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Abstract: A hierarchically organized Co3O4 nanopowder was obtained via programmed chemical
precipitation, exhibiting several levels of microstructural self-organization: the initial particles are
40 ± 5 nm in size (average CSR size is 32 ± 3 nm), have a somewhat distorted rounded shape
and are combined into curved chains, which, in turn, form flat agglomerates of approximately
350 ± 50 nm in diameter. The thermal behavior of the semiproduct (β-Co(OH)2) was studied by
means of a synchronous thermal analysis (TGA/DSC). The obtained powders were examined by
X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR). Nanopowder of
cobalt(II,III) oxide was employed as a functional ink component for the microplotter printing of the
corresponding film on the chip surface, and the preservation of the material’s crystal structure was
confirmed by XRD and Raman spectroscopy (RS). The microstructural features of the resulting film
were analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Kelvin
probe force microscopy (KPFM) was utilized to estimate the work function of the material surface,
and the scanning capacitance microscopy (SCM) data indicated the intergranular conductivity type.
The results of the conducted chemosensor measurements demonstrate that the printed Co3O4 film
exhibits hydrogen sulfide selectivity and a rather high sensory response (S = 131% for 100 ppm) to
this analyte at an operating temperature of 250 ◦C. The dependence of the sensor response value
and time when detecting H2S in the concentration range of 4–200 ppm was determined and the high
reproducibility of the signal was demonstrated.

Keywords: Co3O4; programmable coprecipitation; hierarchical structure; gas sensor; hydrogen sulfide

1. Introduction

Hydrogen sulfide is a colorless, flammable toxic gas whose formation as a byproduct
is associated with technological processes in a number of industrial branches; in particular,
oil, gas, mining, pulp, the pharmaceutical sector, etc. [1,2]. The limits of acceptable H2S
concentrations according to international standards range from 10 to 50 ppm [3]. Exposure
to low concentrations of H2S has a negative effect on the human nervous, digestive and
respiratory systems, while high concentrations can be lethal. In humid atmospheres,
this gas can become a source of construction material corrosion [4]. In this regard, the
development of methods for creating effective receptor components of gas sensors with a
high sensitivity and selectivity in relation to hydrogen sulfide remains extremely urgent
today. There are a fairly large number of high-performance approaches to analyzing the
ambient atmosphere (e.g., laser absorption [5], tunable diode laser absorption spectroscopy
(TDLAS) [6] and light-induced thermoelastic spectroscopy (LITES) [7]); however, resistive
gas sensors are known to have significant advantages, such as a low cost and portability [8],
which ensures their wide adoption in various applications.
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Especially promising in this context are semiconducting metal oxides [9,10]; in partic-
ular, Co3O4, characterized by a high redox activity and electrical conductivity, commercial
availability and also, depending on the method of production, demonstrating selectivity
to gases such as ammonia [11], hydrogen [12] and carbon monoxide [13] and a range of
volatile organic compounds (n-butanol [14], acetone [15], toluene and xylene [16]).

It is known that the surface microstructure of the receptor material has a significant
influence on the gas detection kinetics, as well as on the sensor response values. The forma-
tion of hierarchically organized nanomaterials characterized by a high specific surface area
that, in turn, increases the number of its active centers and the charge transfer rate, allowing
us to improve the electrophysical properties of the resulting materials, has attracted an
increasing interest from the scientific community in recent years [17,18]. The number of
works devoted to proving the efficiency of 0–3D hierarchical nanomaterials as resistive gas
sensor components for various analyte gases is growing rapidly [19–23].

The most popular methods for anisotropic material formation are hydrothermal syn-
thesis [24–27], sol–gel technology [28,29], electrospinning [30,31], electrodeposition [32–35]
and the combined chemical precipitation of hydroxides [36,37], carbonates [38,39] or metal
oxalates [40,41]. Thus, in the case of hydrothermal synthesis, anisotropic nanostructures
of different types can be obtained, which differ in their selectivity for detecting a partic-
ular analyte [26]. Sol–gel technology is usually characterized by the formation of highly
dispersed primary particles organized into three-dimensional spatial agglomerates with a
high porosity and, consequently, sorption capacity [29]. One-dimensional nanomaterials
are formed using electrospinning, where the microstructural character significantly affects
the electrochemical characteristics [30]. Using electrochemical deposition [34], as in the
case of hydrothermal synthesis, hierarchically organized cellular structures (including core–
shell-type) with a complex structure of pores and channels can be formed on substrates
of a complex shape, which ensures the high activity of the material surface. Chemical
precipitation is one of the easiest and most convenient methods in terms of the equipment
used, allowing, depending on the synthesis conditions, for the formation of both isotropic
and hierarchically organized nanomaterials (including ones with a complex composition),
which differ in their functional properties [36]. In this work, we propose the usage of
programmed chemical precipitation, which enables a high degree of automation of the
synthesis process and fine control of its parameters (continuous or discrete precipitant
feeding to the metal-containing reagent solution in a wide range of rates and volumes
with the consideration of temperature and pH values in the reaction system measured
simultaneously). In turn, this makes it possible to significantly increase the reproducibility
of the microstructural and functional features of the formed material [42].

The target operational characteristics of the resulting planar nanostructures can be
preset not only at the synthesis stage but also at the stage of applying the appropriate
coating to the substrate. Given the recent trends toward smaller components and devices in
microelectronics and gas sensing, specialists in this field are increasingly striving to combine
synthetic approaches with additive technologies that solve the issues of planarization and
miniaturization by the targeted deposition of the active material of the desired composition,
constituting a corresponding functional ink, on the desired area of the substrate [43,44]. The
most common and demanded methods in this context are ink-jet printing [45–48], aerosol
printing [49–54], microplotting [42,55–57] and microextrusion [58–63], as well as pen plotter
printing [42,64,65]), which enable the reproducible coatings of the desired thickness and
geometry on various substrates in automatic mode according to the specified digital model.

The aim of the present work was to study the synthesis of hierarchically organized
cobalt(II,III) oxide using programmed chemical precipitation and develop a technique for
the microplotter printing of the corresponding film, as well as to examine the chemosensory
properties of the resulting material; in particular, when detecting hydrogen sulfide.
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2. Materials and Methods
2.1. Materials

Co(NO3)2·6H2O (99%, Chimmed, Moscow, Russia) and 5% aqueous solution of
NH3·H2O (Chimmed, Moscow, Russia), α-terpineol (>97%, Vekton, Russia) and ethyl
cellulose (48.0–49.5% (w/w) ethoxyl basis, Sigma Aldrich, Saint Louis, MO, USA) were
used in this work without further purification.

2.2. Oxide Nanopowder Preparation

Preparation of Co3O4 nanopowder was carried out by programmed chemical pre-
cipitation using an ATP-02 potentiometric titrator (Aquilon JSC, Podolsk, Russia). Thus,
automatic addition (supply pulse was 2 s with a pause between each pulse of 1 s) of ammo-
nia hydrate solution to an aqueous solution of cobalt nitrate (c = 0.1 mol/L) under stirring
was carried out until reaching pH = 9.2 and complete precipitation of the semiproduct
particles. The resulting precipitate was separated from the mother liquor and washed with
distilled water by cyclic centrifugation, and then dried at 100 ◦C until mass stabilization
(within 3 h). Further, based on the results of synchronous thermal analysis of the pow-
der obtained, the regime of its additional heat treatment (500 ◦C, 1 h) for the purpose of
complete decomposition and crystallization of Co3O4 was determined.

2.3. Microplotter Printing of Co3O4 Film

The resulting hierarchically organized Co3O4 nanopowder was further used to prepare
a stable disperse system (solid phase particle content was 8 wt%) in α-terpineol in the
presence of a binder (ethylcellulose), suitable as a functional ink for microplotter printing
(Microplotter II, Sonoplot Inc., Middleton, WI, USA) of cobalt(II,III) oxide film on the
specialized Pt/Al2O3/Pt chip (Ra = 100 nm, geometric dimensions 4.1 × 25.5 × 0.6 mm). A
capillary with a nozzle diameter of 60 µm was used as a dispenser. An ink layer of 5× 3 mm
in the lateral plane was applied to the chip surface in the area of preapplied platinum
interdigitated electrodes automatically according to a prearranged digital trajectory. The
applied ink film was then subjected to step drying in the temperature range of 25–60 ◦C
(4 h) until complete evaporation of the solvent, followed by an additional heat treatment at
400 ◦C for 1h to remove the binder.

2.4. Instrumentation

The thermal behavior of the obtained semiproduct was studied by synchronous
(TGA/DSC) thermal analysis (SDT Q-600 thermal analyzer, TA Instruments, New Castle,
DE, USA) in an air flow in the temperature range 25–1000 ◦C (controlled heating was
performed in Al2O3-microcrucibles at a rate of 10◦/min in an air flow, gas flow rate was
250 mL/min and sample mass was 14.966 mg).

To register the Fourier-transform infrared spectra of the powders, the corresponding
suspensions were prepared in Vaseline oil, and were then placed between KBr glasses
as films. Spectra were recorded in the wavenumber range of 350–4000 cm−1 (signal
accumulation time—15 s, resolution—1 cm−1) using an Infra-LUM FT-08 FTIR-spectrometer
(Lumex, St. Petersburg, Russia).

X-ray diffraction analysis of the obtained powders was carried out with a D8 Advance
diffractometer (Bruker, Bremen, Germany; CuKα = 1.5418 Å, Ni-filter, E = 40 keV, I = 40 mA,
2θ range—10◦–80◦, resolution—0.02◦, signal accumulation time in the point was 0.3 s).

The Raman spectrum of the oxide film was recorded with an R532 spectrometer
(EnSpectr, Chernogolovka, Russia) in the wavenumber range of 150–4000 cm−1 (scan
accumulation time—200 ms, number of scans—200, laser wavelength—532 nm).

The microstructures of the obtained Co3O4 nanopowder and the corresponding ox-
ide film were analyzed by scanning electron microscopy (NVision-40, Carl Zeiss, Inc.,
Oberkochen, Germany). Elemental analysis of the materials was performed within the
framework of SEM using an EDX spectrometer INCA X-MAX 80 (Oxford Instruments,
Abingdon, UK).
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The prepared Co3O4 film was also examined by atomic force microscopy. As a result
of the measurements, we obtained data on the material microstructure and its local electro-
physical properties. For this purpose, Solver Pro-M scanning probe microscope (NT-MDT,
Zelenograd, Russia) and ETALON HA-HR probes (ScanSens, Bremen, Germany) with a
conductive coating based on tungsten carbide (resonance frequency ~213 kHz) were used.
Scanning was performed in modes of semicontact AFM, Kelvin probe scanning microscopy
and scanning capacitive microscopy. The measurements were performed in air.

The chemosensor features were tested in a specialized setup. The gas environment was
created inside a quartz chamber using two Bronkhorst (Nijverheidsstraat, The Netherlands)
gas flow controllers with a maximum flow rate of 100 and 200 mL/min. The temperature
of the sensor element was controlled using a platinum microheater embedded in the chip.
The resulting film was studied for detection of H2, CO, NH3, NO2 and H2S. The material
resistance was measured using a Fluke 8846A digital multimeter (6.5 Digit Precision Multi-
meter, Everett, WA, USA) with an upper limit of 1 GOhm. Synthetic air was used as the
baseline gas. The sensory response values were calculated using the following formula:

S = |Rg − RAir|/RAir, (1)

where Rg is a resistance at a given analyte gas concentration and RAir is the resistance in air.

3. Results and Discussion
3.1. Characterization of the Intermediate Product and the Obtained Oxide Nanopowder

A thermal analysis (TGA/DSC) was carried out to investigate the semi-product be-
havior in an air flow in the temperature range of 25–1000 ◦C (Figure 1). Thermograms
indicate that the powder heating leads to a five-step weight loss in the temperature in-
tervals of 25–140, 140–190, 190–275, 275–900 and 900–930 ◦C. In the first step, residual
solvent and sorbed atmospheric gases are removed from the powder surface, and the
corresponding ∆m value is approximately 1%. At the next stage, there is a sharp decrease
in mass (~7%) accompanied by an exothermic effect with a maximum at 167 ◦C, which is
probably associated with Co2+ to Co3+ oxidation and Co3O4 formation [66], accompanied
by the intermediate product (presumably, Co(OH)2) decomposition. The third step of mass
loss (∆m = 5%) is associated with the endo effect at a minimum of around 259 ◦C and
refers to cobalt hydroxide degradation. This process continues in the next stage with a 2.4%
mass loss, but slows down significantly after reaching 400 ◦C. A sharp decrease in mass
(~5.6%) and a corresponding endothermic effect with an extremum at 924 ◦C take place
in the temperature region of 900–930 ◦C, which refers to the transformation of Co3O4 to
CoO with oxygen emission. Thus, the total mass loss for the intermediate product in the
investigated temperature range is approximately 21%. Taking into account the thermal
analysis data, the optimal mode of the additional heat treatment of powder (500 ◦C, 1 h)
providing a complete semi-product decomposition and preservation of its highly dispersed
state is determined.

The set of functional groups in the semi-product and the obtained oxide powder
was studied using FTIR (Figure 2). Thus, a narrow absorption band with a maximum at
3632 cm−1 related to the hydroxyl groups (-OH) stretching vibration mode of the non-
hydrogen bond [67], which is typical for β-Co(OH)2, was observed in the spectrum of the
semi-product after its drying at 100 ◦C for 3 h. The also-present absorption band with a
maximum at 490 cm−1 refers to ν(Co-O) stretching vibrations [67,68]. The results of the
spectral analysis of the oxide powder reveal two absorption bands with maximums at
561 and 661 cm−1, which are characteristic for cobalt(II,III) oxide and refer to the stretching
vibrations of the Co–O (Co3+–O) bond and the bridging vibration of the Co–O (Co2+–O)
bond, respectively. These peaks result from the octahedral and tetrahedral sites of the
spinel structure of the Co3O4 nanoparticles [69,70]. Thus, the FTIR results indicate the
formation of cobalt(II) hydroxide in β-modification as the intermediate product, while heat
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treatment at 500 ◦C leads to its complete decomposition and cobalt(II,III) oxide formation.
No impurities related to reagents or by-products were found in the powders.
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The crystal structure of the semi-product and the oxide powder obtained by its addi-
tional heat treatment was investigated by X-ray diffraction analysis (Figure 3). As can be
seen from the corresponding X-ray diffraction pattern, the reflection set for the intermediate
belongs to the β-Co(OH)2 hexagonal phase (JCPDS card #74-1057) [71], and there are no
signals from any crystalline impurities. The average size of the coherent scattering regions
(CSRs) for this powder was 28 ± 3 nm. The analysis of the crystal structure of the obtained
oxide powder testifies to the formation of face-centered cubic phase of cobalt(II,III) oxide
(JCPDS card #42-1467) [72]. At the same time, no reflections from any by-products and the
semi-product used were detected on the material diffractogram, suggesting its complete
conversion and, accordingly, the choice of the optimal mode of additional heat treatment.
The average CSR size for the obtained Co3O4 powder was 32 ± 3 nm, which indicates
an insignificant (~14%) increase in the material crystallites compared to the semi-product
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(primarily due to the additional high-temperature treatment). Thus, it was shown that the
proposed approach to the cobalt(II,III) oxide synthesis using the programmed chemical
deposition method allows for the formation of single-phase nanocrystalline powder with
the target crystalline structure.
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The microstructural features of the prepared Co3O4 powder were analyzed by scan-
ning electron microscopy (Figure 4). The micrographs show that the powder has several
levels of organization. Thus, the initial particles have a slightly deformed circular shape
and their average size is 40± 5 nm (Figure 4c,d), which agrees reasonably well with the size
of the CSR determined by X-ray diffraction analysis. These particles are further arranged
into curved chains that combine to form flat agglomerates of approximately 350 ± 50 nm
in diameter (Figure 4a,b). The morphology of the powder is homogeneous and no for-
mations with different dispersity and geometrical parameters are observed. Presumably,
this microstructure of the powder is due to the nature of the semi-product (β-Co(OH)2)
formed at the first synthetic stage, for which, due to the type of crystal lattice, a tendency
to form hexagonal plates is often observed [73]. Their further heat treatment can lead
to the microstructure transformation and development of more porous structures. Thus,
the investigation of the resulting oxide powder microstructure testifies to its nanoscale
state and hierarchical self-organization of primary 0D nanoparticles into 1D chains, which,
in turn, are combined into 2D agglomerates. The results of the energy dispersive X-ray
microanalysis performed in the framework of SEM indicate the absence of any impurities
differing in the chemical composition from the basic material.

3.2. Characterization of the Printed Co3O4 Film

The surface of the formed oxide film was examined by Raman spectroscopy (Figure 5).
According to the spectrum obtained, a set of bands with maxima at 474, 520, 608 and 686 cm−1,
corresponding to the Eg, 2 × F2g and A1g vibrational modes of Co3O4, are observed for
the material under study [74]. The A1g vibrational mode is the typical characteristic of
Co3+ located at the cationic sublattice (octahedral positions), whereas the Eg and F2g modes
are likely related to the combined vibrations of tetrahedral site and octahedral oxygen
motions [75]. The full width at half maxima (FWHM) of the peak corresponding to the A1g
mode in our case has a value of 26, indicating the nanoscale state of the material. Thus,
the results of Raman spectroscopy confirm the preservation of the crystal lattice type of
cobalt(II,III) oxide after functional ink preparation with the corresponding nanopowder and
the formation of Co3O4 film with its subsequent additional heat treatment. The spectrum
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of the studied material also shows signals from the Al2O3 substrate, suggesting a small
thickness of the oxide film.
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The crystal structure of the oxide film deposited on the Pt/Al2O3/Pt chip was also
studied by X-ray diffraction analysis (Figure 6). It can be seen that the reflection set of the
studied film corresponds to the face-centered cubic phase of cobalt(II,III) oxide (JCPDS card
#42-1467), as in the case of the nanopowder employed. During the microplotter printing
and additional heat treatment of the film, no crystalline impurities appeared, and the
average CSR size for the resulting planar structure was 29 ± 3 nm. Therefore, during the
Co3O4 film formation, there was some decrease in this parameter compared to the oxide
powder used, which may be related to the partial dissolution of solid-phase particles in
α-terpineol in the course of functional ink preparation. Since the intensity of the reflexes
related to the cobalt(II,III) oxide film is significantly lower compared to the signals from the
aluminum oxide and platinum oxide composing the chip, the film is rather thin.
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The morphology of the printed cobalt(II,III) oxide film was analyzed by scanning
electron microscopy (Figure 7). As seen from the data obtained, the character of the
microstructure is generally similar to that of the oxide nanopowder used. Thus, the film
is composed of two-dimensional agglomerates consisting of chains of nanoparticles with
a rounded or slightly elongated shape (Figure 7a,b). As a difference from the previously
mentioned powder, we should note a smaller size of primary nanoparticles (35 ± 5 nm),
which may be due to their partial dissolution in α-terpineol at the stage of functional
ink preparation, agreeing well with the XRD results. Consequently, the dispersity of
the obtained Co3O4 film was further increased due to this effect. In general, the oxide
film is characterized by a sufficiently high porosity, which is an important parameter
for the resistive gas sensor receptor components, and the pore size is in a wide range,
varying from 10 to 500 nm (Figure 7c,d). Thus, the findings confirm the preservation of
the microstructural features of the hierarchically organized nanosized cobalt(II,III) oxide
synthesized by programmed chemical deposition after the microplotter printing of the
corresponding film on the chip surface.

The surface of the printed Co3O4 film was also studied by atomic force microscopy
(Figure 8). It is clear from the topographic images (Figure 8a,b) that the film is nanoscale
and continuous. The film consists of slightly elongated round particles 70–140 nm long.
Toward the apex, their width decreases and reaches two to three tens of nanometers. This
picture is somewhat different from the SEM results, which can be explained by the effect of
the shape of the tip of the probe used. The mean square roughness of the surface was 46 nm.
The thickness of the formed oxide film was also determined by atomic force microscopy,
which was approximately 5 µm.

In addition to the surface topography of the film, its local electrophysical properties,
such as the distribution of the surface potential and the capacitance gradient over the
surface, were studied. Thus, the surface potential (Figure 8c) is distributed over the surface
very uniformly: fluctuations in this parameter in the studied area are just ±10 mV, which
indicates a relatively high conductivity of the material, due to which, there is no large
accumulation of charge on individual sections of the film. From the map of the capacitance
gradient distribution for the “probe tip–sample microregion” capacitor (Figure 8d) we can
see that an increased gradient (lighter areas) is observed in the areas at the boundaries
between the oxide particles. Such behavior may indicate a pronounced intergranular
character of the film conductivity.
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In addition to mapping the surface potential distribution over the surface of the oxide
film, the electron work function value for the film surface was also calculated using the
results of the KPFM. The value of this parameter was 4.62 eV, which is lower than the
values usually found in the literature (5.1–6.2 eV) for Co3O4 [76–78]. At the same time,
this range is based on measurements and calculations in a vacuum. Our measurements
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were performed in the presence of air, which leads to the sorption of atmospheric gases
and water molecules on the material surface, due to which, the value of the electron work
function can significantly decrease.

3.3. Chemosensory Properties of Co3O4 Film

In the first step, the chemoresistive responses for the printed Co3O4 film were se-
quentially determined for the following gases at given concentrations: 100 ppm CO,
100 ppm NH3, 2000 ppm H2, 100 ppm NO2 and 100 ppm H2S. Sensor responses were
measured at operating temperatures of 50–400 ◦C in intervals of 50 ◦C. As a result, an
oxide film selectivity diagram was plotted, demonstrating the dependence of its sensory
response on the above analytes over the temperature range considered (Figure 9a). At
400 ◦C, the response of the oxide film to all analyzed gases is zero. When proceeding
to lower operating temperatures, there is a noticeable sensitivity to the analytes under
investigation. The S value of 100 ppm NH3 and CO is 1–97% and 1.5–195%, respectively,
and, in the case of 2000 ppm H2, it is in the range of 6–72%. The maximum signal values
are observed at 150 ◦C. A significant sensitivity of the material to NO2 was found at lower
temperatures, and the maximum sensor response value (158%) was observed at 100 ◦C. At
50 ◦C, a noticeable response (S = 71%) was found only for nitrogen dioxide. While at high
operating temperatures (350–250 ◦C), the responses to NH3, H2, CO and NO2 were not that
high (no more than 42%), the response to H2S was found to be the highest (16–182%, with
a maximum at 150 ◦C) over the entire temperature range (100–350 ◦C). In order to select
the optimal operating temperature of detection, several sensing characteristics should be
considered: first of all, the selectivity, as well as the sensor response value. According
to the selectivity diagram (Figure 9a), the optimal operating temperature for the Co3O4
film under study is 250 ◦C when the high response to hydrogen sulfide (S = 131%) and
the low sensitivity to other analyte gases (S does not exceed 42%) are combined. At this
temperature, the chemosensor properties of the material upon H2S detection were studied
in more detail.

The detection mechanism for the Co3O4 receptor material is classical for p-type semicon-
ductors within chemoresistive gas sensors. In an air environment at elevated temperatures,
oxygen molecules adsorb on the semiconductor surface, which leads to a change in the
resistance of the material. Electrons from the conduction zone reduce O2 to the ionic form:

O2 + 2e− ↔ 2O−ad (2)

Depending on the operating temperature, the formation of O2−, O− and O2− ion-adsorbed
forms is possible [79]. At the intermediate operating temperatures (150–400 ◦C), O-particles
are characteristic. The presence of such ions on the p-type semiconductor surface promotes
the formation of a core–shell electronic structure, where the core is the particles on the
semiconductor surface, and the shell is the hole accumulation layer (HAL) formed as a
result of electron consumption for O2 reduction. In the analyte gas environment, a redox
reaction (ORR) occurs at the semiconductor surface between oxygen-ion-adsorbed forms
(O2−, O− and O2−) and a gas, where the latter is oxidized (in the case of the redox gas—in
our work, it is CO, NH3, H2 and H2S) or reduced (for the oxidant gas—in our case, it is
NO2). Thereby, the electrons that are released as a result of the ORR recombine with holes,
which leads to a change in resistance and enables us to register a resistive response.

The equation for the possible resistive response when detecting H2S with cobalt(II,III)
oxide can be expressed as follows [80,81]:

H2S + 3O−ad ↔ H2O + SO2 + 3e− (3)

Reaction (3) is an equilibrium, so the resistance should gradually return to the initial
baseline values after the analyte gas is cut off.
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at different operating temperatures with numerical values of sensor response to H2S and NO2 (a),
signal reproducibility upon detecting 50 ppm H2S at 250 ◦C (b), experimental data upon detecting
4–200 ppm H2S at 250 ◦C (c), dependence of sensor response value on H2S concentration at 250 ◦C (d)
and the sensor response shape when detecting the analytes under study at 250 ◦C (e).

The chemosensor properties of the printed oxide film when detecting H2S in the
concentration range of 4–200 ppm were studied (Figure 9b). It can be seen that, as the
hydrogen sulfide concentration increases from 4 ppm to 200 ppm, the sensory response at
250 ◦C improves from 38% to 137%. While, at relatively low concentrations (4–50 ppm) of
this gas, a linear dependence of a given signal is observed, a saturation and stabilization
of the sensor response value takes place as the analyte concentration increases (Figure 9c).
This relation is power-dependent and is well described by the Freundlich adsorption
isotherm equation [82]. Such a character of the dependence is typical for chemoresistive
gas sensors [81]. The calculated response times (t90) also correlate well with the above
relationship: the response time decreases from 190 to 9 s when the H2S concentration
increases from 4 to 200 ppm. The reproducibility of the chemoresistive response was
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studied when detecting 20 ppm hydrogen sulfide (Figure 9d). Thus, a small signal drift
was observed during the first gas injections, followed by the signal stabilization. This
phenomenon is related to the reaction (3), when the forward and reverse reaction rates
differ, although an equilibrium is reached with time. The sensor response shapes for various
analytes were examined in this work (Figure 9e). As can be seen from the plot, the signals
have a shape that is close to rectangular, which is optimal for chemoresistive gas sensors.

When comparing the data obtained with our previous results for a Co3O4 thin film
formed by the combination of sol–gel technology and pen plotter printing [83], it should be
noted that the increased film thickness and the hierarchical organization of the receptor
material contribute to an increase in the response value for the analytes examined. In
the current study, the high efficiency of hydrogen sulfide detection is achieved due to the
microstructural features of the material, with no need to modify cobalt(II,III) oxide with
oxides of other metals [84,85] or carbon structures [86].

4. Conclusions

Hierarchically organized Co3O4 nanopowder was synthesized by programmed chemi-
cal precipitation. It was found that the β-Co(OH)2 hexagonal phase with an average CSR
size of 28± 3 nm was formed as an intermediate product, which, according to thermal anal-
ysis, is completely transformed into cobalt(II,III) oxide during an additional heat treatment
in the air at 500 ◦C for 1 h. SEM data revealed that the oxide powder has several levels
of microstructural self-organization: primary particles 40 ± 5 nm in size (average CSR
size was 32 ± 3 nm) have a slightly distorted circular shape and are combined into curved
chains, which, in turn, form flat agglomerates of approximately 350 ± 50 nm in diameter.
The resulting Co3O4 nanopowder was then employed as a functional ink component for
the microplotter printing of the corresponding film on the chip surface. An examination of
the final planar structure surface by XRD and Raman spectroscopy confirmed the preser-
vation of the crystal lattice of cobalt(II,III) oxide and the absence of any impurities. At
the same time, some decrease in the average CSR size (down to 29 ± 3 nm) was found in
contrast to the oxide powder used, which may be associated with the partial dissolution
of solid-phase particles in α-terpineol during the functional ink preparation. A similar
trend was found when analyzing the film microstructure by scanning electron microscopy:
there is a decrease in the average size of the primary particles down to 35 ± 5 nm. This
effect resulted in an additional increase in the dispersity of the Co3O4 film. In general, the
oxide film is characterized by a sufficiently high porosity, which is an important parameter
for the receptor components of resistive gas sensors, and the pore size is in a wide range,
varying from 10 to 500 nm. In addition, the preservation of the microstructural features and
the nature of the hierarchical organization of the synthesized nanoscale cobalt(II,III) oxide
after the microplotter printing of the corresponding film was demonstrated. Using AFM,
its thickness (~5 µm) and mean square surface roughness (46 nm) were determined. The
results of KPFM testify to a rather high electric conductivity of the material and allowed us
to estimate the work function value of its surface (4.62 eV), which, due to measurements
carried out in the ambient atmosphere, is lower than that currently found in the literature.
SCM data demonstrate the intergranular character of conductivity. The results of chemosen-
sor measurements showed that the printed Co3O4 film at 250 ◦C was characterized by a
combination of selectivity and a sufficiently high sensor response (S = 131% for 100 ppm) to
hydrogen sulfide. The material behavior upon H2S detection in the concentration range of
4–200 ppm was studied, showing an increase in the response value from 38 to 137% when
the analyte concentration was increased from 4 to 200 ppm. The response times (t90) corre-
lated well with the above relationship, decreasing from 190 to 9 s. The high reproducibility
of the chemoresistive response was also confirmed when detecting hydrogen sulfide. Thus,
it was shown that the proposed approach allows not only the synthesis of hierarchically
organized cobalt(II,III) oxide nanopowder in an automated mode but also the printing of
an oxide film similar in microstructural characteristics, demonstrating a high efficiency as a
promising receptor component of a resistive gas sensor to H2S.
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