nucleic acid [127]. In the initial “OFF” state, the
fluorophore (Cy3) on the hairpin is close to the surface of AuNPs, resulting in quenched
fluorescence. Cu is rapidly produced in situ from Cu2+ in the presence of ascorbic acid,
triggering the click reaction-based 3D DNA walker. The activated swing arm hybridizes
with the neighboring Cy3-hairpin and drives the 3D DNA walker by endonuclease to
produce several Cy3-labeled DNA fragments away from the AuNP surface, resulting in a
restored fluorescence response (transitioning to the “ON” state). The utilization of this assay
provides a means for transducing signals and assessing intracellular Cu2+ at picomolar
concentrations.
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illustration of the intracellular imaging of Mg2+ via KMG-500 series probes. (B) Intracellular localiza-
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4.1.7. Fe2+/Fe3+

CDs have garnered significant attention in metal ion detection in living cells. To
this end, double-emission CDs (NS-CDs) with varying dimensions of nitrogen/sulfur
doping were synthesized by solubilizing sodium alginate (SA) and glutathione (GSH) in
formamide for heat treatment [128], as shown in Figure 7C. Since Fe3+ induces the aggre-
gation of NS-CDs, which enhances the fluorescence signal. Therefore, this nanosensor
enables ratiometric measurements of iron ions and exhibits remarkable detectability and
sensitivity, with detection limits as low as 0.56 µM. Moreover, NS-CDs display unparal-
leled capability for localized, specific cell membrane imaging (Figure 7D). Similarly, the
Guo group proposed the synthesis of N-CDs utilizing fresh tea leaves and urea [129],
while Zhang’s team fabricated deferoxamine-inspired CDs using L-aspartic acid (Asp)
and 2,5-diaminobenzenesulfonic acid (DABSA) as reactants in a single-boiler hydrother-
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mal synthesis [130]. Both N-CDs and deferoxamine-inspired CDs were applied for cell
imaging of Fe3+ and exhibited promising results. Hou et al. developed an innovative
“turn-on” fluorescent probe using rhodamine 6G derivatives and spirolactam ring-opening
reactions [131]. This probe is highly effective in detecting Fe3+ for fluorescence imaging
in living cells. In addition, Wang et al. designed dual-targeting fluorescent probes that
combine galactose and imidazole to detect Fe3+ in the hepatic lysosome [132], enabling
both hepatic and lysosomal targeting. Although indole-based fluorescent sensors for Fe3+

detection are rare, Nantanit reported three new sensors with fluorescence responses to Fe2+

and Fe3+ sensing in aqueous buffer systems [133]. One of these isomers is an excellent
candidate for tracking Fe3+ in biological systems.

4.2. Fluorescent Sensors for Non-Essential Metal Ions
4.2.1. Li+

The lithium-based complex is a widely used and effective drug for the treatment
of bipolar disorder (BD) for more than 70 years. The distribution of lithium ions in the
patient’s cells is crucial to optimize the therapeutic effect. However, imaging lithium
selectively in the biomedically relevant concentration range (0.5–2.0 mM) in living cells
remains a major challenge. A major breakthrough was recently reported by Lu’s team,
which developed a lithium-specific DNAzyme with a selectivity exceeding 100-fold that of
other biologically relevant metal ions [134], as shown in Figure 8A. This novel sensor allows
for the visualization of lithium in HeLa cells, neurons from BD patients, healthy controls
(Figure 8B) and human neuronal progenitor cells (Figure 8C) for comparison, making it a
promising tool for investigating the therapeutic effects of lithium.
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4.2.2. Ag+

Dong et al. developed a label-free N-CDs system for the detection of silver ions
and GSH through intrinsic ratiometric fluorescence [135]. The N-CDs emit a single long-
wavelength light at 618 nm when excited at 478 nm. When silver ions are present, this
nanosensor shows a rising peak at 532 nm and a decrease in emission at 618 nm, enabling
the detection of silver ions in the range of 0–140 µM. Yu et al. presented a groundbreaking
approach to visualize Ag+ in living bacterial cells by utilizing a genetically encoded biosen-
sor (Figure 9B) [136]. The sensor incorporates a cytosine-Ag+-cytosine metal base pair into
a fluorogenic RNA aptamer, known as Broccoli, which folds and emits a fluorescent signal



Chemosensors 2023, 11, 226 16 of 33

upon binding to Ag+ (Figure 9A). This unique RNA sensor can be further adapted for
cellular imaging of other metal ions by implementing a similar design principle based on
specific metal base pairs.

The Guo group synthesized a novel ratiometric chemosensor called CHa based on the
hydrolysis of hydrazone derivatives of coumarin fluorescent moieties induced by Ag+ [137].
When CHa encounters silver ions, it undergoes hydrolysis, resulting in the release of a
3-formyl-substituted coumarin derivative that acquires blue emission at short wavelengths
from yellow emission. Additionally, a phenanthro [9,10-d] imidazole-based fluorescent
probe with AIE activity was designed by Bu et al. [138], for simultaneous sensing of Ag+

and SCN−. In another example, a sustainably modifiable 1,2-alternating thiacalix[4]arene
was synthesized by Yu et al. [139], which displayed a highly sensitive ratio recognition
for Ag+.

4.2.3. Ni2+

Nickel ions play a vital role as a cofactor for a variety of microbial enzymes, supporting
essential cellular functions necessary for prokaryotic survival. A FRET-based genetically
encoded biosensor was developed by Neha [140], taking enhanced cyan fluorescent protein
and Venus (a variant of yellow fluorescent protein) respectively into account as donor and
acceptor fluorescent molecules. Such sensors permit concentration-dependent monitoring
of nickel ion fluxes within viable cells with a high spatial and temporal resolution to
provide in-depth insight into the distribution of nickel ions physiologically at the cellular
and subcellular levels.

Reports on fluorescent probes for nickel ions are relatively scarce, and there is still
a need to develop simple and effective detection methods. Wang et al. constructed a
molecular probe FA-Ni to achieve highly selective and ultrasensitive rapid detection of
Ni2+, avoiding the interference of other ions [141]. Nickel ions were converted to elemental
nickel under the reducing conditions of NaBH4, and then triphenylphosphine was used
as a ligand to detach allyl from the probe FA-Ni, thereby generating a fluorescent signal.
They also successfully applied the probe FA-Ni for in situ imaging of nickel ions in living
cells. Additionally, Shahzad’s team reported AIE active sensors for the detection of Ni2+ in
live cells and acid/base sensing [142]. Gu et al. developed a new chemosensor based on a
pyrazolopyrimidine core that can simultaneously detect Cu2+ and Ni2+, which has good
imaging properties for both Cu2+ and Ni2+ in living cells [143].

4.2.4. Pb2+

The interaction between metals and biomolecules can be found throughout nature and
provides a wealth of resources and principles of design in the search for novel, recognizable
ligands. Peptides are promising candidates for designing metal-binding ligands due to
their rich coordination chemistry, high stability, and availability of optional building blocks.
Additionally, their high biocompatibility makes them well-suited for detecting Pb2+ in
biological systems. The Zhao group designed a biomimetic peptide-based fluorescent
sensor GSSH-2TPE inspired by the structure of glutathione [144], as shown in Figure 9C.
Mechanistic studies confirmed that there is a delicate balancing between the chelating
groups and the molecular configuration responsible for the highly selective complexation
of Pb2+ by the sensor. Additionally, the ion-induced supramolecular assembly generates
a bright fluorescence signal. Featuring good biocompatibility and the lowest possible
disturbance to both endogenous biothiols and background fluorescence, the sensor allows
precise imaging of Pb2+ in vivo (Figure 9D). Similarly, Mehta et al. designed a proportional
fluorescent peptide-based sensor by coupling the peptide receptor of Pb(II) with an excimer-
forming benzothiazolylcyanovinylene fluorophore [145].
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4.2.5. Pd2+

Palladium is a scarce internal transition metal that is widely employed as an extremely
potent catalyst in various areas. However, it should be noted that Pd species can disrupt
many biological processes and pose significant health hazards. Of particular concern
is Pd2+, which is the most abundant oxidation state in alive cells, thus the potential for
developing validated Pd2+ detection and imaging approaches are vital for environmental
safety and the health of humans. Wen et al. developed a naphthofluorescein-based NIR
fluorescent probe called M-PD [146], which boasts exceptional sensing properties for the
detection of Pd2+. The lower limit of detection for this sensor was found to be 10.8 nM, a
value significantly below the drug in threshold values (5–10 ppm). Additionally, M-PD
has been successfully utilized for the near-infrared fluorescence imaging of Pd2+ in living
cells. A chemosensor, DCF-MPYM-Pd, featuring a wide stokes shift and an ability for
lysosomal targeting was synthesized by Wang et al. [147]. It was shown that this sensor can
accurately sense palladium (II) in living cells and can specifically accumulate in lysosomes.
To avoid the problem of the multi-step synthesis of a probe, Mareeswaran’s group found a
simple and well-known organic molecule, coumarin-460 (C460), that can selectively sense
palladium ions in aqueous media [148]. They went on to validate the binding and sensing
properties of C460 for Pd2+ by absorption and fluorescence spectroscopy techniques, thus
demonstrating that the C460 molecule can be used as an “off” probe for Pd2+ for real-time
detection and biological applications.

While most researchers have designed probes to detect only one form of palladium,
the ability to discriminate between Pd (0) and Pd (II) has been rarely reported. In this
regard, Zhang et al. designed Umb-Pd2, a corymbone-derived sensor that can be used as
a tiny, robust, reliable, and detective sensor for the detection of Pd (II) [149], as shown in
Figure 10A. In both the stand-alone and co-existing systems, it is distinguished from typical
research by its unique selectivity for Pd (II) and Pd (0), which is commonly referred to as
Pd (0)-selective. This differentiation capability was further used in the case of living cell
imaging (Figure 10B).
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4.2.6. Hg2+

Sarah et al. developed highly NIR fluorescent graphene quantum dots (GQDs) by
pyrolyzing biomass-derived CBDA-2 in basic conditions [150]. When treated with mercury
ions, the fluorescence of GQDs was quenched. Exploiting the intramolecular charge
transfer (ICT) mechanism, Duan’s team introduced a new phenothiazine-based sensor [151],
PHE-Ad, for monitoring Hg2+. With its excellent fluorescent signaling behavior and low
cytotoxicity, PHE-Ad proved to be successful in detecting and imaging Hg2+ in living cells.
Furthermore, the same team reported another two novel PET fluorescent probes, CH3-
R6G and CN-R6G, rationally synthesized by partial doping of rhodamine 6G fluorophore
with a triazolyl benzaldehyde moiety and applied with great success for Hg2+ imaging in
breast cancer cells [152]. Ding et al. reported the synthesis of ethyl 2,5-diphenyl-2H-1,2,3-
triazole-4-carboxylate [153], which was then introduced into rhodamine B to produce a
novel derivative, REDTC. This probe exhibited remarkable selectivity for Hg2+ through a
chromogenic reaction, without interference from other metal ions. Lastly, two novel NIR
monosulfide probes, MTSQ-1 and MTSQ-2, were designed and used for Hg2+ imaging
based on a mercury deuteration strategy [154]. Particularly, the MTSQ-2 was packaged in a
β-CD and showed excellent performance for imaging Hg2+ in HeLa cells as well as a high
signal-to-background ratio.

4.2.7. Cd2+

Cadmium ions, one of the most dangerous heavy metals, can affect various cellular
physiological effects. Toxic cadmium ions may lead to acute or chronic toxicity, causing
cancer and other diseases. The development of highly sensitive and selective methods for
the detection of cadmium ions in cells is still challenging. Lin et al. developed a highly
selective probe, (E)-4-(4-([2,2′:6′,2′′-terpyridin]-4′-yl)styryl)-1 octadecylpyridin-1-ium bro-
mide (ZC-F8) [155]. The fluorescence spectra of ZC-F8 showed an excellent response to
Cd2+ through both an intramolecular charge transfer effect and an AIE effect. Moreover, the
results of cell imaging experiments showed that the probe has ideal membrane permeability
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and a labeled property for Cd2+, indicating its promising application in the detection and
tracking of metal ions in living cells. In addition, Liao’s team successfully synthesized a
new peptide-based probe (DSC) with good water solubility and biocompatibility, showing
a fluorescent “turn-on” response to Cd2+ based on the PET principle [156]. Fluorescence
imaging experiments showed that DSC can selectively monitor Cd2+ in living cells.

4.2.8. Au3+

Gold has a broad range of uses in chemistry, catalysis, and medicine. However, the
binding of Au3+ with certain DNA and enzymes poses severe health risks, causing damage
to organs. Guo et al. synthesized carbon dots by a simple solvothermal method using
the acetic acid-treated peel of red dragon fruits, called ACDs [157]. With their high sp2-
hybrid carbon and carboxyl group contents, ACDs can efficiently convert Au3+ to Au0

and stabilize the resulting AuNPs. Electron transfer from ACD to Au3+ and the inner
filtering effect from ACD to AuNPs synergistically quenched the fluorescence within 30 s.
In addition, ACDs possessed promising photo-stability, low cytotoxicity, and favorable
biological compatibility, enabling their successful application in intracellular Au3+ sensing
and imaging.

4.2.9. Al3+

The Nikhil group synthesized a new compound, (E)-2-(benzamido)-N′-((2-hydroxyna-
phthalen-1-yl) methylene) benzohydrazide (BBHAN) [158], which belongs to the Schiff
base derivative family and contains a hydrazine-bridged anthranilic acid-naphthalene
conjugate. BBHAN is a highly sensitive Al3+ detection probe with a limit of detection of
1.68 × 10–9 M. Its detection mechanism is based on the chelation-enhanced fluorescence
phenomenon, as demonstrated by time-resolved fluorescence measurements. Moreover,
BBHAN is capable of detecting Al3+ in MDA-MB-468 cells. Later, Jessica et al. designed and
synthesized a new series of Schiff base chemosensors to sense Al3+ [159]. The molecular
solubility and compatibility of the amino acid Schiff base (A) in the presence and absence of
Al3+ were well demonstrated. Furthermore, in human epithelial cells Hs27, the fluorescent
bioimaging applications were demonstrated. In the same way, Wang et al. designed an
innovative nanoprobe by co-self-assembling an amphiphilic polymer containing a Schiff-
base fluorescent unit [160]. This novel nanoprobe not only provides high sensitivity for
Al3+ imaging but also has the potential to be applicable to other ions or biomolecules by
adjusting the fluorescent unit incorporated into the amphiphilic polymer.

5. In Vivo Imaging of Metal Ions

The imaging of living animal models offers the capacity to detect changes in signaling
molecules, ions, and other biological components throughout different life stages and in
the presence of disease. The information obtained from this imaging technique can be
applied to discover novel biological insights or to identify markers of disease progression,
thereby facilitating the development and translation of effective therapeutics. In particu-
lar, the importance of metal ions in organismal regulation, especially in terms of enzyme
activation/deactivation and catalysis, and the close association with disease onset and pro-
gression make in vivo metal ion imaging a key priority for fluorescent sensor development.

5.1. Fluorescent Sensors for Essential Metal Ions
5.1.1. K+

Potassium ions, which fluctuate in concentration, exist inside and outside cells, and
can be associated with abnormal physiological functions, including nervous system dis-
orders and cardiac dysfunction [161]. Nonetheless, probes for potassium ions perform
poorly in real-time monitoring in live animal models and there is still a need to develop
more sensitive probes for deep tissue monitoring. Ning et al. designed a potassium ion
probe, NK2 [162], which combines colorimetric, fluorescence, and photoacoustic methods
for three-channel sensing, utilizing benzylguane-6-string ether as the recognition element.
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The probe extended the depotential range of K+ from 5 mM to 200 mM. In the exploration
of animal models, the probe was further imaged with photoacoustic properties that al-
lowed changes in potassium ion concentration to be monitored in the mouse ear under a
photoacoustic microscope.

On the basis of NIR for deep tissue detection in live animals, a mesoporous silica
nanocomposite was reported by Liu et al. [163]. The material encapsulated upconversion
nanoparticles (UNCPs) and potassium ion indicators and was encapsulated within a potas-
sium ion-specific filter membrane, which is used to monitor changes in the concentration of
potassium ions in the mouse brain. The presence of the filter membrane effectively shielded
the assay from other metal ions and serves to enrich the signal. This “shielded nanoparticle”
is expected to be an effective method for monitoring metal ions in the brain, and in combi-
nation with endoscopic and photometric methods, could be applied to real-time potassium
ion imaging. Relying on shielded nanometers, Liu et al. [164] continued to work on the
development of a potassium ion sensor containing mesoporous silica nanoparticles with an
embedded optical potassium indicator, as shown in Figure 11A. The nanosensor enables
the spatial mapping of potassium ion release in the hippocampus of freely moving mice for
precise imaging of epileptic foci in the brain (Figure 11B), also allowing for targeted drug
release as needed.

5.1.2. Ca2+

Genetically encoded calcium indicators (GECIs) of the nervous system are broadly
explored for calcium imaging, and the GFP-based GCaMP series of GECIs has undergone
iterative updates over nearly 20 years [165]. In 2019, on the basis of GCaMP6, Dana et al.
optimized jGCaMP7 by utilizing structure-guided mutagenesis and neuron-based screen-
ing [166]. This calcium sensor optimized parameters including signal-to-noise ratio and
speed for in vivo imaging, achieving two-photon and wide-field-of-view imaging. In the
subsequent year, Zarowny et al. [167] demonstrated a novel GECI with enhanced bright-
ness of the indicator (compared to GCaMP6s) based on a bright monomeric GFP, mNG, in
Figure 11C. Calcium dynamic measurement experiments performed in zebrafish larvae
proved that the signal-to-noise ratio, kinetics, and baseline brightness of the indicator of
mNG were equivalent to those of GCaMP6s (Figure 11D). Zebrafish, distinguished by their
transparent bodies and tiny size, are commonly observed for the in vivo imaging of metal
ions. Therefore, mNG is expected to be the next generation of GECI. Shemetov et al. [168]
incorporated NIR fluorescent proteins into the development of the iGECI sensor, which
in combination with NIR Förster resonance energy transfer, enables the iGECI sensors to
simultaneously examine neuronal and haemodynamics in the brains of animal models via
hybrid photoacoustic and fluorescent microscopy.

5.1.3. Zn2+

Intracellular zinc ion disorders are associated with several serious diseases. A two-
photon fluorescent probe, CHP-H/CHP-CH3, was designed to monitor the dynamics
of zinc ions and HNO (Cyto-JN) in a mouse ischaemia/reperfusion model [169]. The
synthesized NIR fluorescent probe could recognize Zn2+ and cyanide, employing the
condensation product of isoflurone with p-hydroxybenzaldehyde as the fluorophore while
introducing aminourea hydrochloride to increase solubility [170]. The rapid responsiveness
(20 s), high sensitivity (detection limit: 4.61 × 10−8 M), and selectivity of this probe led to
preliminary confirmation of its Zn2+ and CN- logical responses in an animal model.
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(D) Schematic representation of the Tol2[HuC-H2B-mNG-GECO1] construct and confocal image of
one fish (5–6 days post fertilization) with 7 regions of interest (ROI) circled. Reproduced from [167]
with permission from the American Chemical Society, copyright 2020.

The Lu group modified light-activated DNAzyme on lanthanide-doped UCNPs for
investigating the distribution of Zn2+ in both cellular and in vivo models [171]. Through
the utilization of deeply tissue-penetrating NIR 980 nm light, they were able to achieve
spatiotemporal control, providing valuable insights into the dynamic Zn2+ ion distribution.
Recently, the same group designed a novel Zn2+ probe based on metal-specific DNAzyme
and high-intensity focused ultrasound (HIFU) activation to overcome the problem of
spatiotemporal control of metal ion detection, as sketched in Figure 12A [172]. By using a
protector strand to block the formation of the catalytic enzyme structure, a Zn2+-selective
DNAzyme probe can be deactivated and, subsequently, reactivated by a HIFU-induced
increase in local temperature. This design allows for Zn2+-specific FRET imaging using the
new DNAzyme-HIFU probes, which was successfully demonstrated in both HeLa cells
and mice (Figure 12B).

5.1.4. Fe2+/Fe3+

The homeostasis of iron ions within human health is of great relevance, as either too
high or too low concentrations can cause various systemic diseases. Researchers have
worked to achieve ultra-high sensitivity for imaging iron ions in vivo. Vijay et al. devel-
oped a rhodamine-B-armed fluorescent chemosensor (RhBNC) that specifically recognizes
iron ions and then emits orange fluorescence [173], as shown in Figure 12C. Following
photophysical detection, RhBNC was employed for real-time fluorescence imaging in vivo,
and bright red fluorescence was observed in the stomach of zebrafish after 30 min of probe
treatment with the addition of iron ions (Figure 12D). The carbon dot-based fluorescence
sensor has become a representational platform for the detection of iron ions due to its fast
response time, low cost, and stability. Chang et al. prepared high quantum yield CDs (42%)
by employing a multiflora polygonum one-step hydrothermal strategy and designed a
sensor for multicolor imaging [174], tracking intracellular concentration fluctuations, and
in vivo bioimaging based on the fluorescence burst of iron ions on CDs. Meanwhile, the
same team reported that the fluorescence burst of iron ions on CDs is based on lysis [175].
For the detection of ferrous ions, Zhu et al. combined an NIR strategy to synthesize (E)-4-
(2-(3-(dimethylenimino)-5,5-dimethylcyclohexyl-1-en-1-yl)vinyl-N,N-diethylaniline oxide
(DDED) as a NIR probe [176], which showed a strong imaging capability in zebrafish,
emitting intense red fluorescence mainly in the yolk sac and digestive tract. DCI-Fe (II),
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developed by Zheng et al., allowed for the imaging of ferrous ions within live cell lipid
droplets and in mice [177].

Chemosensors 2023, 11, x FOR PEER REVIEW 22 of 34 
 

 

 
Figure 12. Two representative examples of essential metal ion detection in vivo: (A) Schematic of 
HIFU-activated noninvasive and spatiotemporal control of the DNAzyme-based sensor for Zn2+ de-
tection in vivo. (B) HIFU-activated metal-ion sensing in vivo. Whole-body fluorescence imaging of 
mice. Reproduced from [172] with permission from the American Chemical Society, copyright 2022. 
(C) Proposed sensing mechanism of the probe for the Fe3+-sensing event. (D) Confocal fluorescence 
images of zebrafish embryos (3 days old). 

5.1.4. Fe2+/Fe3+ 
The homeostasis of iron ions within human health is of great relevance, as either too 

high or too low concentrations can cause various systemic diseases. Researchers have 
worked to achieve ultra-high sensitivity for imaging iron ions in vivo. Vijay et al. devel-
oped a rhodamine-B-armed fluorescent chemosensor (RhBNC) that specifically recog-
nizes iron ions and then emits orange fluorescence [173], as shown in Figure 12C. Follow-
ing photophysical detection, RhBNC was employed for real-time fluorescence imaging in 
vivo, and bright red fluorescence was observed in the stomach of zebrafish after 30 min 
of probe treatment with the addition of iron ions (Figure 12D). The carbon dot-based flu-
orescence sensor has become a representational platform for the detection of iron ions due 
to its fast response time, low cost, and stability. Chang et al. prepared high quantum yield 
CDs (42%) by employing a multiflora polygonum one-step hydrothermal strategy and 
designed a sensor for multicolor imaging [174], tracking intracellular concentration fluc-
tuations, and in vivo bioimaging based on the fluorescence burst of iron ions on CDs. 
Meanwhile, the same team reported that the fluorescence burst of iron ions on CDs is 
based on lysis [175]. For the detection of ferrous ions, Zhu et al. combined an NIR strategy 
to synthesize (E)-4-(2-(3-(dimethylenimino)-5,5-dimethylcyclohexyl-1-en-1-yl)vinyl-N,N-
diethylaniline oxide (DDED) as a NIR probe [176], which showed a strong imaging capa-
bility in zebrafish, emitting intense red fluorescence mainly in the yolk sac and digestive 
tract. DCI-Fe (II), developed by Zheng et al., allowed for the imaging of ferrous ions within 
live cell lipid droplets and in mice [177]. 

5.1.5. Co2+ 
Cobalt is a vital mineral needed in small quantities for DNA biosynthesis and is a key 

component of vitamin B12. Li’s team developed an innovative fluorescent CD sensor us-
ing frozen tofu, ethylenediamine, and phosphoric acid [178]. The resulting CD exhibits 
excellent biocompatibility, high stability, low cytotoxicity, and good water solubility. This 
sensor can selectively and sensitively detect Co2+ by fluorescence quenching, with a detec-
tion limit of 58 nM. Moreover, strong chelating agents such as EDTA can strip the ions 
from the surface. In zebrafish models, CD was rapidly absorbed from the intestine to the 
liver and eliminated from the body within 24 h without significant bioaccumulation. 

Figure 12. Two representative examples of essential metal ion detection in vivo: (A) Schematic of
HIFU-activated noninvasive and spatiotemporal control of the DNAzyme-based sensor for Zn2+
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5.1.5. Co2+

Cobalt is a vital mineral needed in small quantities for DNA biosynthesis and is
a key component of vitamin B12. Li’s team developed an innovative fluorescent CD
sensor using frozen tofu, ethylenediamine, and phosphoric acid [178]. The resulting CD
exhibits excellent biocompatibility, high stability, low cytotoxicity, and good water solubility.
This sensor can selectively and sensitively detect Co2+ by fluorescence quenching, with a
detection limit of 58 nM. Moreover, strong chelating agents such as EDTA can strip the ions
from the surface. In zebrafish models, CD was rapidly absorbed from the intestine to the
liver and eliminated from the body within 24 h without significant bioaccumulation.

5.2. Fluorescent Sensors for Non-Essential Metal Ions
5.2.1. Li+

Lithium is prescribed for the treatment of bipolar disorder. The range of 0.6 to 1.2 mM
of lithium in serum has been described as clinically safe and therapeutically effective.
Over-ingestion of lithium can lead to toxic and even life-threatening reactions [179]. In
Figure 13A, Kang et al. reported a fluorescent probe, SP-CE, which was synthesized via
introducing an aza-12-crown-4 ether unit into spiropyran for chelation with lithium [180].
In the absence of light, the compound undergoes isomerization from SP to MC form upon
complexation with lithium in solution, resulting in a significant fluorescence enhancement
upon excitation at 550 nm. The fluorescent probe exhibited high sensitivity and selectivity
toward lithium in solution. Finally, it was successfully employed for imaging exogenous
lithium in living cells and zebrafish (Figure 13B). Among these, SP-CE has a time-dependent
fluorescence response to lithium ions (LiCl treatment) in zebrafish.
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5.2.2. Pb2+

Huang et al. designed a highly innovative DNAzyme-assembled nanosensor that can
sense and image Pb2+ at NIR light excitation [181]. This nanosensor consists of UCNPs
as energy transfer donor, BHQ1 quencher as energy transfer acceptor and DNAzyme
as Pb2+ specific pattern of target recognition. Following the introduction of Pb2+, the
DNAzyme cleaves the strand of substrate at the RNA site, resulting in restoration of
luminescence. Imaging data showed that when this nanosensor was micromanipulated into
zebrafish embryos, it could image Pb2+ in living cells and early zebrafish, demonstrating
its remarkable potential for in vivo applications.

5.2.3. Sn2+

An inadequate Sn2+ supply can impair hearing and bone growth, while the accumula-
tion of excess can impede zinc metabolism and cause airway and intestinal disorders. A
new mitochondria-targeted AIE chemosensor based on naphthoquinone, 2CTA, was syn-
thesized by Palanisamy et al. [182]. Its selectivity and sensitivity (79 nM) to Sn2+ are higher
than those of other disruptors. The “turn-on” fluorescence emission of this chemosensor
relies on its AIE properties, caused by the binding of larger aggregates to Sn2+. 2CTA
selectively aggregates in mitochondria, producing an image merged with MitoTracker Red.
It also detected Sn2+ in zebrafish larvae and responded rapidly within 10 s, making it a
promising legal instrument capable of following Sn2+ in ambient and physical systems.

5.2.4. Cd2+

Wang et al. showed that a very simple fluorescent probe (NIS) could be easily prepared
by a one-step, one-pot condensation reaction of 2, 3-naphthalenediamine and imidazole-2-
carboxaldehyde [183]. In addition, the probe was not disturbed by zinc ions and worked
well for Cd2+ detection at physiological pH. Under fluorescence confocal microscopy, the
NIS can detect cadmium ions in living cells through two emission channels. In addition,
they further applied NIS to the zebrafish to monitor the real-time uptake of cadmium ions
in zebrafish larvae by proportional fluorescence bioimaging.

5.2.5. Hg2+

Wu et al. designed and synthesized a coumarin-based reactive fluorescent probe, PIC,
for the detection of Hg2+ [184]. PIC showed greater selectivity for Hg2+ detection than
other metal ions. Specifically, at physiological pH, its fluorescence enhancement for Hg2+

was 42 times higher than that of other cations. Most importantly, confocal fluorescence
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microscopy analysis showed that PIC can be used to monitor Hg2+ in live cells and zebrafish
due to its low cytotoxicity.

5.2.6. Ni2+

The molecular probe based on the nickel-catalyzed deallyl reaction mentioned in
the section on nickel ion cell imaging was recently applied to bioimaging in zebrafish.
Wang et al. synthesized the probe Ra-Ni by a nucleophilic substitution reaction between
rhodamine derivatives and allyl chloride under alkaline conditions [185]. The probe has
the advantage of a long wavelength and high tissue permeability, making it suitable for
use in live cells and zebrafish for nickel ion imaging.

5.2.7. Al3+

Schiff base ligands with excellent photochemical properties enable the formulation
of fluorescent probes with applications in the assay of metal ions [186]. In Figure 14A,
Tian et al. developed a high-sensitivity fluorescent probe [187], H3L, which is capable
of sensing aluminum ions in living zebrafish, on the basis of a previously designed 2-
hydroxynaphthalene Schiff base compound [188]. H3L exhibits blue fluorescence upon
exposure to aluminum ions, concentrated in the head and digestive tract of zebrafish
(Figure 14B). In particular, blue fluorescence is also observed at the pupil of zebrafish larvae
due to the physiological phenomenon of aluminum ion enrichment in their eyes. This
probe could be a promising platform for in vivo aluminum ion sensing owing to its high
sensitivity and selectivity for the recognition and binding of aluminum ions. Subsequently,
the same group improved the 2-hydroxynaphthalene Schiff base fluorescent probe on the
basis of modulation in chemical structure [189]. The limit of detection of aluminum ions
via this fluorescent probe was enhanced by an order of magnitude (10−8 M) and applied to
the in vivo tracing of cells and zebrafish.
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6. Conclusions and Future Directions

In conclusion, this overview highlights the latest advances in fluorescent sensors
for metal ion detection in biological systems since 2018. Nucleic acid-based biosensors
provide high recognition selectivity and flexible signal transduction mechanisms for the
detection of various metal ions. Meanwhile, fluorescent protein-based biosensors are
well suited for cellular and in vivo imaging. Molecular probes and chemosensors offer the
advantages of cost-effectiveness, wide applicability, and ease of manipulation, making them
a promising avenue for future development. Nanosensors have revolutionized the field
of nanobiosensing with their desirable properties, including high sensitivity, remarkable
selectivity, and biocompatibility. Additionally, combining different sensors can amplify
their advantages and reduce their disadvantages. For instance, fusion of nucleic acid
sensors with nanomaterials can enhance stability and specificity in vivo, and conjugation of
chemical sensors with nanomaterials can simultaneously improve sensitivity and selectivity
in living systems.

Despite the advances in designing fluorescence sensors for metal ion detection in
biological systems, there are still challenges to overcome. The detection of a wider range of
metal ions is necessary, and there is a need for more sensors for in vivo applications. Our
future efforts should aim to address the need for improvement in several areas. Specifically,
we must focus on improving the toolbox of fluorescent protein-based biosensors and
developing more efficient NIR fluorescent proteins with deeper penetration depth, allowing
for a significant enhancement of the sensitivity, resolution, and accuracy of in vivo metal
ion imaging. Additionally, methods need to be developed to ensure the stability of nucleic
acid-based biosensors in serum or plasma. The mechanisms of nanosensors must also be
better understood, and the water solubility and sensing behavior of water-based systems
for chemosensors need to be improved to better detect living systems. These directions
must be pursued in parallel to overcome the challenges and improve the effectiveness
of fluorescent sensors in detecting metal ions in biological systems. Although there are
some difficulties in this field, based on the exciting advances made so far, we expect to
develop better sensors in the future, leading to major breakthroughs in biomedical imaging
of living systems.
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List of Acronyms
Acronyms Definition
DNA Deoxyribonucleic acid
RNA Ribonucleic acid
ICP-MS Inductively coupled plasma mass spectrometry
AAS Atomic absorption spectrophotometry
FAAS Flame atomic absorption spectrometry
FRET Fluorescent resonance energy transfer
FNA Functional nucleic acid
HCR Hybrid chain reactions
AIE Aggregation-induced emission
BODIPY Boron-dipyrromethene
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GQ G-quadruplex
NIR Near-infrared
CD Carbon dot
MOF Metal-organic framework
UV Ultraviolet
HSA Human serum albumin
FBS Fetal bovine serum
PET Photoinduced electron transfer
SERS Surface-enhanced Raman scattering
GFP Green fluorescent protein
TP Two-photon
AuNP Gold nanoparticle
GSH Glutathione
BD Bipolar disorder
ICT Intramolecular charge transfer
UNCP Upconversion nanoparticle
EDTA Ethylene diamine tetraacetic acid
BHQ Black hole quencher
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