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Abstract: Porous sea urchin-like nickel-doped ZnO with various nickel contents and high specific
surface area were synthesized using a solution method followed by calcination. The nickel-doped
ZnO products consisted of numerous porous nanoleaves. The Ni content in these products ranged
from 5% to 20%. The Ni dopants in the ZnO lattice were verified by X-ray diffraction and X-ray
photoelectron spectroscopy. The sensors based on nickel-doped ZnO sea urchins showed superior
sensing performance for some volatile organic compounds (VOCs). ZnO sea urchins with 10%
nickel doping exhibited the best gas-sensing performance, including a low working temperature,
short response/recovery time, and high sensor response. In particular, the 10% Ni-doped ZnO sea
urchin sensor exhibited a response of 84.4 with response/recovery times of 17/20 s towards 100
ppm formaldehyde vapor. These superior sensing behaviors were attributed mainly to a suitable Ni
content with high content of oxygen defects, small nanocrystals, and a porous hierarchical structure
with a high specific surface area.

Keywords: zinc oxide; nickel doping; zinc hydroxide carbonate; nanoleaf; gas sensor; volatile
organic compounds

1. Introduction

Volatile organic compounds (VOCs) are often emitted from decoration and building
materials. As the gaseous toxins are widespread in both indoors and outdoors settings,
prolonged exposure to VOCs causes harm to the eyes and damages the nervous system,
causing a series of diseases [1]. Moreover, VOCs at low concentrations can easily cause
serious respiratory problems. For example, formaldehyde at very low concentrations
(0.75 ppm) can cause cancer [2]. Therefore, convenient gas sensors with a low detection
limit, high response, and low energy consumption are needed urgently. A variety of metal
oxide semiconductors that function as excellent sensing materials, such as SnO2 [3], ZnO [4],
In2O3 [5], Fe2O3 [6], NiO [7], and V2O5 [8], were developed for detecting volatile harmful
gases. Among the metal oxide semiconductors, ZnO, a typical n-type semiconductor,
possesses a direct bandgap of 3.37 eV. ZnO has drawn considerable attention due to its
physical/chemical stability, easy preparation, abundance, high electron mobility, and excel-
lent electric conductivity [9,10]. It is currently being used for detecting various flammable,
volatile, and harmful gases [11–14]. On the other hand, for a pure ZnO sensing material,
the high detection limit, high working temperature, and low response greatly limit the
widespread applications of ZnO sensors. Therefore, it is urgent to develop new ZnO-based
sensors with relatively low working temperature, high sensitivity, and good selectivity.

Some strategies were adopted to overcome the above problems. The morphology of
ZnO partially affects the sensitivity, working temperature, and response rate of gas sensing
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behaviors. Especially, a 3D porous structure with a high surface area could provide nu-
merous surface active sites for accepting more gas molecules and holding surface chemical
reactions. Another strategy for improving gas-sensing behaviors is associated with the
surface decoration of noble metals and doping ZnO with different metal elements. The
commonly adopted noble metals Pt [15], Pd [16], Ag [17], and Au [18] are adopted for
modification of the ZnO surface. They can greatly optimize the sensing behaviors of the
gas sensor by improving the catalytic activity of the sensing materials. Despite the obvious
improvement in the sensitivity to VOCs, the high cost of noble metals has limited their
wider applications as gas-sensing materials. Therefore, doping with different elements
(e.g., Fe [19], Co [20], Ni [21], Cu [22], and Al [23]) of low cost and wide availability is
considered as one of the practical strategies to enhance the sensing performance of ZnO.
For example, Mo et al. prepared a mesoporous Co-doped ZnO hierarchical structure by
the calcination of its precursor [20]. The 5% Co-doped ZnO hierarchical structure sensor
exhibited a sensitivity of 54 towards 50 ppm ethanol at 180 ◦C. El Khalidi et al. synthesized
various Ni-doped ZnO films by spray pyrolysis [21]. Among them, the 2% Ni-doped ZnO
film sensor showed the best gas-sensing performance, with the highest sensitivity (90) for
100 ppm acetone at 450 ◦C. The response and recovery times were 50 s and 90 s, respectively.
Of the various metal dopants, Ni-doped ZnO has exceptional features. Ni could induce a
spillover–sensitization effect [21]. Ni2+-doped ZnO produces more donor defects and can
increase the level of adsorbed gas molecules. In addition, it can facilitate the ionization
of gas molecules and the dissociation of targeted gases from the surface of the sensing
materials, leading to higher sensitivity and rapid response/recovery behaviors in ZnO
sensors. The empty 3d orbital in Ni2+ allows the production of more oxygen vacancies
when Zn2+ is replaced with Ni2+. Thus, the transportation of charges accelerates and the
number of adsorbed oxygen anions increases significantly [24].

So far, some strategies have been adopted for preparing the doped ZnO with various
nanostructures, including co-precipitation [24], spray pyrolysis [25], the hydrothermal
method [26], the sol–gel method [27], high-temperature calcination [28], RF sputtering [29],
and the electrospinning method [30]. Kamble et al. fabricated various Ni-doped content
nanorod-like ZnO nanostructure sensors by a co-precipitation method [24]. The 2% Ni-
ZnO nanorod sensor presented a response of 356 at 200 ◦C. The detected gas was NO2
gas with 100 ppm. Modaberi et al. prepared a Ni-doped content nanorod-like ZnO
nanostructure by calcining the precursor [28]. The 8% Ni-doped nanorod-like ZnO sensor
exhibited the highest response towards H2S (100 ppm) gas at 200 ◦C. The response value
reached 45.3. Among the synthetic methods of Ni-doped ZnO, the cooperation of an
aqueous solution method and calcination treatment has attracted much attention because
of its simple operation, low cost, and easy synthesis. Thus far, a high content of Ni-doped
porous sea urchin-like ZnO nanostructures assembled from numerous nanosheets has
rarely been achieved using an aqueous solution method and a subsequent heat treatment.
The effect of ZnO doped with a high concentration of Ni on the sensitivity of gas sensors
also needs to be investigated.

In this study, porous sea urchin-like ZnO nanostructures with various Ni doping
contents were prepared using an aqueous solution method and a subsequent heat treatment.
The sensing performance of the Ni-doped ZnO sea urchins towards VOCs was also studied.
Compared to other VOCs, the Ni-doped ZnO sea urchin sensors exhibited a strong response
to formaldehyde vapor. The Ni doping and unique porous sea urchin-like structure
promote an outstanding sensing property. The mechanism of the gas-sensing behavior to
formaldehyde vapor is also discussed.

2. Experimental Details
2.1. Synthesis of Ni-Doped ZnO Nanostructures

Porous Ni-doped ZnO nanostructures were synthesized as follows. Briefly, 0.0211 g
of NiCl2·6H2O and 0.5021 g of Zn(NO3)2·6H2O were dissolved in 35 mL of deionized
water; the atomic ratio of Ni and Zn was 0.5:9.5. A saturated NH4HCO3 solution was
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then prepared. The pH was adjusted to 6.5 by introducing CO2 gas for approximately 3 h.
Subsequently, 15 mL of the saturated NH4HCO3 solution was poured into the previously
prepared 35 mL solution under stirring, and then was placed at a temperature atmosphere
of 6 ◦C for 8 h. After that, the precursor was collected after washing and dried at 50 ◦C for
15 h. The 5% Ni-doped ZnO nanostructure was obtained by high-temperature calcination
at 350 ◦C for 1 h. The 10% Ni-doped ZnO sample, the 15% Ni-doped ZnO sample, and the
20% Ni-doped ZnO sample were synthesized using a similar procedure to that of the 5%
Ni-doped ZnO sample, with the amount of NiCl2·6H2O changed from 0.0211 g to 0.0446 g,
0.0708 g, and 0.0997 g, respectively. The synthesis of the pure ZnO sample was similar to
that of the 5% Ni-doped ZnO sample without adding NiCl2·6H2O.

2.2. Material Characterization

The products were characterized by X-ray diffraction (XRD, Shimadzu XRD-6000,
Shimadzu, Kyoto, Japan) using high-intensity Cu Kα radiation with a wavelength of
1.54178 Å, field-emission scanning electron microscopy (FESEM, Hitachi S-4800, Hitachi,
Kyoto, Japan, operated at 5 kV), high-resolution transmission electron microscopy (HRTEM,
JEOL-2010 TEM, JEOL, Kyoto, Japan) with an acceleration voltage of 200 kV, thermogravi-
metric analysis (TGA, NETZSCH STA449C, NETZSCH, Selb, Germany), and N2 adsorption–
desorption isotherm measurements (Nova 2000E, Quantachrome, Boynton Beach, FL, USA).
The pore size distribution was determined from the desorption branch of the isotherm
using the Barrett–Joyner–Halenda (BJH) method. The TGA was carried out in air with a set
heating rate (10 ◦C min−1) in the temperature scope (room temperature to 600 ◦C). X-ray
photoelectron spectroscopy (XPS, ESCALAB 250, ESCALAB, Ciudad de México, México)
was also performed. The elemental distribution of the products was determined by energy
dispersive spectroscopy (FESEM, Hitachi S-4800, operated at 15 kV).

2.3. Fabrication and Testing of the Gas Sensor

Figure S1 in the Supplementary Material presents the experimental device for gas-
sensing measurements. The fabrication process of the gas sensors was as follows: 0.1 g of
porous sea urchin-like 5% Ni-ZnO, 10% Ni-ZnO, 15% Ni-ZnO, and 20% Ni-ZnO composites,
and porous sea urchin-like ZnO were dispersed in a 0.5 mL ethanol solution to obtain a
uniform suspension. The above suspension was smeared uniformly on the outer surface
of the tube-shaped substrate made from aluminum, where a pair of Au electrodes was
tightly printed on the bottom of the aluminum-made substrate. The as-prepared sensors
were dried in air at 60 ◦C for 3 h, followed by high-temperature calcination of 280 ◦C
for 2 h. Subsequently, the working temperature for the gas sensors can be achieved by
placing a Ni-Cr heating coil into the ceramic tube, as shown in Figure S2a. The sensor
was kept at 280 ◦C for two days in air to improve its long-term stability. A stationary-
state gas distribution method was used to test the gas response. The sensor response
measurement was performed on an electrochemical workstation (CHI-660E, Shanghai
Chenhua Instruments Co., Ltd., Shanghai, China) using chronoamperometry at 0.7 V.
Figure S2b presents a diagram of the testing principle of the gas-sensing measurement
system. Detecting gases, such as ethanol vapor (headspace vapor of ethanol), formaldehyde
vapor (headspace vapor of a 38.5 wt.% formaldehyde solution), and NH3/N2 mixtures
(1 vol%), were injected into a test chamber (1000 mL) and mixed with air. To detect 1 ppm
of ethanol vapor, formaldehyde vapor, and NH3, 0.017 mL headspace vapor of ethanol,
1.0 mL headspace vapor of a 38.5 wt.% formaldehyde solution, and 0.1 mL NH3/N2
mixtures were injected into the test chamber, respectively. The response of the sensor was
defined as Ra/Rg (reducing gases), where Ra is the resistance of the sensor in dry air and
in dry air mixed with the test gases. In the measurement system, the response was also
calculated using the following equation: Ia/Ig, where Ig and Ia are the output currents in
the test gas and air, respectively. The response or recovery time is expressed as the time
required for the sensor output to reach 90% saturation after applying or switching off the
gas in a step function.
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3. Results and Discussion
3.1. Structural and Morphological Characterization

Figures 1a and S3a show the characteristic diffraction peaks of the precursors. All XRD
peaks of the samples corresponded to the crystal planes of the monoclinic Zn5(CO3)2(OH)6
(JCPDS no. 19-1458). After heat treatment in air, the XRD patterns of all Ni-doped ZnO
products displayed in Figures 1a and S3a could be assigned to hexagonal ZnO (JCPDS no.
36-1451). The XRD pattern of the 20% Ni-doped ZnO sample showed a very weak peak
at approximately 43.3◦, which was ascribed to the crystal plane (200) of bunsenite NiO
(JCPDS no. 47-1049). No other obvious peaks related to nickel compounds were observed
in the XRD patterns of the ZnO products doped with different nickel contents, indicating
that nickel ions systematically enter the lattice without destroying the original crystal
structure of ZnO. The mean crystallite size of ZnO crystallites could be calculated using the
Scherer formula:

D =
0.9λ

β · cos θ
(1)

where λ, β, and θ are the wavelength of the X-ray beam, width at half maximum, and
diffraction angle, respectively. The mean crystallite size of the 0%, 5%, 10%, 15%, and 20%
Ni-ZnO sea urchins were 18.2 nm, 15.1 nm, 12.5 nm, 15.3 nm, and 14.0 nm, respectively.
The lattice constants of the samples listed in Table S1 are comparable with standard data.
a (a = b) and c were extracted from the peaks (002) and (100). The calculated lattice
parameters decreased with the increase of Ni content, which refers to the substitution of
Zn2+ with Ni2+ with the ionic radius of nickel (0.055 nm) slightly smaller than that of zinc
(0.060 nm). However, the calculated lattice parameters increased after 10% Ni, which may
be due to the formation of a NiO phase decreasing the amount of Ni dopants.
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Figure 1. XRD patterns of (a) Ni-doped Zn5(CO3)2(OH)6 precursors and (b) Ni-doped ZnO products.

Furthermore, Figure S3b shows the EDS analysis of the 10% Ni-ZnO product. Only
Zn, Ni, and O were observed, suggesting that the final product was Ni-doped ZnO.

Figures 2 and S4 present SEM images of the sea urchin-like Ni-doped Zn5(CO3)2(OH)6
precursor before and after calcination. Observing the SEM images shown in Figure 2a,b,
the precursors exhibited a sea urchin-like structure with a mean diameter of 4–5 µm. The
unique structure comprised numerous nanoleaves with a mean thickness of ~12 nm. These
nanoleaves with smooth surfaces grew perpendicularly outward to form the sea urchin-like
structure. After calcination in air, the 10% Ni-ZnO sample maintained the sea urchin-
like morphology, as shown in Figure 2c,d. With increasing Ni content in the Ni-ZnO sea
urchins, the mean diameter of the sea urchin-like Ni-ZnO becomes larger. In Figure S4a,c,e,
we can find that 5%, 15%, and 20% Ni-doped Zn5(CO3)2(OH)6 precursors all showed
similar structures: a sea urchin-like morphology. Numerous ultrathin nanoleaves lead to
the unique structure in a self-assembling manner. The sea urchin-like morphology was
retained after the calcination of the products, as shown in Figure S4b,d,f. The EDS mapping
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images of 10% Ni-ZnO sea urchins are exhibited in Figure S5. Ni, Zn, and O were dispersed
uniformly in nano-sea urchins. The morphologies of the precursors (basic zinc carbonate)
and the pure ZnO products are exhibited in FESEM images (Figure S6). Obviously observed,
the pure Zn5(CO3)2(OH)6 precursor also displays a sea urchin-like morphology, as shown
in Figure S6a,b. This favorable structure is constructed by the self-assemble of abundant
nanoleaves. The diameter of the pure ZnO precursors averages around 8.6 µm. FESEM
images of the pure ZnO products are shown in Figure S6c,d. After calcination (450 ◦C,
2 h), the post-calcination sea urchin morphology is maintained without any damage to
the morphology, which can be observed in the FESEM images (Figure S6c,d) of the pure
ZnO products.
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Figure 2. Representative SEM images of (a,b) the sea urchin-like 10% Ni-doped Zn5(CO3)2(OH)6

precursor and (c,d) the corresponding porous sea urchin-like Ni-doped ZnO.

The detailed structure of 10% Ni-doped ZnO sea urchins was studied further by
transition electron microscopy (TEM). Figure 3a–c presents the TEM and HRTEM images
of the sample. The sample had a sea urchin morphology composed of numerous ultra-
small nanoleaves. There were many irregular nanopores on the nanoleaves (Figure 3b).
These pores of various sizes were produced by the decomposition of the Zn5(CO3)2(OH)6
precursor to CO2 gas and gaseous H2O, which can improve the sensing performance. The
interplanar distances were 0.281, 0.261, and 0.163 nm, which correspond to the hexagonal
phase of ZnO planes (100), (002), and (110), respectively (Figure 3c) [31]. Figure 3d shows
the selected area electron diffraction (SAED) pattern of the sample, which can be assigned
to the (100), (101), (110), (103), (112), and (201) planes of hexagonal ZnO [32]. The TEM
results were consistent with the structural and morphological characteristics of the 10%
Ni-ZnO sample obtained from XRD (Figure 1b) and SEM (Figure 2).
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pattern of 10% Ni-doped ZnO sea urchins.

TGA was performed to study the thermal decomposition process of Ni-doped
Zn5(CO3)2(OH)6 precursors (Figure S7). Before 180 ◦C, a slight mass loss occurred be-
cause of absorbed water. At temperatures from 180 ◦C to 400 ◦C, a mass loss of 27.9%
occurred, which is consistent with the theoretical value of 28.8%. This is primarily because
the Ni-doped Zn5(CO3)2(OH)6 precursors decomposed to Ni-doped ZnO, CO2 gas, and
gaseous H2O. A large volume of CO2 gas and gaseous H2O were released from the inner
structure of the precursors, resulting in a large number of mesopores in the final products
after calcination. These mesopores will significantly enhance the specific surface area of
Ni-doped ZnO sea urchins and provide more available sites for catalytic redox reactions.
The decomposition chemical equation can be described as follows:

Zn5(CO3)2(OH)6 = 5ZnO + 3H2O (mass 13.8%) + 2CO2 (mass 15.0%) (2)

Figure S8 shows the FTIR spectra of 10% Ni-ZnO sea urchins and the corresponding
precursor. The main characteristic peaks at 472, 837, 1416, and 1510 cm−1 (Figure S8a) were
attributed to the CO2

3− bending vibrations in the precursor. The peak at ca. 3391 cm−1

can be assigned to the –OH group in the precursor. In the FTIR spectrum of 10% Ni-
ZnO sea urchins (Figure S8b), a strong characteristic peak at 432 cm−1 can be observed
clearly because of the vibration of Ni–O and Zn–O in the Ni-doped ZnO [33,34]. Because
some peaks referring to Ni–O in NiO overlapped with those of Zn–O in ZnO, there is
only a characteristic peak ranging from 430 cm−1 to 440 cm−1 in the FTIR spectrum. The
characteristic peaks associated with the CO2

3− bending vibrations have disappeared due
to the thorough decomposition of carbonate in the precursor to CO2 and H2O. In addition,
two weak peaks at 1386 and 1638 cm−1 were associated with the O–H bending vibration of
the H2O molecule absorbed on Ni-doped ZnO sea urchins [35,36]. The broadest peak was
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found at approximately 3448 cm−1. This peak is assigned to the stretching vibration of the
O–H bond from the absorbed H2O molecule [33].

The N2 adsorption–desorption isotherms of the samples are shown in Figures S9 and
S10. A plot of the pore size distribution suggests that the overwhelming majority of pore
sizes are distributed from around 1.2 to 29.7 nm. The specific surface areas of the 0%,
5%, 10%, 15%, and 20% Ni-ZnO sea urchins were 30.3 m2 g−1, 53.4 m2 g−1, 116.5 m2 g−1,
78.3 m2 g−1, and 15.8 m2 g−1, respectively. The 10% Ni-ZnO sea urchins exhibited the
highest specific surface area, which is mainly due to their microstructure with different
sizes and the effect of Ni dopants decreasing the crystal size of ZnO. As for 15% and 20%
Ni-ZnO sea urchins, the NiO phase observed in the XRD patterns would reduce the amount
of Ni dopant, resulting in a low specific surface area. The high specific surface area likely
produces more metal vacancies and oxygen species on the surface and inside the porous
structure, generating more unsaturated active sites [37].

Figure 4a shows the UV-Vis spectra of the porous Ni-ZnO and pure ZnO sea urchins.
There is a distinct absorption peak at ca. 360 nm. In addition, the absorption intensity
of Ni-doped ZnO sea urchins was higher than that of pure ZnO sea urchins within the
wavelength range of 300–800 nm. Moreover, the Tauc equation of αhv = C(hv − Eg)1/2

was applied to estimate the bandgap of pure ZnO and Ni-ZnO sea urchins. As shown
in Figure 4b, the calculated bandgap of the 5%, 10%, 15%, and 20% Ni-ZnO sea urchins
were 2.91, 2.89, 2.92, and 2.93 eV, respectively, which are smaller than that of pure ZnO sea
urchins (3.01 eV). This suggests that introducing the Ni dopant in ZnO leads to less energy
for the electronic transition than the pure ZnO sea urchins. Compared with the pure ZnO
sample, the decrease in the bandgap of Ni-doped ZnO samples is due to the formation
of energy levels of the 5D4 state of Ni2+ under the 3F4 state of Zn2+, i.e., immediately
decreasing the conduction band of the ZnO sample [24].

Chemosensors 2023, 11, x FOR PEER REVIEW 7 of 15 
 

 

referring to Ni–O in NiO overlapped with those of Zn–O in ZnO, there is only a charac-
teristic peak ranging from 430 cm−1 to 440 cm−1 in the FTIR spectrum. The characteristic 
peaks associated with the CO23− bending vibrations have disappeared due to the thorough 
decomposition of carbonate in the precursor to CO2 and H2O. In addition, two weak peaks 
at 1386 and 1638 cm−1 were associated with the O–H bending vibration of the H2O mole-
cule absorbed on Ni-doped ZnO sea urchins [35,36]. The broadest peak was found at ap-
proximately 3448 cm−1. This peak is assigned to the stretching vibration of the O–H bond 
from the absorbed H2O molecule [33]. 

The N2 adsorption–desorption isotherms of the samples are shown in Figures S9 and 
S10. A plot of the pore size distribution suggests that the overwhelming majority of pore 
sizes are distributed from around 1.2 to 29.7 nm. The specific surface areas of the 0%, 5%, 
10%, 15%, and 20% Ni-ZnO sea urchins were 30.3 m2 g−1, 53.4 m2 g−1, 116.5 m2 g−1, 78.3 m2 
g−1, and 15.8 m2 g−1, respectively. The 10% Ni-ZnO sea urchins exhibited the highest spe-
cific surface area, which is mainly due to their microstructure with different sizes and the 
effect of Ni dopants decreasing the crystal size of ZnO. As for 15% and 20% Ni-ZnO sea 
urchins, the NiO phase observed in the XRD patterns would reduce the amount of Ni 
dopant, resulting in a low specific surface area. The high specific surface area likely pro-
duces more metal vacancies and oxygen species on the surface and inside the porous 
structure, generating more unsaturated active sites [37]. 

Figure 4a shows the UV-Vis spectra of the porous Ni-ZnO and pure ZnO sea urchins. 
There is a distinct absorption peak at ca. 360 nm. In addition, the absorption intensity of 
Ni-doped ZnO sea urchins was higher than that of pure ZnO sea urchins within the wave-
length range of 300–800 nm. Moreover, the Tauc equation of αhv = C(hv−Eg)1/2 was applied 
to estimate the bandgap of pure ZnO and Ni-ZnO sea urchins. As shown in Figure 4b, the 
calculated bandgap of the 5%, 10%, 15%, and 20% Ni-ZnO sea urchins were 2.91, 2.89, 
2.92, and 2.93 eV, respectively, which are smaller than that of pure ZnO sea urchins (3.01 
eV). This suggests that introducing the Ni dopant in ZnO leads to less energy for the elec-
tronic transition than the pure ZnO sea urchins. Compared with the pure ZnO sample, 
the decrease in the bandgap of Ni-doped ZnO samples is due to the formation of energy 
levels of the 5D4 state of Ni2+ under the 3F4 state of Zn2+, i.e., immediately decreasing the 
conduction band of the ZnO sample [24]. 

  
Figure 4. (a) UV-vis absorption spectra of the porous pure sea urchin-like ZnO and the porous ur-
chin-like Ni-ZnO. (b) Bandgap determination from (αhv)2 vs. hv of the porous pure sea urchin-like 
ZnO and the porous sea urchin-like Ni-ZnO. 

Figure 5a shows the X-ray photoelectron spectroscopy (XPS) full-scale spectrum of 
10% Ni-ZnO sea urchins. All peaks were assigned to the four elements of Zn, Ni, O, and 
C [13]. The Zn 2p high-resolution XPS is exhibited in Figure 5b. The binding energies at 
approximately 1044.5 and 1021.7 eV correspond to Zn 2p1/2 and Zn 2p3/2, respectively [38]. 

Figure 4. (a) UV-vis absorption spectra of the porous pure sea urchin-like ZnO and the porous
urchin-like Ni-ZnO. (b) Bandgap determination from (αhv)2 vs. hv of the porous pure sea urchin-like
ZnO and the porous sea urchin-like Ni-ZnO.

Figure 5a shows the X-ray photoelectron spectroscopy (XPS) full-scale spectrum of
10% Ni-ZnO sea urchins. All peaks were assigned to the four elements of Zn, Ni, O,
and C [13]. The Zn 2p high-resolution XPS is exhibited in Figure 5b. The binding energies at
approximately 1044.5 and 1021.7 eV correspond to Zn 2p1/2 and Zn 2p3/2, respectively [38].
Figure 5c exhibits the Ni 2p high-resolution XPS. The peaks at ca. 855.2 and 860.8 eV belong
to Ni 2p3/2, and the distinct peaks with binding energies of around 872.6 and 878.5 eV were
attributed to the Ni 2p1/2 [39,40]. This indicates the presence of Ni2+ in the Ni-ZnO sea
urchins. As displayed in Figure 5d, the O 1s peak was asymmetric, and it can be divided
into three peaks. One peak (Olat.) at 530.3 eV was assigned to lattice oxygen in wurtzite
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ZnO, and the peak (Odef.) at 530.9 eV corresponds to the defect sites with low-oxygen
coordination [41]. The Odef./Olat. value can indicate the oxygen defect concentration in
Ni-ZnO sea urchins. Figure S11 presents the O 1s high-resolution XPS spectra of the 5%,
10%, 15%, and 20% Ni-ZnO sea urchins and pure ZnO sea urchins. The Odef./Olat. values
of the 5%, 10%, 15%, and 20% Ni-ZnO, and of the pure ZnO sea urchins were 0.34, 0.97,
0.32, 0.47, and 0.31, respectively, as listed in Table S2. The last peak (Oads.) at 532.5 eV was
due to the physi/chemisorbed H2O. Based on the above analysis results, the 10% Ni-ZnO
sea urchins showed the highest oxygen defect concentration among these ZnO-based sea
urchin samples, which is due to their high specific surface area and the effect of Ni dopants
decreasing the crystal size of ZnO and introducing oxygen-related defects. As for 15% and
20% Ni-ZnO sea urchins, the NiO phase observed in the XRD patterns was verified by the
O 1s spectra shown in Figure S11c,d.
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3.2. Gas-Sensing Performance

Figure 6a shows the changes in resistance (Ra) of the ZnO and Ni-doped ZnO sea
urchin sensors. The working temperatures started from 140 ◦C to 260 ◦C. With regard to all
the prepared sensors, the Ra value of the sensors decreases as the operating temperature
continues to rise. The temperature dependences of the resistance of the obtained samples
followed a linear function. The more abundant electrons were forced into a conductance
band of the sensing materials activated by the sufficient energy provided by the high
temperatures [42]. So, as is well known, the gas sensors belong to the type of surface-
controlled one based on the curves changes of resistance temperatures. Under the same
working temperature, the Ra sequence of the prepared sensors was present as follows:
20% Ni-ZnO > 15% Ni-ZnO > 10% Ni-ZnO > 5% Ni-ZnO > pure ZnO. This was mainly
due to the effect of Ni dopants which can introduce oxygen-related defects [43]. As the
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Ni-doped content of the ZnO increases, the crystal size of ZnO decreases and more oxygen
molecules are adsorbed on the ultra-small ZnO nanoleaves, forming oxygen ions. In air,
these increasing oxygen ions could capture more electrons from ZnO, leading to the higher
resistance of the Ni-ZnO sensing film. Furthermore, when the amount of Ni dopants is
high, the appearance of NiO and the formation of NiO–ZnO p–n junctions would also
increase the resistance of the Ni-ZnO sensing film.
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In Figure 6b, the response of the sensors first increased with increasing working tem-
perature. When the temperature was over 220 ◦C, however, the response decreased with in-
creasing working temperature. Thus, for the Ni-ZnO sensors, the optimal working tempera-
ture can be thought to be 220 ◦C. This phenomenon conforms to the adsorption/desorption
kinetics and thermodynamics on sensing material surface. The gas molecules and oxygen
species cannot react fully because of the lack of sufficient energy. When excessive energy
was applied to the sensors, the gas molecules adsorbed on the material surface were easily
desorbed, resulting in fewer effective surface-absorbed oxygen molecules and targeted
molecules. As to the pure ZnO sensor, the optimal working temperature was 260 ◦C, which
is much higher than that of the Ni-ZnO sensors. This demonstrated the decrease in working
temperature due to the introduction of Ni dopants. In addition, the response of the Ni-ZnO
sea urchin sensor towards 100 ppm formaldehyde vapor was much higher than that of the
pure ZnO sea urchin sensor. This was likely attributed to the high concentration of oxygen
defects, as verified by XPS. The sample possessed uniform sea urchin-like morphology and
larger specific surface area and pore size, likely promoting electron transfer and providing
more effective active sites for the redox reaction on the sensing material.

The selectivity of the sensors was studied, as shown in Figure 6c. Among them, the
10% Ni-ZnO sea urchin sensor showed the best sensing performance. The responses for
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100 ppm formaldehyde, acetone, ethanol, isopropanol, ammonia, benzene, toluene, and
methanol vapors were 84.4, 71.1, 61.8, 68.8, 14.3, 18.2, 22.5, and 35.3, respectively. Therefore,
the 10% Ni-ZnO sensor exhibited good sensitivity towards formaldehyde, acetone, ethanol,
and isopropanol vapors. Of the sensors, the 10% Ni-ZnO sea urchin sensor exhibited
the strongest response to these vapors. Moreover, a good gas-sensing performance was
also exhibited by the other sensors for various VOCs. The content of Ni in the ZnO sea
urchins has an important effect on the sensors. The presence of oxygen defects enhanced
the overall ionic potential of the composites. Thus, the large amount of adsorbed oxygen
could strongly capture the material surface. Formaldehyde with a stronger Bronsted acid
could react with more adsorbed oxygen (O2

− and O−) [44].
Figure 7 presents the response curves of different sensors based on pure ZnO, 5%,

10%, 15%, and 20% Ni-ZnO porous sea urchin-like structures exposed to various concentra-
tions of formaldehyde, acetone, ethanol, and isopropanol at an operating temperature of
220 ◦C. For the 5% Ni-ZnO sensor, the curve of real-time response to formaldehyde gas
at different concentrations was observed. The curves in the insets refer to the relationship
between the concentration and the response when the sensors are exposed to formaldehyde
vapor at different concentrations. In detail, even when exposed to very low concentrations
(1 ppm), the response to formaldehyde vapor was close to ca. 6.2. The response was
40.2 when the concentration was increased to 100 ppm. The increasing concentration of
detected gases improves the response to formaldehyde, acetone, ethanol, and isopropanol,
as shown in the insets. The response to acetone, ethanol, and isopropanol (100 ppm) was
33.6, 34.2, and 32.4, respectively. For the 10% Ni-ZnO sea urchin sensor, the response values
to 100 ppm formaldehyde, acetone, ethanol, and isopropanol were 84.4, 71.1, 61.8, and 68.8,
respectively. In addition, the 15% Ni-ZnO sea urchin sensor, the 20% Ni-ZnO sea urchin
sensor, and the pure ZnO sea urchin sensor showed response values to formaldehyde of
70.4, 62.2, and 20.5, respectively, to acetone of 58.1, 48.6, and 15.2, respectively, to ethanol
of 55.2, 45.1, and 16.9, respectively, and to isopropanol of 55.9, 45.7, and 18.5, respectively.
Furthermore, for 100 ppm formaldehyde vapor, the response and recovery times were also
investigated, as exhibited in Figure S12. The response times (~22 s, ~17 s, ~19 s, ~20 s,
and ~22 s) and the recovery times (~30 s, ~20 s, ~22 s, ~24 s, and ~32 s) were obtained for
5%, 10%, 15%, 20% Ni-ZnO, and pure ZnO sea urchin sensors, respectively. Compared
to the other sensors, the 10% Ni-ZnO sensor with the largest specific surface area exhib-
ited superior gas-sensing behaviors upon exposure to formaldehyde, acetone, ethanol,
and isopropanol vapors. The largest specific surface area could hold more passages and
“surface accessibility” to accelerate the transfer of the target molecule. This leads to an
easy gas molecule (detected gases or oxygen) adsorption/dissociation from the sensing
materials attributed to the production of more active sites. Moreover, the excellent sensing
performance was attributed to the smaller size of porous nanoleaves and the smaller size of
the pores distributed over the surface of the numerous nanoleaves. In general, the specific
surface area, Ni-doping content, and porous sea urchin-like structure jointly affect the
sensing properties. Compared to ZnO-based sensors, the 10% Ni-ZnO sensors presented
better sensing behaviors to formaldehyde vapor than 3 mol% NiO/ZnO microflowers [45],
CdO-ZnO nanorices [46], 3 wt.% Ag-In2O3/ZnO nanocomposites [47], SnO2-ZnO/PdO
nanoparticles [48], ZnO/SnO2 hollow nanospheres [49], Co3O4/ZnO hollow spheres [50],
and 1% Er-ZnO nanowires [51], as listed in Table S3.
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Figure 7. Real-time response curves of the sensor devices upon exposure to different concentrations
of (a) formaldehyde, (b) acetone, (c) ethanol, and (d) isopropanol at a working temperature of 220 ◦C.
The insets show the corresponding sensor response curves.

Figure 8a shows ten reversible cycles of the sea urchin-shaped Ni-ZnO sensor upon
exposure to 100 ppm formaldehyde vapor. When the sensor comes in contact with formalde-
hyde vapor, the current quickly rises to a high level. The current decreases sharply to
the initial level when the sensor is off formaldehyde vapor. The response currents of the
sensors were stable and repeatable. Therefore, all Ni-ZnO sea urchin sensors showed
excellent cycling stability and repeatability for detecting VOCs. Furthermore, Figure 8b
shows the good linear relationship of the responses of the prepared sensors to the various
concentrations of formaldehyde. Linear regression coefficients (R2) of the 5%, 10%, 15%,
and 20% Ni-ZnO sea urchin sensors, and of the pure ZnO sea urchin sensor, were 0.978,
0.991, 0.977, 0.978, and 0.931, respectively. Clearly, the 10% Ni-ZnO sea urchin sensor shows
a better linear relationship between the response and formaldehyde concentration.
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3.3. Gas-Sensing Mechanism

The sensing mechanism of the ZnO-based sensor was attributed to the surface ad-
sorbed oxygen species and the redox reactions between the target gases and the oxygen
species, which leads to variations in the sensor resistance. For the pure ZnO sensor, when
the sensor is exposed to the air, oxygen molecules will adsorb on ZnO surface, generating
thin electron depletion layers. Electrons in the ZnO conduction band are drawn by oxygen
molecules to form oxygen species with strong oxidizing properties (O2

− and O−). Each
target gas is dissociated/ionized on the ZnO surface and reacts with ionosorbed oxygen
elements (O2

−, O−, and O2), forming H2O (g) and CO2 (g). The enhancement of the conduc-
tivity will be produced due to a thinner electron depletion layer as the number of adsorbed
oxygen decreases. Consequently, the electrons return into the ZnO conduction band when
surface catalytic reactions occur between oxygen anions and HCHO (see Equation (3)).
Compared to pure ZnO sea urchins, the sensing performance of Ni-ZnO sea urchin sensors
was improved greatly, which can be attributed to the increase of the charge transfer by
doping, producing electronic sensitization that makes ZnO more sensitive to VOC vapors.
The Ni-doped ZnO nanocrystals provide abundant active sites for formaldehyde molecule
adsorption which, combined with defects of Ni-doped ZnO nanocrystals, can generate the
intermediates and react with absorbed oxygen on Ni-doped ZnO (see Equations (4) and (5)).
Therefore, Ni dopants can lead to the dissociation and ionization of VOCs, making ZnO
more sensitive and selective. The addition of Ni increased the VOC adsorption amount
on the surface and accelerated its ionization [51,52]. This process decreases the working
temperature of the sensor due to water formation.

HCHO (ads) + 2O−(O2
−)→ CO2 + H2O + 2e− (3)

HCHO (ads) + h+ + O−(O2
−)→ HCOOH (4)

HCHO (ads) + 2h+ + 2O−(O2
−)→ CO2 + H2O (5)

Moreover, the sensing property of the ZnO-based sensor depends greatly on its average
grain diameter (D) [52]. When D ≤ 2L (L = thickness of the depletion layer), the grain
can be fully depleted, and its conductance is grain-controlled [18]. The diameter of the
ZnO crystallites (10% Ni-ZnO) averaged around 12.5 nm, which is the same as the ZnO
Debye length (LD) [18], indicating that 10% Ni-ZnO are almost fully depleted. The nano-
size effect implies that many surface zinc atoms can play an important part in surface
catalytic reactions. Furthermore, the largest specific surface area (116.5 m2 g−1) could hold
more passages and “surface accessibility” to accelerate the transfer of the target molecule.
This leads to an easy gas molecule (detected gases or oxygen) adsorption/dissociation
from the sensing materials, attributed to the production of more active sites. On the other
hand, due to the difference of lattice spacing, some defects and vacancies could be created
near the region of n-ZnO/p-NiO heterocontacts, which will lead to more active sites for
gas adsorption and surface reaction compared with pure ZnO. Therefore, the Ni-ZnO
sea urchins as sensing materials can improve sensitivity and shorten response/recovery
times significantly.

4. Conclusions

The Ni-ZnO sea urchins consisting of numerous porous nanoleaves were prepared by
an aqueous solution method and a subsequent heat treatment. The Ni-ZnO sea urchins
with various amounts of Ni dopants possessed small nanocrystals and a high specific
surface area. Used as sensing material, they exhibited a strong response, fine stability, and
short response–recovery times for detecting formaldehyde vapor. Furthermore, among
these ZnO-based gas sensors, the 10% Ni-ZnO sea urchin sensor exhibited the highest
gas-sensing performance towards some VOC vapors, such as formaldehyde, acetone,
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ethanol, and isopropanol. The high specific surface area, stable 3D porous structure, and
moderate content of Ni dopants with a high content of oxygen defects contribute to the
surface catalytic reaction, gas absorption–desorption, and effective electron transfer in the
gas-sensing process.
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and calcined ZnO product, and (b) EDS analysis of 10% Ni-ZnO product; Figure S4: SEM images
of (a) 5% Ni-Zn5(CO3)2(OH)6 precursor and (b) calcined 5% Ni-ZnO product. SEM images of
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(b) 10% Ni-ZnO, (c) 15% Ni-ZnO, and (d) 20% Ni-ZnO sea urchins. The insets show the corre-
sponding pore size distributions TGA curves of sea urchin-like Ni-doped Zn5(CO3)2(OH)6 precursor;
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corresponding pore size distribution; Figure S11: O 1s high-resolution XPS spectrum of (a) 5%,
(b) 10%, (c) 15%, and (d) 20% Ni-ZnO sea urchins, and (e) pure ZnO sea urchins; Figure S12: Dy-
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