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Abstract: A carbon dot-functionalized solution-gated graphene transistor (CD-SGGT) was designed
and prepared via the modification of CDs on the gate of SGGT. The above CDs were hydrothermally
synthesized using DL-thioctic acid and triethylenetramine as C, N and S sources. The average size of
CDs was ~6.2 nm, and there were many amino and carboxyl groups on the CDs’ surfaces. The CDs
was then used as a probe for preparation of CD-SGGT sensor for the cobalt(II) (Co2+) ions detection.
The CD-SGGT sensor showed excellent sensitivity and high selectivity. Remarkably, the limit of
detection (LOD) reached 10−19 M. The linear detection range was obtained from 10−19 to 10−15 M.
Additionally, the CD-SGGT also showed fast response and good stability.

Keywords: carbon dots; graphene; transistor; cobalt(II) ions; high selectivity; high sensitivity

1. Introduction

Cobalt is a rare element in some minerals of the earth’s crust. It is not only used in
various industrial productions, it is also important in various physiological and patholog-
ical processes [1]. The concentration of cobalt ions in the human body should especially
be controlled within an appropriate range to maintain a complex and long-lasting life
system [2,3]. An excessive Co2+ ions intake can lead to some serious health problems,
such as emesis, paralysis, diarrhea, and hypotension. Additionally, Co2+ ions deficiency
can also lead to harmful anemia, anorexia, and chronic swelling [4–6]. Given the im-
portance of Co2+ ions in human life [7–9], several methods were reported to detect Co2+

ions. The conventional detection methods such as surface enhanced Raman scattering
spectroscopy (SERS) [10], inductively coupled plasma mass spectrometry (ICP-MS) [11,12],
electrochemical methods [13], and colorimetric [14] were reported for Co2+ detection. How-
ever, these detection methods suffer from some drawbacks, including expensive equipment
and complex processing procedures, as well as long time consumption.

To solve the above issues, the fluorescent nanoparticles, e.g., carbon dots (CDs), were
widely used as the fluorescent probes for the detections of various metal ions over the last
decade owing to their advantages, such as good water solubility, suitable size, low cost,
good biocompatibility, and unique surface structure [15,16]. For example, as for detection
of Co2+ ions, Du et al. [17] prepared the multifunctional N-doped carbon nanodots (N-
CNDs) as fluorescent probes to achieve dual detection of Co2+ ions and vitamin B12. The
limit of detection (LOD) for Co2+ ions was 230.5 mM and the linear detection range was
2.5–25 mM. Additionally, Wissuta Boonta et al. [6] prepared a N, S-GQD fluorescent sensor
and the LOD reached 1.25 mM. Although the CDs-based fluorescent detection method had
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their advantages, such as low-cost and good selectivity, the other performances such as
sensitivity, LOD, and detection time still require improvement in the practical applications.

The solution-gated graphene transistor (SGGT) was widely used as a sensor for
detecting ions [18], glucose [19], pH [20], dopamine [21], protein [22], DNA [23], cells [24],
viruses [25,26], etc., over the last decade. The SGGT sensor can solve the above issues
owing to its advantages, such as high sensitivity, ultralow LOD, rapid detection, wide
detection range, and good stability, etc. [27–30]. Based on this, a new type of carbon dot-
functionalized solution-gated graphene transistor (CD-SGGT) was designed and prepared
by our group, which was further used as a sensor for the detection of metal ions [31,32].
First, a flexible CQD-SGGT Cu2+ ion sensor was produced by using functionalization
of carbon quantum dots (CQDs) from hydrothermal treatment of sodium alginate and
ethylenediamine. The sensor had a good linear relationship in the range of 10−14–10−4 M,
and the LOD for detecting Cu2+ ions was low to 10−14 M. Furthermore, a highly sensitive
Fe3+ sensor based on the CQD-SGGT was prepared by using CQDs as functional probes
from the hydrothermal method of sodium lignosulfonate and p-phenylenediamine. The
LOD for Fe3+ ions could be reduced to 10−16 M and good linear range of 10−16–10−4 M
could be obtained.

Based on our previous work [31,32], to further explore the detection capability of
CDs-based SGGT, we designed a new CD-SGGT sensor for fast and highly sensitive
detection of Co2+ ions. The CDs was hydrothermally synthesized using DL-thioctic acid
and triethylenetramine as S, N, C sources. The surfaces of CDs had many carboxyl and
amino groups. The CD-SGGT sensor exhibited the ultralow LOD of 10−19 M and a good
linear range from 10−19 to 10−15 M. The sensor also showed a good selectivity to Co2+ ions.
Finally, the detection mechanism of CD-SGGT is discussed.

2. Materials and Methods
2.1. Materials

Soda-lime glass substrates were purchased from Luoyang Guluo Glass Co., Ltd. (Lu-
oyang). The single-layer graphene on copper foil was purchased from 6Carbon Technol-
ogy (Shenzhen) (China). Triethylene tetramine (TETA), thioctic acid (T-acid), phosphate-
buffered saline (PBS) acetone, isopropanol, ethanol, lithium chloride (LiCl), magnesium
chloride (MgCl2), manganese chloride (MnCl2), nickel chloride (NiCl2), lead chloride
(PbCl2), zinc chloride (ZnCl2), barium chloride (BaCl2), silver chloride (AgCl), aluminum
chloride (AlCl3), cupric chloride (CuCl2), ferric chloride (FeCl3), cobalt chloride (CoCl2),
poly dimethylsiloxane (PDMS), mercaptoacetic acid (MAA), cysteamine, 1-(3-dimethy-
laminopropyl)-3-ethyl carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS),
and poly methyl methacrylate (PMMA) were purchased from Shanghai Aladdin Biochem-
ical Technology Co., Ltd. (Shanghai). All the chemical reagents were of analytical grade
and used without further purification. Ultrapure deionized (DI) water was obtained from
Chengdu Infiltration Technology Co., Ltd. (Chengdu) and used throughout the experiment.

2.2. Preparation of CDs

The synthesis of CDs followed the previous report [33]; briefly, thioctic acid (0.2064 g)
and triethylenetramine (1 mL) was dissolved in 9 mL of water, and stirred for 5 min at
room temperature. Then, the above solution was transferred to a polytetrafluoroethylene
(Teflon)-lined autoclave (50 mL) and heated at 200 ◦C for 2 h and was then allowed to
cool to room temperature. The products were centrifuged for 10 min at 12,000 rpm. The
prepared suspensions containing CDs were filtered through 0.22 µm filter membranes
and were then subjected to dialysis (1000 Da molecular weight cutoff) for about 48 h. The
resulting dialysate was concentrated to 10 mL and stored at 5 ◦C.

2.3. Device Fabrication

Patterned Au (~120 nm)/Cr (~12 nm) gate, source, and drain electrodes were deposited
on substrate (electronic grade glass) by evaporation-coating instrument. CVD-grown



Chemosensors 2023, 11, 192 3 of 11

single-layer graphene on copper foils was transferred to the confined channel area between
source and drain (0.2 × 6 mm2) by PMMA wet transfer method and was then heated at
approximately 65 ◦C for 10 min and 105 ◦C for 30 min. Graphene/PMMA films were
dipped in acetone to remove the PMMA layer. Then, the device was soaked in deionized
water twice (5 min each) and dried naturally.

2.4. Gate Electrode Modification with CDs

The 10 µL MAA (50 mM) was modified on the gate electrode overnight. Then, 10 µL
EDC/NHS solution (0.2 mM/0.5 mM, PBS solution, pH = 5.5) was dropped on the electrode
surface to activate carboxyl group and kept for 3 h. The gold grid electrode was rinsed
three times with PBS buffer. An aqueous solution of 10 µL CDs was dropped dropwise to
the electrode surface and kept for 3 h. Finally, the electrode was washed three times with
PBS buffer to remove the unfixed CDs.

2.5. Device Test

The SGGT was tested at a fixed VD = 0.1 V with a scan rate of 0.02 V s−1, and the PBS
was used as electrolyte for all measurements. The device performances, including transfer
curves (ID vs. VG) and time-dependent channel currents (ID vs. Time), were characterized
using two probe Keithley 2400 source meters controlled by a computer with a LabVIEW
program. The detection limit of each device was defined by the channel current response at
the condition of signal/noise > 3.

3. Results and Discussion
3.1. Synthesis and Characterization of CDs

Figure 1a shows the transmission electron microscopy (TEM) image of CDs. The
results show that the prepared CDs were spherical nanoparticles with good dispersion. In
the inset of Figure 1a, high- resolution TEM (HRTEM) image of the CDs showed that the
CDs exhibited the obvious lattice stripes and a lattice spacing was ~0.26 nm, which fit well
with the (100) plane of graphite [34]. It indicated that the CDs had the good crystallization.
As shown in Figure S1, the average size of the CD was ~6.2 nm. Figure 1b showed the
absorption spectrum of CDs and the fluorescence spectrum of CDs under excitation of
320 nm UV light. The main emission peak was at 420 nm. The absorption peak was
attributed to the π-π* transition of aromatic sp2 hybridization.

Figure 1c shows the Fourier transform infrared (FTIR) spectrum of CDs. The peak at
3420 cm−1 represents the stretching vibration signal of O-H. The peak at 2945 cm−1 and
2860 cm−1 were corresponding to the vibration of the C-H bond. The peak at 1635 cm−1

was attributed to the vibration of the group C=O [35,36]. Both 1484 cm−1 and 1316 cm−1

were characteristic peaks of C-N. The peaks of 1105 cm−1 and 1040 cm−1 can be assigned
to C-O and C-S. The evidence suggested that N and S were well doped into the CDs and
the surfaces of CDs containing a lot of amino and carboxyl groups [37,38]. In order to
determine the chemical composition of CDs, the X-ray photoelectron spectrum (XPS) of
CDs was performed. Figure 1d shows the full scan XPS spectrum of CDs. The peaks at
~531 eV, ~400 eV, ~285 eV, ~227 eV, and ~163 eV were assigned as O1s, N1s, C1s, S2s,
and S2p, respectively. Figure 2a shows the high-resolution spectra of the C1s.The peaks
at 286.8 eV, 285.9 eV, and 284.8 eV were corresponding to C-O-C, C-N, and C-C/C=C
groups, respectively. In Figure 2b, the typical O1s spectrum displayed three distinct peaks
at 532.7 eV, 531.8 eV, and 530.7 eV, corresponding to the C-OH, C=O, and C=O/C-O-C/C-
OH, respectively. The high-resolution N1s spectrum in Figure 2c indicated the presence
of C-N-C, N-(C)3, and N-H groups at 401.2 eV, 400.2 eV, and 399.1 eV, respectively. The
sulfur peaks of the CDs can be fitted into four peaks, as shown in Figure 2d. The peaks at
168.6 eV and 167.2 eV can be corresponding to C-S-O and S=O, respectively. The peaks at
164.4 eV and 163.3 eV corresponded to the S2p3/2 and S2p1/2, respectively. These results
again proved that the CDs were doped with N and S, and had many carboxyl and amino
groups on their surfaces. These functional groups not only allowed the amino groups of
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the CDs to bind with the carboxyl groups of MAA to immobilize CDs, but also allowed the
remaining groups on the surface of CDs as the probes to recognize and screen Co2+ ions.
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3.2. Detection of Co2+ Ions Using CD-SGGT

Figure 3 shows the diagram of the device structure and detection process of the
CD-SGGT, as well as the specific process of CDs modification on the gate surface. MAA
was firstly used to modify the gate electrode and form the Au-S bond by self-assembly
method [31,32]. Next, the carboxyl group of MAA was activated by EDC/NHS. Addition-
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ally, CDs were then immobilized on the electrode surface by condensation of amino and
carboxyl groups. The CDs modified on the gate surface of SGGT can be used as probes for
metal ions detection. The whole test process was carried out in PBS solution (pH = 7.2) in
PDMS well. A voltage (VG) was applied to the gate, and a constant channel voltage (VD) of
0.1 V was applied crossing the source to the drain. By adding the different concentration of
Co2+ ions to the PDMS well, the transfer curve shift (∆VDirac) and channel current change
(∆ID) was measured accordingly to evaluate the Co2+ ions sensor.
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Figure 4a and Figure S2 show the selectivity of the CD-SGGT sensor to Co2+ ions. A total
of 13 metal ions, including Mg2+, Zn2+, Mn2+, Hg2+, Li+, Ba2+, Ni2+, Pb2+, Al3+, Cu2+, Fe3+,
Ag+, and Co2+ ions were selected for the comparison of the response level. The |∆ID| of
Co2+ ions was as least 2.3 times higher compared to other 12 metal ions. This suggested
that the CD-SGGT sensor had a good selectivity to Co2+ ions compared to other ions. As
shown in Figure S3, the results showed that the CD-SGGT sensor did not respond to the
PBS addition, indicating that the PBS in the PDMS well in the test environment had no
effect on the CD-SGGT sensor. The addition of 12 mixed ions solutions (without Co2+ ions)
resulted in little ID response of the CD-SGGT sensor. However, 13 mixed ions solutions
(including Co2+ ions) were added. The response ID of the sensor increased. This indicates
that the CD-SGGT sensor alone had the strongest signal response to the Co2+ ions. Then, a
Co2+ ions solution (10−5 M) was added to the PDMS well, and the ID also increased. This
again proved that the prepared CD-SGGT sensor had good selectivity for Co2+ ions. Since
the CDs were used as probes on the surface of the gate electrode, the selectivity probably
came from the specific interaction between surface groups and Co2+ ions. Furthermore,
the LOD and linear detection range for Co2+ ions were explored. Figure 4b shows that the
transfer curves of the sensor were measured at the different concentration of Co2+ ions. The
transfer curves show the bipolar transfer property. Figure S4 shows the Raman spectrum of
a single layer graphene on a silicon substrate. The D (~1350 cm−1), G (~1583 cm−1), and
2D (~2680 cm−1) peaks were attributed to the three characteristic peaks of graphene. This
means that wet-chemically transferred CVD-grown graphene could act as a conductive
channel without destroying its monolayer structure [39,40]. With the increase in Co2+ ions
concentration from 10−19 M to 10−15 M in the PDMS well, the Dirac point (VDirac) of the
transfer curve shifted towards the negative gate voltage direction from 0.56 V to 0.5 V. This
means that ID will decrease with the concentration increase in Co2+ ions when the applied
VG is taken at the left of the Dirac point. Figure S5a is the SEM image of the gate electrode
surface of the CD-SGGT sensor after the test. The corresponding elemental mapping images
of S, Co, and S/Co are shown in Figure S5b–d. As shown in Figure S6, the impedance of the
gate electrode with the CDs functionalization increased compared to that of gate electrode
without the unmodified CDs. This result illustrates that the CDs was successfully modified
on the gate surface. The impedance of the gate electrode also increased after testing. This
result indicates that the CDs probe successfully captured the Co2+ ions. Therefore, the
CD-SGGT sensor we prepared allowed for the detection of Co2+ ions. It indicates that the
Co2+ ions were well captured by the probes to the surface the gate electrode. Figure 4c
shows the channel current-time response of the sensor with the different concentration
of Co2+ ions from 10−19 M to 10−15 M. The inset of Figure 4c shows transfer curve of this
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device without the addition of Co2+ ions. It can be observed that the ID will decrease with
the concentration increase in Co2+ ions, which is consistent with transfer curve shift. In
addition, the response time was ~ 165 s. Figure 4d shows that the ∆ID had a good linear
relationship with the logarithm of Co2+ ions concentrations in range of 10−19–10−15 M.
The LOD of the sensor can reach 10−19 M that was 16 orders of magnitude lower than
those of the Co2+ ions fluorescence sensor [18]. It indicates the CD-SGGT sensor had high
sensitivity and ultralow LOD (see Table S1), which was attributed to the unique binding
ability between CDs and Co2+ ions and the inherent amplification function of SGGT. In
addition, the stability test of the CD-SGGT sensor was carried out, as shown in Figure S7.
It can be seen that the transfer curves of CD-SGGT showed few shifts for 11 consecutive
scans of the transfer curve, indicating that the sensor had good stability and could be used
for the detection of Co2+ ions.
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3.3. Fluorescence Detection of Co2+ Ions Using CDs

To further compare the performances between photoluminescence spectroscopy (PL)
detection and SGGT sensor, the CDs were directly used as fluorescent probes for Co2+ ions
detection. The selectivity for Co2+ ions were first demonstrated, as shown in Figure 5a,b.
The CDs would happen to quench at various metal ions solutions, including Mg2+, Zn2+,
Mn2+, Hg2+, Li+, Ba2+, Ni2+, Pb2+, Al3+, Cu2+, Fe3+ Ag+, and Co2+ ions. Evidently, Co2+

ions lead to the highest quench of CDs PL and the fluorescence quench was as high as 95%.
This indicates that the CDs also had the good selectivity for Co2+ ions. The selectivity of the
sensor to Co2+ ions may be attributed to the internal filtering effect of CDs [41]. Figure 5c
shows that PL intensity of CDs at the different concentration of Co2+ ions. The fluorescence
intensity of CDs solutions decreased with the increase in Co2+ ions concentration from
10 µM to 100 µM. This was consistent with the results of the SGGT sensors. Figure 5d
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shows that the concentration of Co2+ ion had a good linear relationship with the percentage
of CDs fluorescence intensity reduction. The results showed that the CDs had excellent ion
selectivity for Co2+ ions under PL test, and the LOD was 10−5 M [42–44]. Compared with
the SGGT sensor, the PL detection had the same selectivity of ion, but the detection range
was narrower and the LOD was higher.
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3.4. The Sensing Mechanism of CD−SGGT for Co2+ Ions Detection

To demonstrate the detection mechanism, cysteamine was used instead of MAA to
modify the gate electrode. The CDs were immobilized on the gate by combining the
amino groups of cysteamine with the carboxyl groups on the surfaces of CDs. In this
case, the carboxyl group number of CDs surface of CD-SGGT sensor based on cysteamine
modification would be lower than that of CD-SGGT sensor based on MAA modification.
Figure 6a shows the transfer curves of the device modified by the cysteamine at the different
concentrations of Co2+ ions. Figure S8 shows the transfer curve of this device without
the addition of Co2+ ions. Similarly, the Dirac point also shifted to the left, as observed,
with the increase in Co2+ concentrations of ions. The rule of Dirac point is similar to that
of the device modified with MAA. Figure 6b shows that when the concentration of Co2+

ion increased from 10−19 M to 10−9 M, the ID intensity also gradually decreased at the
voltage of VD = 0.1 V, VG = 0.1 V. However, the response time of CD-SGGT modified with
cysteamine was ~805 s, which was far longer than that of CD-SGGT modified with MAA. It
indicates the carboxyl groups on the surface of CDs in the CD-SGGT modified with MAA
was the dominant sensing mechanism. Therefore, the carboxyl groups on the surface of
CDs played a dominant role in the detection of Co2+ ions.
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ions; (d) potential drops across the two EDLs before and after the addition of Co2+ ions.

Based on this, the sensing mechanism is given in Figure 6c,d. At the applied gate
voltage, two electric double layers (EDL) were formed at the channel/electrolyte interface
and the gate/electrolyte interface, respectively. When the Co2+ ions solution was dropped
into the PDMS well, the functional groups on the surfaces of CDs will screen the Co2+ ions
in the solution due to diffusion effect. Because of the strong complexation reaction between
Co2+ ions and the carboxyl group, Co2+ ions will form the coordination bond, resulting
in the chemical absorption of Co2+ ions on the surfaces of CDs. As shown in Figure 6c,
when the two carboxyl groups coordinate with one Co2+ ion, the distance between the
gate electrode and the negatively charged ions (the thickness of EDL) decreased due to the
bending of the carboxyl branches, i.e., the thickness of EDL near the gate electrode will
decrease. The capacitance of the device can be expressed as the following equation.

C ∝
1
d

(1)

1
C

=
1

CG−E
+

1
CE−C

(2)

where C is the capacitance and d is the thickness of the EDL. CG−E and CE−C are the
capacitances of the two EDLs at the gate/electrolyte and electrolyte/graphene interfaces,
respectively. According to Equations (1) and (2), the thickness decrease in the EDL near the
gate electrode will lead to the increase in the CG−E. Thus, the total capacitance (C) of the
whole transistor will increase. Figure 6d shows the potential drops crossing the two EDLs
before/after the Co2+ ions are captured. When the Co2+ ions are captured by the CDs on
the gate electrode, the potential will redistribute due the change of the capacitance of the



Chemosensors 2023, 11, 192 9 of 11

EDL near the gate electrode. Furthermore, the channel current ID varies with VG and can
be expressed as

ID ≈
W
L

µCi|VG − VDirac|VDS(|VG − VDirac| >> VDS) (3)

where VDS and VG are the voltages applied to the drain and gate electrodes, respectively;
W and L are the width and length of the channel, respectively; µ is the mobility of graphene
carriers (electrons or holes); Ci is the gate capacitance; VDirac is the voltage at the charge
neutral point. If the ID of the device remains constant, according to Equation (2), a lower VG
is required when the Ci increases. Therefore, with the increase in Co2+ ions concentration,
the transfer curve of the device will shift towards the negative gate voltage direction.

4. Conclusions

In conclusion, a new type of CD-SGGT was prepared by using CDs to modify the
gate surface of SGGT. The CD-SGGT showed a good current response for Co2+ ions, which
realized the detection of Co2+ ions. The CD-SGGT sensors not only showed high selectivity,
but also good sensitivity. The LOD of the sensor reached 10−19 M and there was a good
linear detection range of 10−19–10−15 M. The CD-SGGT sensor exhibited a rapid response
for Co2+ ions when using MAA as a modifier and had good stability. Furthermore, through
the demonstration of detection mechanism, it was deduced that the carboxyl groups on the
surface of CDs played a key role in the detection of Co2+ ions. The development of highly
sensitive and selective solution-gate transistor sensors with CDs functionalized gates opens
up a new path for Co2+ ions detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11030192/s1. Figure S1: the size distribution of
the CDs; Figure S2: (a) Selectivity measurements of the CD-SGGT sensor. Comparison of the sensor
in response to the target Co2+ ions or other metal ions, i.e., Ag+, Al3+, Ba2+, Cu2+, Fe3+, Hg2+, Li+,
Mg2+, Mn2+, Ni2+, Pb2+, Zn2+ ions (the concentration of all the ions was 1.0 × 10−15 M) (b) The
transfer curves of the SGGT under the corresponding condition; Figure S3: Test of the selectivity
of the CD-SGGT sensor, i.e., PBS, (Mg2+, Zn2+, Mn2+, Hg2+, Li+, Ba2+, Ni2+, Pb2+, Al3+, Cu2+, Fe3+

and Ag+) ions mixed solution (1.0 × 10−15 M), (Mg2+, Zn2+, Mn2+, Hg2+, Li+, Ba2+, Ni2+, Pb2+,
Al3+, Cu2+, Fe3+, Ag+ and Co2+) ions mixed solution (1.0 × 10−15 M), Co2+ ions (1.0 × 10−15 M);
Figure S4: Raman spectrum of a single-layer graphene on Si substrate; Figure S5: Characterization of
the gate surface after detection. (a) SEM image of the gate electrodes after detecting Co2+ ions. (b),
(c), (d) Element mapping result of the gate electrodes after detecting Co2+ ions; Figure S6: Impedance
test on gate surface (bare gold, functionalized CDs, and after test); Figure S7: The transfer curve of
CD-SGGT was tested 11 times consecutively; Figure S8: The transfer curves of the SGGT under the
corresponding condition (Figure 6b); Table S1: Comparison of recently reported various methods for
detection of Co2+ ions.
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